51
|
Liu H, Kang Y, Zhao X, Liu Y, Zhang X, Zhang S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
52
|
White PJ. Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 2018; 1862:2333-2342. [DOI: 10.1016/j.bbagen.2018.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
53
|
|
54
|
Tian M, Xu X, Liu F, Fan X, Pan S. Untargeted metabolomics reveals predominant alterations in primary metabolites of broccoli sprouts in response to pre-harvest selenium treatment. Food Res Int 2018; 111:205-211. [DOI: 10.1016/j.foodres.2018.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/01/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
55
|
Tian M, Yang Y, Ávila FW, Fish T, Yuan H, Hui M, Pan S, Thannhauser TW, Li L. Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8036-8044. [PMID: 29975053 DOI: 10.1021/acs.jafc.8b03396] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Selenium (Se)-enriched broccoli has health-beneficial selenium-containing compounds, but it may contain reduced amounts of chemopreventive glucosinolates. To investigate the basis by which Se treatment influences glucosinolate levels, we treated two broccoli cultivars with 25 μM Na2SeO4. We found that Se supplementation suppressed the accumulation of total glucosinolates, particularly glucoraphanin, the direct precursor of a potent anticancer compound, in broccoli florets and leaves. We showed that the suppression was not associated with plant sulfur nutrition. The levels of the glucosinolate precursors methionine and phenylalanine as well as the expression of genes involved in glucosinolate biosynthesis were greatly decreased following Se supplementation. Comparative proteomic analysis identified proteins in multiple metabolic and cellular processes that were greatly affected and detected an enzyme affecting methionine biosynthesis that was reduced in the Se-biofortified broccoli. These results indicate that Se-conferred glucosinolate reduction is associated with negative effects on precursor amino acid biosynthesis and glucosinolate-biosynthetic-gene expression and provide information for a better understanding of glucosinolate accumulation in response to Se supplementation in broccoli.
Collapse
Affiliation(s)
- Ming Tian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Fabricio William Ávila
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- State University of Mid West, UNICENTRO , Irati , Paraná 84500-000 , Brazil
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science , Cornell University , Ithaca , New York 14853 , United States
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- College of Horticulture , Northwest A&F University , Yangling 712100 , China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
56
|
Zhu Z, Zhang Y, Liu J, Chen Y, Zhang X. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem 2018; 252:9-15. [DOI: 10.1016/j.foodchem.2018.01.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 12/01/2022]
|
57
|
Rheological, thermal, micro structural and functional properties of freeze dried onion powders as affected by sprouting. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Kim SY, Park JE, Kim EO, Lim SJ, Nam EJ, Yun JH, Yoo G, Oh SR, Kim HS, Nho CW. Exposure of kale root to NaCl and Na 2SeO 3 increases isothiocyanate levels and Nrf2 signalling without reducing plant root growth. Sci Rep 2018; 8:3999. [PMID: 29507323 PMCID: PMC5838157 DOI: 10.1038/s41598-018-22411-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/20/2018] [Indexed: 01/09/2023] Open
Abstract
A plant factory is a closed cultivation system that provides a consistent and modified environment for plant growth. We speculated that treatment of kale (Brassica oleracea) grown in a plant factory with NaCl, Na2SeO3, or both would increase the bioactive phytochemical levels including glucosinolates (GLSs) and isothiocyanates (ITCs), the key molecules in cancer prevention. The kale was harvested and analysed after treatment with NaCl and Na2SeO3 alone or in combination for 1 or 2 weeks. Exposure to NaCl alone but not Na2SeO3 increased plant root growth. Levels of sinigrin were increased by a 2-week exposure to Na2SeO3 alone or in combination with NaCl, whereas no changes were observed in glucoraphanin and gluconasturtiin gluconasturtiin levels. Importantly, the ITC concentration was affected by 2-week treatment with both compounds. To evaluate the bioactivity of kale, HepG2 human hepatoma cells were treated with plant extract for 6 h. Only the extract of kale roots exposed to a combination NaCl and Na2SeO3 for 2 weeks showed an increased expression of nuclear factor erythroid 2-related factor (Nrf2), which regulates genes encoding antioxidant proteins. These data suggest that co-treatment with NaCl and Na2SeO3 increased the ITC content and chemopreventive effects of kale root.
Collapse
Affiliation(s)
- Sun Young Kim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Jai-Eok Park
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Eun Ok Kim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Sue Ji Lim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Eui Jeong Nam
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Ji Ho Yun
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - GyHye Yoo
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Sang-Rok Oh
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Hyoung Seok Kim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea
| | - Chu Won Nho
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea.
| |
Collapse
|
59
|
|
60
|
Bell L, Wagstaff C. Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9379-9403. [PMID: 28968493 DOI: 10.1021/acs.jafc.7b03628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glucosinolates (GSLs) and isothiocyanates (ITCs) produced by Brassicaceae plants are popular targets for analysis due to the health benefits associated with them. Breeders aim to increase the concentrations in commercial varieties; however, there are few examples of this. The most well-known is Beneforté broccoli, which has increased glucoraphanin/sulforaphane concentrations compared to those of conventional varieties. It was developed through traditional breeding methods with considerations for processing, consumption, and health made throughout this process. Many studies presented in the literature do not take a holistic approach, and key points about breeding, cultivation methods, postharvest storage, sensory attributes, and consumer preferences are not properly taken into account. In this review, we draw together data for multiple species and address how such factors can influence GSL profiles. We encourage researchers and institutions to engage with industry and consumers to produce research that can be utilized in the improvement of Brassicaceae crops.
Collapse
Affiliation(s)
- Luke Bell
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| | - Carol Wagstaff
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| |
Collapse
|
61
|
de Oliveira AP, Nomura CS, Naozuka J. Evaluation of selenium enrichment of adzuki bean ( Vigna angularis ) sprouts: Translocation, bioaccessibility and Se-protein speciation. Microchem J 2017. [DOI: 10.1016/j.microc.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
62
|
|
63
|
Mahn A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem 2017; 233:492-499. [PMID: 28530603 DOI: 10.1016/j.foodchem.2017.04.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
Selenium (Se) exerts many effects beneficial to health. Broccoli is a Se-hyperaccumulator plant, with Se-fertilization increasing its potential as a functional food. We studied the effect of dose, and the developmental stage at the beginning of Se-fortification, on antioxidant capacity, phenolics, glucosinolates, sulphoraphane, Se-methyl selenocysteine and myrosinase in broccoli. Se-fortification decreased the antioxidant properties and sulphur-containing compounds, but increased Se-methyl-selenocysteine content. Regression models gave r>0.77 confirming that Se dose and developmental stage largely determine the behaviour of the system. Correlation models gave r>0.95, allowing estimation of saturation concentration of Se-methyl-selenocysteine in broccoli cv. Traditional (3.13µmolg-1DM) and the concentration (2-mmol sodium selenate) above which the content of phenolic compounds decreases significantly. Sulphoraphane and glucosinolates' dependence on total Se supply was consistent with myrosinase activity below 3.5-mmol sodium selenate. Our results would enable design of optimal fertilization strategies to enrich broccoli in Se with minimal impairment of antioxidants properties.
Collapse
Affiliation(s)
- Andrea Mahn
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile.
| |
Collapse
|
64
|
Schiavon M, Pilon-Smits EAH. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:10-19. [PMID: 28177413 DOI: 10.2134/jeq2016.09.0342] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The element selenium (Se) is both essential and toxic for most life forms, with a narrow margin between deficiency and toxicity. Phytotechnologies using plants and their associated microbes can address both of these problems. To prevent Se toxicity due to excess environmental Se, plants may be used to phytoremediate Se from soil or water. To alleviate Se deficiency in humans or livestock, crops may be biofortified with Se. These two technologies may also be combined: Se-enriched plant material from phytoremediation could be used as green fertilizer or as fortified food. Plants may also be used to "mine" Se from seleniferous soils. The efficiency of Se phytoremediation and biofortification may be further optimized. Research in the past decades has provided a wealth of knowledge regarding the mechanisms by which plants take up, metabolize, accumulate, and volatilize Se and the role plant-associated microbes play in these processes. Furthermore, ecological studies have revealed important effects of plant Se on interactions with herbivores, detrivores, pollinators, neighboring vegetation, and the plant microbiome. All this knowledge can be exploited in phytotechnology programs to optimize plant Se accumulation, transformation, volatilization, and/or tolerance via plant breeding, genetic engineering, and tailored agronomic practices.
Collapse
|
65
|
Glucosinolates: Novel Sources and Biological Potential. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1365. [PMID: 28824693 PMCID: PMC5540907 DOI: 10.3389/fpls.2017.01365] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 05/04/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.
Collapse
Affiliation(s)
- Melanie Wiesner-Reinhold
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- *Correspondence: Melanie Wiesner-Reinhold
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Susanne Baldermann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of PotsdamNuthethal, Germany
| | - Dietmar Schwarz
- Functional Plant Biology, Leibniz Institute of Vegetable and Ornamental CropGrossbeeren, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University JenaJena, Germany
| | - Daryl D. Rowan
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Kerry L. Bentley-Hewitt
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Marian J. McKenzie
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| |
Collapse
|
67
|
Tian M, Hui M, Thannhauser TW, Pan S, Li L. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli ( Brassica oleracea L. var. italica). FRONTIERS IN PLANT SCIENCE 2017; 8:1425. [PMID: 28868057 PMCID: PMC5563375 DOI: 10.3389/fpls.2017.01425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/02/2017] [Indexed: 05/09/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S) and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli (Brassica oleracea L. var. italica) growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.
Collapse
Affiliation(s)
- Ming Tian
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Theodore W. Thannhauser
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Li Li, Siyi Pan,
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, IthacaNY, United States
- *Correspondence: Li Li, Siyi Pan,
| |
Collapse
|
68
|
Tian M, Xu X, Hu H, Liu Y, Pan S. Optimisation of enzymatic production of sulforaphane in broccoli sprouts and their total antioxidant activity at different growth and storage days. Journal of Food Science and Technology 2016; 54:209-218. [PMID: 28242918 DOI: 10.1007/s13197-016-2452-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/03/2023]
Abstract
Sulforaphane, a type of isothiocyanate hydrolysed from glucosinolate, is a powerful anticancer compound naturally found in food especially in broccoli sprouts. Despite the function of sulforaphane has been extensively studied in recent years, little attention has been given to methods that can maximize the production of this compound in broccoli sprouts. The present study optimised the enzymolysis conditions for sulforaphane production in broccoli sprouts using response surface methodology. The maximum sulforaphane production (246.95 μg/g DW) was achieved using a solid-liquid ratio of 1:30, hydrolysis time of 1.5 h, ascorbic acid content of 3.95 mg/g DW sample, and temperature of 65 °C. The highest sulforaphane content in broccoli sprouts were 233.80 μg/g DW in 5-day-old sprouts and 1555.95 μg/g DW at day 4 of storage. The highest antioxidant activities were 37.22 U/min/g DW in 3-day-old sprouts and 35.08 U/min/g DW on 4th day of storage.
Collapse
Affiliation(s)
- Ming Tian
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hao Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yu Liu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
69
|
Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P, Dall'Acqua S, Pilon-Smits EAH. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids. FRONTIERS IN PLANT SCIENCE 2016; 7:1371. [PMID: 27683583 PMCID: PMC5021693 DOI: 10.3389/fpls.2016.01371] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/29/2016] [Indexed: 05/21/2023]
Abstract
Two selenium (Se) fertilization methods were tested for their effects on levels of anticarcinogenic selenocompounds in radish (Raphanus sativus), as well as other nutraceuticals. First, radish was grown on soil and foliar selenate applied 7 days before harvest at 0, 5, 10, and 20 mg Se per plant. Selenium levels were up to 1200 mg Se/kg DW in leaves and 120 mg Se/kg DW in roots. The thiols cysteine and glutathione were present at 2-3-fold higher levels in roots of Se treated plants, and total glucosinolate levels were 35% higher, due to increases in glucoraphanin. The only seleno-aminoacid detected in Se treated plants was Se-methyl-SeCys (100 mg/kg FW in leaves, 33 mg/kg FW in roots). The levels of phenolic aminoacids increased with selenate treatment, as did root total nitrogen and protein content, while the level of several polyphenols decreased. Second, radish was grown in hydroponics and supplied with 0, 5, 10, 20, or 40 μM selenate for 1 week. Selenate treatment led to a 20-30% increase in biomass. Selenium concentration was 242 mg Se/kg DW in leaves and 85 mg Se/kg DW in roots. Cysteine levels decreased with Se in leaves but increased in roots; glutatione levels decreased in both. Total glucosinolate levels in leaves decreased with Se treatment due to repression of genes involved in glucosinolates metabolism. Se-methyl-SeCys concentration ranged from 7-15 mg/kg FW. Aminoacid concentration increased with Se treatment in leaves but decreased in roots. Roots of Se treated plants contained elevated transcript levels of sulfate transporters (Sultr) and ATP sulfurylase, a key enzyme of S/Se assimilation. No effects on polyphenols were observed. In conclusion, Se biofortification of radish roots may be achieved via foliar spray or hydroponic supply. One to ten radishes could fulfill the daily human requirement (70 μg) after a single foliar spray of 5 mg selenate per plant or 1 week of 5-10 μM selenate supply in hydroponics. The radishes metabolized selenate to the anticarcinogenic compound Se-methyl-selenocysteine. Selenate treatment enhanced levels of other nutraceuticals in radish roots, including glucoraphanin. Therefore, Se biofortification can produce plants with superior health benefits.
Collapse
Affiliation(s)
- Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
- Biology Department, Colorado State UniversityFort Collins, MS, USA
| | - Chiara Berto
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadova, Italy
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Annarita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Paolo Sambo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadova, Italy
| | | |
Collapse
|
70
|
Lv J, Wu J, Zuo J, Fan L, Shi J, Gao L, Li M, Wang Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem 2016; 216:225-33. [PMID: 27596413 DOI: 10.1016/j.foodchem.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
Abstract
Broccoli contains high levels of bioactive compounds but deteriorates and senesces easily. In the present study, freshly harvested broccoli was treated with selenite and stored at two different temperatures. The effect of selenite treatment on sensory quality and postharvest physiology were analyzed. Volatile components were assessed by HS-SPME combined with GC-MS and EN. The metabolism of Se and S was also examined. Results indicated that Se treatment had a significant effect on maintaining the sensory quality, suppressing the respiration intensity and ethylene production, as well as increasing the content of Se and decreasing the content of S. In particular, significant differences in the composition of volatile compounds were present between control and Se-treated. The differences were mainly due to differences in alcohols and sulfide compounds. These results demonstrate that Se treatment can have a positive effect on maintaining quality and enhancing its sensory quality through the release of volatile compounds.
Collapse
Affiliation(s)
- Jiayu Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Jie Wu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China; Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jinhua Zuo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Linlin Fan
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Junyan Shi
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Lipu Gao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Qing Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China.
| |
Collapse
|