51
|
Coelho ALS, Orlandelli RC. Immobilized microbial lipases in the food industry: a systematic literature review. Crit Rev Food Sci Nutr 2020; 61:1689-1703. [PMID: 32423294 DOI: 10.1080/10408398.2020.1764489] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Several studies describe the immobilization of microbial lipases aiming to evaluate the mechanical/thermal stability of the support/enzyme system, the appropriate method for immobilization, acid and alkaline stability, tolerance to organic solvents and specificity of fatty acids. However, literature reviews focus on application of enzyme/support system in food technology remains scarce. This current systematic literature review aimed to identify, evaluate and interpret available and relevant researches addressing the type of support and immobilization techniques employed over lipases, in order to obtain products for food industry. Fourteen selected articles were used to structure the systematic review, in which the discussion was based on six main groups: (i) synthesis/enrichment of polyunsaturated fatty acids; (ii) synthesis of structured lipids; (iii) flavors and food coloring; (iv) additives, antioxidants and antimicrobials; (v) synthesis of phytosterol esters and (vi) synthesis of sugar esters. In general, the studies discussed the synthesis of the enzyme/support system and the characteristics: surface area, mass transfer resistance, activity, stability (pH and temperature), and recyclability. Each immobilization technique is applicable for a specific production, depending mainly on the sensitivity and cost of the process.
Collapse
Affiliation(s)
- Ana Letícia Silva Coelho
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ravely Casarotti Orlandelli
- Specialization course in Biotechnology and Bioprocesses, Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Maringá, PR, Brazil.,Center of Humanities and Education Sciences, College of Biological Sciences, Universidade Estadual do Paraná, Paranavaí, PR, Brazil
| |
Collapse
|
52
|
Nanoliposomes and Tocosomes as Multifunctional Nanocarriers for the Encapsulation of Nutraceutical and Dietary Molecules. Molecules 2020; 25:molecules25030638. [PMID: 32024189 PMCID: PMC7037994 DOI: 10.3390/molecules25030638] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.
Collapse
|
53
|
Owumi SE, Olayiwola YO, Alao GE, Gbadegesin MA, Odunola OA. Cadmium and nickel co-exposure exacerbates genotoxicity and not oxido-inflammatory stress in liver and kidney of rats: Protective role of omega-3 fatty acid. ENVIRONMENTAL TOXICOLOGY 2020; 35:231-241. [PMID: 31639282 DOI: 10.1002/tox.22860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The present study examined the influence of co-exposure to cadmium (Cd) and nickel (Ni) on hepatorenal function as well as the protective role of omega-3 polyunsaturated fatty acids (ω-3FA) in rats. The animals were exposed to Cd (5 mg/kg) and Ni (150 μg/L in drinking water) singly or co-exposed to both metals and ω-3FA at 20 mg/kg for 14 consecutive days. Results showed that hepatorenal injury resulting from individual exposure to Cd or Ni was not aggravated in the co-exposure group. Moreover, ω-3FA markedly abrogated the reduction in the antioxidant enzyme activities, the increase in reactive oxygen and nitrogen species, and lipid peroxidation induced by Cd and Ni co-exposure. Additionally, ω-3FA administration markedly suppressed the increase in hepatic and renal myeloperoxidase activity, nitric oxide, tumor necrosis factor alpha, and interleukin-1 β levels in the co-exposure group. Genotoxicity resulting from individual exposure to Cd or Ni was intensified in the co-exposure group. However, ω-3FA administration markedly ameliorated the genotoxicity and histological lesions in the co-exposure group. Taken together, co-exposure to Cd and Ni aggravated genotoxicity and not oxido-inflammatory stress in the liver and kidney of rats. ω-3FA abated hepatorenal injury and genotoxicity induced by Cd and Ni co-exposure in rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Yusuff O Olayiwola
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gbenga E Alao
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A Gbadegesin
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
54
|
Jurić S, Jurić M, Siddique MAB, Fathi M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Department of Food Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Md Abu Bakar Siddique
- Department of Agriculture and Food Science, University College Dublin (UCD) Belfield, Dublin, Ireland
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
55
|
Lane KE, Zhou Q, Robinson S, Li W. The composition and oxidative stability of vegetarian omega-3 algal oil nanoemulsions suitable for functional food enrichment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:695-704. [PMID: 31602647 DOI: 10.1002/jsfa.10069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Long chain omega-3 polyunsaturated fatty acid (LCn3PUFA) nanoemulsion enriched foods offer the potential to address habitually low oily fish intakes. Nanoemulsions increase LCn3PUFA bioavailability, although they may cause lipid oxidation. The present study examined the oxidative stability of LCn3PUFA algal oil-in-water nanoemulsions created by ultrasound using natural and synthetic emulsifiers during 5 weeks of storage at 4, 20 and 40 °C. Fatty acid composition, droplet size ranges and volatile compounds were analysed. RESULTS No significant differences were found for fatty acid composition at various temperatures and storage times. Lecithin nanoemulsions had significantly larger droplet size ranges at baseline and during storage, regardless of temperatures. Although combined Tween 40 and lecithin nanoemulsions had low initial droplet size ranges, there were significant increases at 40 °C after 5 weeks of storage. Gas chromatograms identified hexanal and propanal as predominant volatile compounds, along with 2-ethylfuran, propan-3-ol and valeraldehyde. The Tween 40 only nanoemulsion sample showed the formation of lower concentrations of volatiles compared to lecithin samples. The formation of hexanal and propanal remained stable at lower temperatures, although higher concentrations were found in nanoemulsions than in bulk oil. The lecithin only sample had formation of higher concentrations of volatiles at increased temperatures, despite having significantly larger droplet size ranges than the other samples. CONCLUSION Propanal and hexanal were the most prevalent of five volatile compounds detected in bulk oil and lecithin and/or Tween 40 nanoemulsions. Oxidation compounds remained more stable at lower temperatures, indicating suitability for the enrichment of refrigerated foods. Further research aiming to evaluate the oxidation stability of these systems within food matrices is warranted. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Katie E Lane
- Liverpool John Moores University, School of Sport and Exercise Sciences, Faculty of Science, Liverpool, UK
| | - Qiqian Zhou
- Institute of Food Science and Innovation, University of Chester, Chester, UK
| | - Sharon Robinson
- NOW Food Research Centre, University of Chester, Chester, UK
| | - Weili Li
- Institute of Food Science and Innovation, University of Chester, Chester, UK
| |
Collapse
|
56
|
Beltrán JD, Ricaurte L, Estrada KB, Quintanilla-Carvajal MX. Effect of homogenization methods on the physical stability of nutrition grade nanoliposomes used for encapsulating high oleic palm oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
57
|
VIEIRA MDC, BAKOF KK, SCHUCH NJ, SKUPIEN JA, BOECK CR. The benefits of omega-3 fatty acid nanocapsulation for the enrichment of food products: a review. REV NUTR 2020. [DOI: 10.1590/1678-9865202033e190165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Polyunsaturated fatty acids oxidize easily due to their chemical structure, causing a reduction of their nutritional properties. Nanostructured systems may be an alternative to protect fatty acids against oxidation, improving solubility and stability. Consequently, nutritional value of food is maintained as well as the sensory characteristics (color, flavor, texture, and aroma) when fatty acids are added to food products. The present study is a narrative review to introduce the potential benefits of omega-3 unsaturated fatty acids nanoparticles incorporated in food products. The literature review includes publications in English and Portuguese issued between March 1985 and March 2019, in PubMed, ScienceDirect and Web of Science databases. Manual searches were conducted in the articles references lists of the articles included to identify other relevant studies. There were studies that evaluated the stability of fatty acids in food products such as bread, fruit juice, milk, yogurt, and meat. In this study, the most used nanostructured systems for the incorporation of fatty acids were the nanocapsules and the nanoliposomes. Currently, the nanostructured system demonstrates a potential to improve protection of polyunsaturated fatty acids against oxidization and thermal degradation. In this way, they maintain their functional properties and their bioavailability increases and therapeutic efficacy and sensory properties are improved. There are several methodologies being tested, which makes it difficult to identify the most efficient formulation to protect fatty acids. Nanostructured systems seem to be the best alternative to protect polyunsatured fatty acids from oxidization. The encapsulation efficiency, particle’s size and type are relevant factors to be considered to evaluate oxidization. In conclusion, the review showed that currently it is impossible to determine the most efficient methodology. Besides, nanoformulations should follow international guidelines to present more standardized and therefore more efficient particles.
Collapse
|
58
|
Gulzar S, Benjakul S, Hozzein WN. Impact of β‐glucan on debittering, bioaccessibility and storage stability of skim milk fortified with shrimp oil nanoliposomes. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saqib Gulzar
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90112Thailand
| | - Soottawat Benjakul
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90112Thailand
| | - Wael N. Hozzein
- Bioproducts Research Chair (BRC) Zoology Department College of Science King Saud University Riyadh Saudi Arabia
- Botany and Microbiology Department Faculty of Science Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
59
|
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019; 270:123-146. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/30/2022]
Abstract
Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp and Paper Research Centre, McGill University, Montreìal, Queìbec H3A 0B8, Canada; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
60
|
Visentini FF, Perez AA, Santiago LG. Self-assembled nanoparticles from heat treated ovalbumin as nanocarriers for polyunsaturated fatty acids. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
61
|
Moghadam FV, Pourahmad R, Mortazavi A, Davoodi D, Azizinezhad R. Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk. Food Sci Anim Resour 2019; 39:309-323. [PMID: 31149672 PMCID: PMC6533394 DOI: 10.5851/kosfa.2019.e25] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022] Open
Abstract
Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.
Collapse
Affiliation(s)
- Farideh Vahid Moghadam
- Department of Food Science and Technology,
Sabzevar Branch, Islamic Azad University, Sabzevar,
Iran
| | - Rezvan Pourahmad
- Department of Food Science and Technology,
College of Agriculture, Varamin-Pishva Branch, Islamic Azad
University, Varamin, Iran
| | - Ali Mortazavi
- Department of Food Science and Technology,
Sabzevar Branch, Islamic Azad University, Sabzevar,
Iran
| | - Daryoush Davoodi
- Nanotechnology Department, Agricultural
Biotechnology Research Institute of Iran (ABRII), Agricultural Research,
Education and Extension Organization (AREEO),
Karaj, Iran
| | - Reza Azizinezhad
- Department of Biotechnology and Plant
Breeding, College of Agricultural Sciences and Food Industries, Science and
Research Branch, Islamic Azad University, Tehran,
Iran
| |
Collapse
|
62
|
Mori C, Kadota K, Tozuka Y, Shimosaka A, Yoshida M, Shirakawa Y. Application of nozzleless electrostatic atomization to encapsulate soybean oil with solid substances. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
63
|
Ma T, Zhao H, Wang J, Sun B. Effect of processing conditions on the morphology and oxidative stability of lipid microcapsules during complex coacervation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
|
65
|
Yi X, Zheng Q, Ding B, Pan MH, Chiou YS, Li L, Li Z. Liposome-whey protein interactions and its relation to emulsifying properties. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
66
|
Visentini FF, Ferrado JB, Perez AA, Santiago LG. Simulated gastrointestinal digestion of inclusion complexes based on ovalbumin nanoparticles and conjugated linoleic acid. Food Funct 2019; 10:2630-2641. [DOI: 10.1039/c8fo02416b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ovalbumin delivery system of conjugated linoleic acid resists in vitro gastrointestinal digestion with high percentages of bioactive retention.
Collapse
Affiliation(s)
- Flavia F. Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina
- CONICET
- Argentina
- Área de Biocoloides y Nanotecnología
- Instituto de Tecnología de Alimentos
| | - Joana B. Ferrado
- Área de Biocoloides y Nanotecnología
- Instituto de Tecnología de Alimentos
- Facultad de Ingeniería Química
- Universidad Nacional del Litoral
- Santa Fe (3000)
| | - Adrián A. Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina
- CONICET
- Argentina
- Área de Biocoloides y Nanotecnología
- Instituto de Tecnología de Alimentos
| | - Liliana G. Santiago
- Área de Biocoloides y Nanotecnología
- Instituto de Tecnología de Alimentos
- Facultad de Ingeniería Química
- Universidad Nacional del Litoral
- Santa Fe (3000)
| |
Collapse
|
67
|
Danaei M, Kalantari M, Raji M, Samareh Fekri H, Saber R, Asnani G, Mortazavi S, Mozafari M, Rasti B, Taheriazam A. Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018; 4:e01088. [PMID: 30603716 PMCID: PMC6307095 DOI: 10.1016/j.heliyon.2018.e01088] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/02/2023] Open
Abstract
There has been a steady increase in the interest towards employing nanoliposomes as colloidal drug delivery systems, particularly in the last few years. Their biocompatibility nature along with the possibility of encapsulation of lipid-soluble, water-soluble and amphipathic molecules and compounds are among the advantages of employing these lipidic nanocarriers. A challenge in the successful formulation of nanoliposomal systems is to control the critical physicochemical properties, which impact their in vivo performance, and validating analytical techniques that can adequately characterize these nanostructures. Of particular interest are the chemical composition of nanoliposomes, their phase transition temperature, state of the encapsulated material, encapsulation efficiency, particle size distribution, morphology, internal structure, lamellarity, surface charge, and drug release pattern. These attributes are highly important in revealing the supramolecular arrangement of nanoliposomes and incorporated drugs and ensuring the stability of the formulation as well as consistent drug delivery to target tissues. In this article, we present characterization of nanoliposomal formulations as an example to illustrate identification of key in vitro characteristics of a typical nanotherapeutic agent. Corresponding analytical techniques are discussed within the context of nanoliposome assessment, single particle analysis and ensuring uniform manufacture of therapeutic formulations with batch-to-batch consistency.
Collapse
Affiliation(s)
- M. Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Kalantari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Raji
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - H. Samareh Fekri
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - R. Saber
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - G.P. Asnani
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune 411 048, (Savitribai Phule Pune University), Maharashtra, India
| | - S.M. Mortazavi
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M.R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - B. Rasti
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - A. Taheriazam
- Department of Orthopaedics, Tehran Medical Sciences Branch IAU, Azad University, 19168 93813 Tehran, Iran
| |
Collapse
|
68
|
Lin L, Wang Q, Lu J, Lv S, Jiang S. Protective effects of tilapia fish oil and liposomes on ischemia reperfusion injury of rat liver. J Food Biochem 2018. [DOI: 10.1111/jfbc.12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lin Lin
- School of Food Science and Engineering Hefei University of Technology Hefei China
- Key Laboratory for Agricultural Products Processing of Anhui Province Hefei China
| | - Qianqian Wang
- School of Food Science and Engineering Hefei University of Technology Hefei China
| | - Jianfeng Lu
- School of Food Science and Engineering Hefei University of Technology Hefei China
- Key Laboratory for Agricultural Products Processing of Anhui Province Hefei China
| | - Shun Lv
- School of Food Science and Engineering Hefei University of Technology Hefei China
- Key Laboratory for Agricultural Products Processing of Anhui Province Hefei China
| | - Shaotong Jiang
- School of Food Science and Engineering Hefei University of Technology Hefei China
- Key Laboratory for Agricultural Products Processing of Anhui Province Hefei China
| |
Collapse
|
69
|
Mohammadabadi M, Mozafari M. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
70
|
Tavakoli H, Hosseini O, Jafari SM, Katouzian I. Evaluation of Physicochemical and Antioxidant Properties of Yogurt Enriched by Olive Leaf Phenolics within Nanoliposomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9231-9240. [PMID: 30110548 DOI: 10.1021/acs.jafc.8b02759] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Olive leaf extract is a rich source of phenolic compounds and oleuropein which is well-known regarding its antioxidant and antimicrobial attributes. However, the mentioned phenolic compounds will lose their beneficial properties during storage and induce undesirable aftertaste in food products. In this study, olive leaf extract-bearing nanoliposomes were produced via the ethanol injection method and using phosphatidyl choline plus cholesterol as the reagents for the wall material. Later, the prepared nanocarriers were examined in regard to their zeta potential, stability, encapsulation efficiency, and particle size. Moreover, the prepared nanoliposome-loaded yogurt samples were examined considering syneresis, antioxidant activity, pH, acidity, color, and sensorial properties. The mean particle size of the fabricated nanoliposomes was in the range of 25-158 nm. Also, the entire formulation had a negative charge. The encapsulation efficiency was between 70.7 to 88.2%. Besides, the application of nanoliposomes in yogurt improved the antioxidant activity, and unlike the yogurt with nonencapsulated olive extract, no significant changes in color and sensorial attributes were observed and even the syneresis rate was minimized. To conclude, olive leaf phenolics can be entrapped within nanoliposomes with a considerable encapsulation efficiency for application in food products like yogurt to increase their nutritional value and public acceptance.
Collapse
Affiliation(s)
- Hamidreza Tavakoli
- Health Research Center, Life Style Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Omidreza Hosseini
- Department of Food Materials and Process Design Engineering , Gorgan University of Agricultural Science and Natural Resources , Gorgan , Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering , Gorgan University of Agricultural Science and Natural Resources , Gorgan , Iran
| | - Iman Katouzian
- Department of Food Materials and Process Design Engineering , Gorgan University of Agricultural Science and Natural Resources , Gorgan , Iran
| |
Collapse
|
71
|
Amoah I, Cairncross C, Sturny A, Rush E. Towards improving the nutrition and health of the aged: the role of sprouted grains and encapsulation of bioactive compounds in functional bread - a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Isaac Amoah
- Faculty of Health and Environmental Sciences; Auckland University of Technology; Auckland 1010 New Zealand
- Riddet Institute; Massey University; Private Bag 11222 Palmerston North 4442 New Zealand
| | - Carolyn Cairncross
- Faculty of Health and Environmental Sciences; Auckland University of Technology; Auckland 1010 New Zealand
| | - Arno Sturny
- School of Tourism and Hospitality; Auckland University of Technology; Auckland 1010 New Zealand
| | - Elaine Rush
- Faculty of Health and Environmental Sciences; Auckland University of Technology; Auckland 1010 New Zealand
- Riddet Institute; Massey University; Private Bag 11222 Palmerston North 4442 New Zealand
| |
Collapse
|
72
|
Khorasani S, Danaei M, Mozafari M. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
73
|
Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation using different combinations of wall materials and crosslinkers. Food Chem 2018; 252:277-284. [DOI: 10.1016/j.foodchem.2018.01.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/02/2023]
|
74
|
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018; 10:E57. [PMID: 29783687 PMCID: PMC6027495 DOI: 10.3390/pharmaceutics10020057] [Citation(s) in RCA: 2232] [Impact Index Per Article: 318.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.
Collapse
Affiliation(s)
- M Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M Dehghankhold
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Ataei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - F Hasanzadeh Davarani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - R Javanmard
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - A Dokhani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Khorasani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| |
Collapse
|
75
|
Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents. PLoS One 2018; 13:e0192156. [PMID: 29381741 PMCID: PMC5790276 DOI: 10.1371/journal.pone.0192156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 01/14/2023] Open
Abstract
Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination.
Collapse
|
76
|
|
77
|
Bush L, Stevenson L, Lane KE. The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: A systematic review of the literature. Crit Rev Food Sci Nutr 2017; 59:1154-1168. [DOI: 10.1080/10408398.2017.1394268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Linda Bush
- Liverpool John Moores University, School of Sport Studies, Leisure and Nutrition, I.M. Marsh Campus, Liverpool, L17 6BD, United Kingdom
| | - Leo Stevenson
- Liverpool John Moores University, School of Sport Studies, Leisure and Nutrition, I.M. Marsh Campus, Liverpool, L17 6BD, United Kingdom
| | - Katie E. Lane
- Liverpool John Moores University, School of Sport Studies, Leisure and Nutrition, I.M. Marsh Campus, Liverpool, L17 6BD, United Kingdom
| |
Collapse
|