51
|
Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14070690. [PMID: 34358116 PMCID: PMC8308553 DOI: 10.3390/ph14070690] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the consumption of natural-based foods, including beans, fruits, legumes, nuts, oils, vegetables, spices, and whole grains, has been encouraged. This fact is essentially due to their content in bioactive phytochemicals, with the phenolic compounds standing out. Among them, anthocyanins have been a target of many studies due to the presence of catechol, pyrogallol, and methoxy groups in their chemical structure, which confer notable scavenging, anti-apoptotic, and anti-inflammatory activities, being already recommended as supplementation to mitigate or even attenuate certain disorders, such as diabetes, cancer, and cardiovascular and neurological pathologies. The most well-known anthocyanins are cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside. They are widespread in nature, being present in considerable amounts in red fruits and red vegetables. Overall, the present review intends to discuss the most recent findings on the potential health benefits from the daily intake of anthocyanin-rich foods, as well as their possible pharmacological mechanisms of action. However, before that, some emphasis regarding their chemical structure, dietary sources, and bioavailability was done.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
| | - Ana R. Nunes
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Edifício do ICNAS, Pólo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
- Correspondence: ; Tel.: +351-275-329-077
| |
Collapse
|
52
|
Lang Y, Tian J, Meng X, Si X, Tan H, Wang Y, Shu C, Chen Y, Zang Z, Zhang Y, Wang J, Li B. Effects of α-Casein on the Absorption of Blueberry Anthocyanins and Metabolites in Rat Plasma Based on Pharmacokinetic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6200-6213. [PMID: 34044544 DOI: 10.1021/acs.jafc.1c00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blueberry anthocyanins are well known for their beneficial biological activities. However, the poor bioavailability of anthocyanins limits their functional capacity in vivo. Our current study aimed to detect the effects of α-casein on the absorption of blueberry anthocyanins and their metabolites in rats. Blueberry anthocyanins with and without α-casein were intragastrically administered to two groups of rats and their blood samples were collected within 24 h. Results illustrated that rapid absorption of anthocyanins was observed in the rat plasma, but their concentration was relatively low. With the complexation of α-casein, the maximum concentration (Cmax) of bioavailable anthocyanins and metabolites could increase by 1.5-10.1 times (P < 0.05 or P < 0.01). The promotional effect on the plasma absorption of malvidin-3-O-galactoside and vanillic acid was outstanding with the Cmax increasing from 0.032 to 0.323 and from 0.360 to 1.902 μg/mL, respectively (P < 0.01). Besides, the molecular docking models presented that anthocyanins could enter the structural cavity and interact with amino acid residues of α-casein, which was in accordance with the improved bioavailability of anthocyanins. Therefore, α-casein could assist more blueberry anthocyanins and their metabolites to enter blood circulation.
Collapse
Affiliation(s)
- Yuxi Lang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xianjun Meng
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihuan Zang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jiaxin Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
53
|
Jokioja J, Percival J, Philo M, Yang B, Kroon PA, Linderborg KM. Phenolic Metabolites in the Urine and Plasma of Healthy Men After Acute Intake of Purple Potato Extract Rich in Methoxysubstituted Monoacylated Anthocyanins. Mol Nutr Food Res 2021; 65:e2000898. [PMID: 33687145 DOI: 10.1002/mnfr.202000898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Structurally stable acylated anthocyanins have potential in various food applications but the effects of acylation and methoxysubstitution on anthocyanin metabolism are poorly understood. This is the first study thoroughly investigating phenolic metabolites, their time-wise changes, and pharmacokinetics following an acute intake of methoxysubstituted monoacylated anthocyanins. METHODS AND RESULTS Healthy male volunteers (n = 17) consumed a yellow potato meal with and without purple potato extract rich in acylated anthocyanins (152 mg) and hydroxycinnamic acid conjugates (140 mg). Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is used for identification and quantification of metabolites from serially collected urine and plasma. While the parent anthocyanins are not detected, 28 phenolic metabolites from urine and 14 from plasma are quantified, including hydroxybenzoic and hydroxycinnamic acids and protocatechuic acid sulfates and glucuronides; three (catechol, gallic acid-4-O-glucuronide, and 2-methoxybenzoic acid) are detected for the first time after anthocyanin-rich food. Urinary hippuric acid is the most abundant with an increase of 139 µM mM-1 creatinine after the treatment. A large additional set of tentatively identified phenolic metabolites are detected. Late urinary peak time values suggest colonic degradation. CONCLUSION Acylated anthocyanins are more bioavailable than earlier reported after extensive degradation in human and/or colonial metabolism to phenolic metabolites, which may be further conjugated and demethylated.
Collapse
Affiliation(s)
- Johanna Jokioja
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, FIN-20014, Finland
| | - Jasmine Percival
- The Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, Norfolk, United Kingdom
| | - Mark Philo
- The Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, Norfolk, United Kingdom
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, FIN-20014, Finland
| | - Paul A Kroon
- The Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, Norfolk, United Kingdom
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, FIN-20014, Finland
| |
Collapse
|
54
|
Agulló V, Domínguez-Perles R, García-Viguera C. Sweetener influences plasma concentration of flavonoids in humans after an acute intake of a new (poly)phenol-rich beverage. Nutr Metab Cardiovasc Dis 2021; 31:930-938. [PMID: 33546941 DOI: 10.1016/j.numecd.2020.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The overconsumption of sucrose is closely related to sugar-sweetened beverages and one of the main factors associated with the increase of metabolic diseases, such as type 2 diabetes, obesity, and insulin resistance. So, the addition of alternative sweeteners to new fruit-based drinks could contribute to minimizing the incidence or severity of these pathologies. Nevertheless, current knowledge on the influence of these additives on the bioactive compounds present in these beverages is still scarce.new-onset hypertension, but few data were published in Asian. We aimed to investigate the association of lipid profiles with new-onset hypertension in a Chinese community-based non-hypertensive cohort without lipid-lowering treatment (n = 1802). METHODS AND RESULTS Hence, to contribute to the understanding of this issue, the plasma concentration of phenolic compounds (anthocyanins and flavanones), after the ingestion of a new maqui-citrus-based beverage, supplemented with sucrose (natural high caloric), stevia (natural non-caloric), or sucralose (artificial non-caloric), was evaluated as evidence of their intestinal absorption and metabolism previous to renal excretion. The beverages were ingested by volunteers (n = 20) and the resulting phenolic metabolites in plasma were analyzed by UHPLC-ESI-MS/MS. A total of 13 metabolites were detected: caffeic acid sulfate, caffeic acid glucuronide, 3,4-dihydroxyfenylacetic, 3,4-dihydroxyfenylacetic sulfate. 3,4-dihydroxyfenylacetic acid di-sulfate, 3,4-dihydroxyfenylacetic di-glucuronide, 3,4-dihydroxyfenylacetic glucuronide-sulfate, trans-ferulic acid glucuronide, naringenin glucuronide, vanillic acid, vanillic acid sulfate, vanillic acid glucuronide-sulfate, and vanillic acid di-glucuronide, being recorded their maximum concentration after 30-60 min. CONCLUSION In general, sucralose provided the greatest absorption value for most of these metabolites, followed by stevia. Due to this, the present study proposes sucralose and stevia (non-caloric sweeteners) as valuable alternatives to sucrose (high caloric sweetener), to avoid the augmented risk of several metabolic disorders.
Collapse
Affiliation(s)
- Vicente Agulló
- Phytochemistry and Healthy Foods Lab., Group of Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100, Murcia, Spain
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Foods Lab., Group of Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100, Murcia, Spain.
| | - Cristina García-Viguera
- Phytochemistry and Healthy Foods Lab., Group of Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100, Murcia, Spain
| |
Collapse
|
55
|
Yang S, Wang C, Li X, Wu C, Liu C, Xue Z, Kou X. Investigation on the biological activity of anthocyanins and polyphenols in blueberry. J Food Sci 2021; 86:614-627. [PMID: 33462807 DOI: 10.1111/1750-3841.15598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Abstract
Blueberry (Vaccinium spp.) is a fruit recognized in the world as healthy, and many of its active ingredients have important physiological functions. This study analyzed the antioxidant activity, antitumor activity, and immune function of anthocyanins and polyphenols extracted from blueberries. The crude extracts of anthocyanins and polyphenols were obtained from blueberries and then purified, and the extract exhibited excellent dose-dependent antitumor activity and antioxidant activity in vivo and in vitro. The purified anthocyanins and polyphenol compounds showed higher antioxidant activity, whereas the crude extract had a better inhibitory effect on tumor proliferation than pure extract, and the blueberry anthocyanin and polyphenol crude product mixture showed a more powerful tumor suppressor, which may be the result of the synergistic effect of multiple compounds. The crude extracts were also more efficient at improving immune function, as reflected by measurements of change in body weight, thymus and spleen indices, macrophage phagocytosis, lymphocyte transformation capacity, superoxide dismutase activity, malondialdehyde content, and serum nitric oxide levels. These results indicate that blueberry anthocyanins and polyphenol extracts can improve immune function and reduce the metastasis and proliferation of cancer cells. This study reveals the functions of important active substances in blueberries and provides support for the development of functional health products and therapeutic drugs. PRACTICAL APPLICATION: We compared the biological activity of crude and purified anthocyanins and polyphenol extracts from blueberries and tested their effects on improving immune function. This study contributes to a better understanding of the bioactivity of blueberry extracts and is valuable for further applications of blueberries in medicine.
Collapse
Affiliation(s)
- Sen Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xingyuan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chen Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
56
|
Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7-27. [PMID: 33397106 DOI: 10.1021/acs.jafc.0c05481] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the most widely consumed fruit in the world, apple (Malus domestica Borkh.) fruits provide a high level of phenolics and have many beneficial effects on human health. The composition and content of phenolic compounds in natural apples differs according to the tissue types and cultivar varieties. The bioavailability of apple-derived phenolics, depending on the absorption and metabolism of phenolics during digestion, is the key determinant of their positive biological effects. Meanwhile, various processing technologies affect the composition and content of phenolic compounds in apple products, further affecting the bioavailability of apple phenolics. This review summarizes current understanding on the compositions, distribution, absorption, and metabolism of phenolic compounds in apple and their stability when subjected to common technologies during processing. We intend to provide an updated overview on apple phenolics and also suggest some perspectives for future research of apple phenolics.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
57
|
Ex vivo fecal fermentation of human ileal fluid collected after raspberry consumption modifies (poly)phenolics and modulates genoprotective effects in colonic epithelial cells. Redox Biol 2021; 40:101862. [PMID: 33486151 PMCID: PMC7823050 DOI: 10.1016/j.redox.2021.101862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Diets rich in fruit and vegetables are associated with a decreased incidence of colorectal cancer (CRC) due, in part, to the bioactive (poly)phenolic components and their microbiota-mediated metabolites. This study investigated how such compounds, derived from ingested raspberries in the gastrointestinal tract, may exert protective effects by reducing DNA damage. Ileal fluids collected pre- and post-consumption of 300 g of raspberries by ileostomists (n = 11) were subjected to 24 h ex vivo fermentation with fecal inoculum to simulate interaction with colonic microbiota. The impact of fermentation on (poly)phenolics in ileal fluid was determined and the bioactivity of ileal fluids pre- and post fermentation investigated. (Poly)phenolic compounds including sanguiin H-6, sanguiin H-10 and cyanidin-3-O-sophoroside decreased significantly during fermentation while, in contrast, microbial catabolites, including 3-(3′-hydroxyphenyl)propanoic acid, 3-hydroxybenzoic acid and benzoic acid increased significantly. The post-raspberry ileal fermentate from 9 of the 11 ileostomates significantly decreased DNA damage (~30%) in the CCD 841 CoN normal cell line using an oxidative challenge COMET assay. The raspberry ileal fermentates also modulated gene expression of the nuclear factor 2–antioxidant responsive element (Nrf2-ARE) pathway involved in oxidative stress cytoprotection, namely Nrf2, NAD(P)H dehydrogenase, quinone-1 and heme oxygenase-1. Four of the phenolic catabolites were assessed individually, each significantly reducing DNA damage from an oxidative challenge over a physiologically relevant 10–100 μM range. They also induced a differential pattern of expression of key genes in the Nrf2-ARE pathway in CCD 841 CoN cells. The study indicates that the colon-available raspberry (poly)phenols and their microbial-derived catabolites may play a role in protection against CRC in vivo. Health effects of dietary (poly)phenols linked to interactions within the GI tract. Ileostomy-based bioavailability studies allow effective interrogation of the GI tract. Fecal fermentation of raspberry-enriched ileal fluid, increases phenolic content. Raspberry ileal fluid fermentates & phenolic acids reduce DNA damage in colonocytes. Cytoprotective Nrf2-ARE pathway modulated by ileal fluid fermentates & phenolic acids.
Collapse
|
58
|
Novel approaches in anthocyanin research - Plant fortification and bioavailability issues. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
59
|
Groh IAM, Bakuradze T, Pahlke G, Richling E, Marko D. Consumption of anthocyanin-rich beverages affects Nrf2 and Nrf2-dependent gene transcription in peripheral lymphocytes and DNA integrity of healthy volunteers. BMC Chem 2020; 14:39. [PMID: 32514500 PMCID: PMC7260737 DOI: 10.1186/s13065-020-00690-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, we demonstrated that the consumption of a bolus of bilberry extract modulates the transcription of Nrf2-regulated genes in peripheral blood lymphocytes (PBL) of healthy volunteers, accompanied by decreased DNA-damage. In the present study, we addressed the question whether consumption of consumer-relevant amounts of anthocyanin-rich beverages can achieve similar effects. The impact of three different anthocyanin-rich beverages on Nrf2-dependent gene transcription as well as and the status of DNA-damage in whole blood was investigated. After a polyphenol-reduced diet, five healthy male subjects consumed a bolus (700 mL) of respective test beverages with blood sampling up to 8 h after intake. All beverages affected the transcription of Nrf2, HO-1 and NQO-1, but showed different potencies and persistence of effects. Consumption of red fruit juice significantly reduced total DNA strand breaks (with formamidopyrimidine-DNA-glycosylase-(fpg) treatment) after 8 h in blood samples of the volunteers, suggesting antioxidant and DNA protective effects, albeit transcript levels of Nrf2-dependent genes had reached the basal state. The amount of basic DNA strand breaks (damage without oxidative DNA strand breaks) remained unchanged during the monitoring period. In contrast, a beverage prepared from grape skin extract significantly increased basic and total DNA strand breaks 2 h after intake, underlining the necessity of further investigations regarding composition, safety and consumer´s acceptance of respective products to exclude undesired adverse effects. Consumption of a bolus of anthocyanin-rich beverages affected Nrf2 and Nrf2-dependent gene transcription in human PBL and DNA integrity, which is indicative for systemic effects.
Collapse
Affiliation(s)
- Isabel Anna Maria Groh
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
- Present Address: Department of Experimental and Clinical Pharmacology and Pharmacogenomic, University of Tuebingen, Wilhelmstraße 56, 72072 Tuebingen, Germany
| | - Tamara Bakuradze
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universitaet Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Gudrun Pahlke
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universitaet Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Doris Marko
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| |
Collapse
|
60
|
Kostka T, Ostberg-Potthoff JJ, Briviba K, Matsugo S, Winterhalter P, Esatbeyoglu T. Pomegranate ( Punica granatum L.) Extract and Its Anthocyanin and Copigment Fractions-Free Radical Scavenging Activity and Influence on Cellular Oxidative Stress. Foods 2020; 9:E1617. [PMID: 33172172 PMCID: PMC7694777 DOI: 10.3390/foods9111617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
Secondary plant metabolites, e.g., polyphenols, are widely known as health-improving compounds that occur in natural functional foods such as pomegranates. While extracts generated from these fruits inhibit oxidative stress, the allocation of these effects to the different subgroups of substances, e.g., anthocyanins, "copigments" (polyphenols without anthocyanins), or polymeric compounds, is still unknown. Therefore, in the present study, polyphenols from pomegranate juice were extracted and separated into an anthocyanin and copigment fraction using adsorptive membrane chromatography. Phenolic compounds were determined by high performance liquid chromatography with photodiode array (HPLC-PDA) detection and HPLC-PDA electrospray ionization tandem mass spectrometry (HPLC-PDA-ESI-MS/MS), while the free radical scavenging activity of the pomegranate XAD‑7 extract and its fractions was evaluated by the Trolox equivalent antioxidant capacity (TEAC) assay and electron spin resonance (ESR) spectroscopy. Compared to juice, the total phenolic content and free radical scavenging potential was significantly higher in the pomegranate XAD-7 extract and its fractions. In comparison to the anthocyanin and copigment fraction, pomegranate XAD-7 extract showed the highest radical scavenging activity against galvinoxyl and DPPH radicals. Moreover, the enriched XAD-7 extract and its fractions were able to protect human hepatocellular HepG2 cells against oxidative stress induced by hydrogen peroxide. Overall, these results indicated that anthocyanins and copigments act together in reducing oxidative stress.
Collapse
Affiliation(s)
- Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Johanna Josefine Ostberg-Potthoff
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany; (J.J.O.-P.); (P.W.)
| | - Karlis Briviba
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str.9, 76131 Karlsruhe, Germany;
| | - Seiichi Matsugo
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany; (J.J.O.-P.); (P.W.)
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str.9, 76131 Karlsruhe, Germany
| |
Collapse
|
61
|
Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct 2020; 11:45-65. [PMID: 31808762 DOI: 10.1039/c9fo01634a] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Berries are rich in phenolic compounds such as phenolic acids, flavonols and anthocyanins. These molecules are often reported as being responsible for the health effects attributed to berries. However, their poor bioavailability, mostly influenced by their complex chemical structures, raises the question of their actual direct impact on health. The products of their metabolization, however, may be the most bioactive compounds due to their ability to enter the blood circulation and reach the organs. The main site of metabolization of the complex polyphenols to smaller phenolic compounds is the gut through the action of microorganisms, and reciprocally polyphenols and their metabolites can also modulate the microbial populations. In healthy subjects, these modulations generally lead to an increase in Bifidobacterium, Lactobacillus and Akkermansia, therefore suggesting a prebiotic-like effect of the berries or their compounds. Finally, berries have been demonstrated to alleviate symptoms of gut inflammation through the modulation of pro-inflammatory cytokines and have chemopreventive effects towards colon cancer through the regulation of apoptosis, cell proliferation and angiogenesis. This review recapitulates the knowledge available on the interactions between berries polyphenols, gut microbiota and gut health and identifies knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science, University of Arkansas, USA
| | | | | |
Collapse
|
62
|
Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R, Mattivi F, Manach C. Food intake biomarkers for berries and grapes. GENES AND NUTRITION 2020; 15:17. [PMID: 32967625 PMCID: PMC7509942 DOI: 10.1186/s12263-020-00675-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Grapes and berries are two types of widely consumed fruits characterized by a high content in different phytochemicals. However, their accurate dietary assessment is particularly arduous, because of the already wide recognized bias associated with self-reporting methods, combined with the large range of species and cultivars and the fact that these fruits are popularly consumed not only in fresh and frozen forms but also as processed and derived products, including dried and canned fruits, beverages, jams, and jellies. Reporting precise type and/or quantity of grape and berries in FFQ or diaries can obviously be affected by errors. Recently, biomarkers of food intake (BFIs) rose as a promising tool to provide accurate information indicating consumption of certain food items. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs have been developed within the Food Biomarker Alliance (FoodBAll) Project. This paper aims to evaluate the putative BIFs for blueberries, strawberries, raspberries, blackberries, cranberries, blackcurrant, and grapes. Candidate BFIs for grapes were resveratrol metabolites and tartaric acid. The metabolites considered as putative BFI for berries consumption were mostly anthocyanins derivatives together with several metabolites of ellagitannins and some aroma compounds. However, identification of BFIs for single berry types encountered more difficulties. In the absence of highly specific metabolites reported to date, we suggested some multi-metabolite panels that may be further investigated as putative biomarkers for some berry fruits.
Collapse
Affiliation(s)
- M Ulaszewska
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Center for Omics Sciences, Proteomics and Metabolomics Facility - ProMeFa, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain. .,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain.
| | - N Vázquez-Manjarrez
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Slavador Zubiran, Mexico City, Mexico
| | - M T Soria-Florido
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - R Llorach
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - F Mattivi
- Fondazione Edmund Mach, Research and Innovation Centre Food Quality and Nutrition, Via Mach 1, 38010, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trent, Trento, Italy
| | - C Manach
- Université Clermont Auvergne, INRAE, UNH, F-63000, Clermont-Ferrand, France
| |
Collapse
|
63
|
Dharmawansa KS, Hoskin DW, Rupasinghe HPV. Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives. Int J Mol Sci 2020; 21:ijms21186555. [PMID: 32911639 PMCID: PMC7554903 DOI: 10.3390/ijms21186555] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Anthocyanins are a group of dietary polyphenols, abundant mainly in fruits and their products. Dietary interventions of anthocyanins are being studied extensively related to the prevention of gastrointestinal (GI) cancer, among many other chronic disorders. This review summarizes the hereditary and non-hereditary characteristics of GI cancers, chemistry, and bioavailability of anthocyanins, and the most recent findings of anthocyanin in GI cancer prevention through modulating cellular signaling pathways. GI cancer-preventive attributes of anthocyanins are primarily due to their antioxidative, anti-inflammatory, and anti-proliferative properties, and their ability to regulate gene expression and metabolic pathways, as well as induce the apoptosis of cancer cells.
Collapse
Affiliation(s)
- K.V. Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, and Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
64
|
Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants (Basel) 2020; 9:E819. [PMID: 32887513 PMCID: PMC7555562 DOI: 10.3390/antiox9090819] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are biologically active water-soluble plant pigments that are responsible for blue, purple, and red colors in various plant parts-especially in fruits and blooms. Anthocyanins have attracted attention as natural food colorants to be used in yogurts, juices, marmalades, and bakery products. Numerous studies have also indicated the beneficial health effects of anthocyanins and their metabolites on human or animal organisms, including free-radical scavenging and antioxidant activity. Thus, our aim was to review the current knowledge about anthocyanin occurrence in plants, their stability during processing, and also the bioavailability and protective effects related to the antioxidant activity of anthocyanins in human and animal brains, hearts, livers, and kidneys.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Ingrida Mažeikienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania; (V.S.); (I.M.)
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Baniene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.T.); (R.B.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
65
|
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020; 25:E3809. [PMID: 32825684 PMCID: PMC7504512 DOI: 10.3390/molecules25173809] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetables. Dietary sources of anthocyanins include red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants. Cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin are the six common anthocyanidins. Following consumption, anthocyanin, absorption occurs along the gastrointestinal tract, the distal lower bowel being the place where most of the absorption and metabolism occurs. In the intestine, anthocyanins first undergo extensive microbial catabolism followed by absorption and human phase II metabolism. This produces hybrid microbial-human metabolites which are absorbed and subsequently increase the bioavailability of anthocyanins. Health benefits of anthocyanins have been widely described, especially in the prevention of diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases. Furthermore, recent evidence suggests that health-promoting effects attributed to anthocyanins may also be related to modulation of gut microbiota. In this paper we attempt to provide a comprehensive view of the state-of-the-art literature on anthocyanins, summarizing recent findings on their chemistry, biosynthesis, nutritional value and on their effects on human health.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Sciences, RomaTre University, v.le G. Marconi 446, 00146 Rome, Italy;
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Paula Silva
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira n°228, 4050-313 Porto, Portugal
| |
Collapse
|
66
|
The Bioaccessibility of Antioxidants in Black Currant Puree after High Hydrostatic Pressure Treatment. Molecules 2020; 25:molecules25153544. [PMID: 32756431 PMCID: PMC7435975 DOI: 10.3390/molecules25153544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to investigate the effect of high-pressure processing (HPP) and thermal processing (TP) on the bioaccessibility of vitamin C and anthocyanins as well as changes in the antioxidant capacity (AC) using ABTS+• and DPPH• tests on blackcurrant (Ribes nigrum L.) puree during the steps in the digestive process. The puree was subjected to HPP at 200, 400, and 600 MPa for 5 min (room temperature) or TP at 85 °C for 10 min. The controls were untreated puree (P) and fruit crushed in a mortar (M). All the samples were digested in a static in vitro digestion model, including the mouth, stomach, and small intestine, and subjected to dialysis. The vitamin C, anthocyanin, and antioxidant capacity were monitored at each step of the digestion process. The potential bioaccessibility of the antioxidants studied was calculated in relation to the undigested sample. TP and HPP enabled a high content of vitamin C, anthocyanins, and AC to be maintained. After simulated digestion in the small intestine, a significant decrease was observed in the vitamin C and anthocyanins (approximately 98%) content. However, a high stability (approximately 70%) of both compounds was noted at the gastric stage. HPP and TP significantly affected the potential bioaccessibility of vitamin C and anthocyanins, although the bioaccessibility of both compounds in the samples treated using HPP was higher than when using TP. Moreover, the potential bioaccessibility of vitamin C after HPP treatment (400 and 600 MPa) was higher than the bioaccessibility calculated for the M and P control samples. TP and HPP treatment negatively affected anthocyanin bioaccessibility after dialysis. The most favorable pressure was 400 MPa, as it allowed maintaining the best antioxidant activity after digestion.
Collapse
|
67
|
Speciale A, Saija A, Bashllari R, Molonia MS, Muscarà C, Occhiuto C, Cimino F, Cristani M. Anthocyanins As Modulators of Cell Redox-Dependent Pathways in Non-Communicable Diseases. Curr Med Chem 2020; 27:1955-1996. [PMID: 30417771 DOI: 10.2174/0929867325666181112093336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022]
Abstract
Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romina Bashllari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,"Prof. Antonio Imbesi" Foundation, University of Messina, Messina, Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
68
|
Jiang X, Guan Q, Feng M, Wang M, Yan N, Wang M, Xu L, Gui Z. Preparation and pH Controlled Release of Fe 3O 4/Anthocyanin Magnetic Biocomposites. Polymers (Basel) 2019; 11:E2077. [PMID: 31842398 PMCID: PMC6960501 DOI: 10.3390/polym11122077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022] Open
Abstract
Anthocyanins are a class of antioxidants extracted from plants, with a variety of biochemical and pharmacological properties. However, the wide and effective applications of anthocyanins have been limited by their relatively low stability and bioavailability. In order to expand the application of anthocyanins, Fe3O4/anthocyanin magnetic biocomposite was fabricated for the storage and release of anthocyanin in this work. The magnetic biocomposite of Fe3O4 magnetic nanoparticle-loaded anthocyanin was prepared through physical intermolecular adsorption or covalent cross-linking. Scanning electron microscopy (SEM), Dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and thermal analysis were used to characterize the biocomposite. In addition, the anthocyanin releasing experiments were performed. The optimized condition for the Fe3O4/anthocyanin magnetic biocomposite preparation was determined to be at 60 °C for 20 h in weak alkaline solution. The smooth surface of biocomposite from SEM suggested that anthocyanin was coated on the surface of the Fe3O4 particles successfully. The average size of the Fe3O4/anthocyanin magnetic biocomposite was about 222 nm. Under acidic conditions, the magnetic biocomposite solids could be repeatable released anthocyanin, with the same chemical structure as the anthocyanin before compounding. Therefore, anthocyanin can be effectively adsorbed and released by this magnetic biocomposite. Overall, this work shows that Fe3O4/anthocyanin magnetic biocomposite has great potential for future applications as a drug storage and delivery nanoplatform that is adaptable to medical, food and sensing.
Collapse
Affiliation(s)
- Xizhi Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
| | - Min Feng
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Mengyang Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Nina Yan
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Min Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Lei Xu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| |
Collapse
|
69
|
Strauch RC, Mengist MF, Pan K, Yousef GG, Iorizzo M, Brown AF, Lila MA. Variation in anthocyanin profiles of 27 genotypes of red cabbage over two growing seasons. Food Chem 2019; 301:125289. [DOI: 10.1016/j.foodchem.2019.125289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
|
70
|
Aboufarrag HT, Needs PW, Rimbach G, Kroon PA. The Effects of Anthocyanins and Their Microbial Metabolites on the Expression and Enzyme Activities of Paraoxonase 1, an Important Marker of HDL Function. Nutrients 2019; 11:nu11122872. [PMID: 31771252 PMCID: PMC6950676 DOI: 10.3390/nu11122872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
High circulating HDL concentrations and measures of various HDL functions are inversely associated with cardiovascular disease (CVD) risk. Paraoxonase 1 (PON1) contributes to many of the athero-protective functions of HDL, such as promoting the reverse cholesterol transport process and reducing the levels of oxidized LDL. PON1 activities are influenced by several factors, the most important being diet and genetic polymorphisms. Reported data from randomized controlled trials have shown that anthocyanin consumption increased PON1 activity. However, the underlying molecular mechanisms by which anthocyanins increase PON1 activity are not understood. Therefore, the aim of this research was to investigate the ability of anthocyanins and their metabolites to increase PON1 gene expression and/or enzyme activities as potential mechanisms. The effect of the two predominant dietary anthocyanins and 18 of their recently identified microbial metabolites including their phase-II conjugates on PON1 gene expression was studied using a PON1-Huh7 stably-transfected cell line and reporter gene assay. The effects of these compounds on PON1 arylesterase and lactonase activities were investigated using two isoforms of the PON1 enzyme that are the phenotypes of the 192Q/R polymorphism. None of the compounds caused even modest changes in PON1 promoter activity (p ≥ 0.05). Further, none of the compounds at physiological concentrations caused any significant changes in the arylesterase or lactonase activity of either of the iso-enzymes. Cyanidin reduced the lactonase activity of the PON1-R192R enzyme at high concentrations (−22%, p < 0.001), but not at physiologically achievable concentrations. In conclusion, none of the data reported here support the notion that anthocyanins or their metabolites affect PON1 transactivation or enzyme activities.
Collapse
Affiliation(s)
- Hassan T. Aboufarrag
- Food Innovation & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK; (H.T.A.); (P.W.N.)
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 23511, Egypt
| | - Paul W. Needs
- Food Innovation & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK; (H.T.A.); (P.W.N.)
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Paul A. Kroon
- Food Innovation & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK; (H.T.A.); (P.W.N.)
- Correspondence:
| |
Collapse
|
71
|
Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, Liobikas J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr 2019; 60:3352-3365. [PMID: 31718251 DOI: 10.1080/10408398.2019.1687421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anthocyanins are water-soluble pigments providing certain color for various plant parts, especially in edible berries. Earlier these compounds were only known as natural food colorants, the stability of which depended on pH, light, storage temperature and chemical structure. However, due to the increase of the in vitro, in vivo experimental data, as well as of the epidemiological studies, today anthocyanins and their metabolites are also regarded as potential pharmaceutical compounds providing various beneficial health effects on either human or animal cardiovascular system, brain, liver, pancreas and kidney. Many of these effects are shown to be related to the free-radical scavenging and antioxidant properties of anthocyanins, or to their ability to modulate the intracellular antioxidant systems. However, it is generally overlooked that instead of acting exclusively as antioxidants certain anthocyanins affect the activity of mitochondria that are the main source of energy in cells. Therefore, the aim of the present review is to summarize the major knowledge about the chemistry and regulation of biosynthesis of anthocyanins in plants, to overview the facts on bioavailability, and to discuss the most recent experimental findings related to the beneficial health effects emphasizing mitochondria.
Collapse
Affiliation(s)
- Vidmantas Bendokas
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | | | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
72
|
Kalt W. Anthocyanins and Their C 6-C 3-C 6 Metabolites in Humans and Animals. Molecules 2019; 24:E4024. [PMID: 31703276 PMCID: PMC6891644 DOI: 10.3390/molecules24224024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/05/2022] Open
Abstract
Research on the bioavailability of anthocyanins has focused, historically, on the non-flavonoid (C6-Cn) products that arise from anthocyanins in vivo. However, this review focuses on the products of anthocyanins that still possess the flavonoid structure (C6-C3-C6). Described herein are aspects of the in vivo pool of C6-C3-C6 anthocyanin-derived intermediates. Properties related to molecular size, shape, and polarity conveyed by six major anthocyanidin structures are discussed. The presence of a glycoside or not, and a variety of possible phase 2 conjugates, gives rise to a chemically diverse pool of C6-C3-C6 intermediates. Chemical properties influence the in vivo stability of anthocyanin-derived products, as well as their suitability as a substrate for xenobiotic conjugation and transport, and their association with the biomatrix. The flavonoid structure is associated with bioactivity and the particular properties of these C6-C3-C6 products of anthocyanins determines their deposition in the body, which may influence in vivo processes and ultimately health outcomes.
Collapse
Affiliation(s)
- Wilhelmina Kalt
- Agriculture & Agri-Food Canada (Retired). 212 Foley Road, RR#3 Centreville, NS B0P 1J0, Canada
| |
Collapse
|
73
|
Norkaew O, Thitisut P, Mahatheeranont S, Pawin B, Sookwong P, Yodpitak S, Lungkaphin A. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chem 2019; 294:493-502. [DOI: 10.1016/j.foodchem.2019.05.086] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
|
74
|
Nomi Y, Iwasaki-Kurashige K, Matsumoto H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. Molecules 2019; 24:molecules24183311. [PMID: 31514422 PMCID: PMC6767261 DOI: 10.3390/molecules24183311] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
Anthocyanin (AC) is widely used as supplement of eye health in Europe and in East Asia. In this review, I describe AC effects to clarify the mechanism is important in order to understand the effects of AC on vision health. The bioavailability of AC is quite low but, reported as intact form and many kinds of metabolite. And AC passes through the blood-aqueous fluid barrier and blood-retinal barrier. In vitro study, AC had a relaxing effect on ciliary muscle which is important to treat both myopia and glaucoma. And AC stimulate the regeneration of rhodopsin in frog rod outer segment. Furthermore, AC could inhibit the axial length and ocular length elongation in a negative lens-induced chick myopia model. In addition, we summarized clinical studies of AC intake improved dark adaptation and transient myopic shift and the improvement on retinal blood circulation in normal tension glaucoma patients.
Collapse
Affiliation(s)
- Yuri Nomi
- Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| | - Keiko Iwasaki-Kurashige
- Functional Material Division, Meiji Food Materia Co., Ltd, 4-16, Kyobashi 2-chome, Chuo-ku, Tokyo 104-0031, Japan.
| | - Hitoshi Matsumoto
- Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| |
Collapse
|
75
|
Tang JS, Bozonet SM, McKenzie JL, Anderson RF, Melton LD, Vissers MCM. Physiological Concentrations of Blueberry-Derived Phenolic Acids Reduce Monocyte Adhesion to Human Endothelial Cells. Mol Nutr Food Res 2019; 63:e1900478. [PMID: 31216087 DOI: 10.1002/mnfr.201900478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/12/2022]
Abstract
SCOPE Blueberry polyphenols are thought to confer cardiovascular health benefits, but have limited bioavailability. They undergo extensive metabolism and their phenolic acid metabolites are likely to be the mediators of bioactivity. The effect of blueberry-derived phenolic acids on one aspect of inflammation, monocyte adhesion to vascular endothelial cells, is investigated. METHODS AND RESULTS The major blueberry-derived phenolic acids in human plasma are identified and quantified. Three test mixtures representing compounds present at 0-4 h (Early), 4-24 h (Late), or 0-24 h (Whole) are used to investigate the effect on adhesion of monocytes to tumor necrosis factor alpha (TNFα)-activated endothelial cells. The Late mixture reduces monocyte adhesion, but there is no effect of the Early or Whole mixtures. Exclusion of syringic acid from each mixture results in inhibition of monocyte adhesion. Exposure to the phenolic acid mixtures has no effect on the endothelial surface expression of adhesion molecules intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), or E-selectin, suggesting that other molecular mechanisms are responsible for the observed effect. CONCLUSION This study shows that physiological concentrations of blueberry polyphenol metabolites can help maintain cardiovascular health by regulating monocyte adhesion to the vascular endothelium.
Collapse
Affiliation(s)
- Jeffry S Tang
- School of Chemical Sciences, University of Auckland, Auckland, 1142, New Zealand.,Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand
| | - Stephanie M Bozonet
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand
| | - Judith L McKenzie
- Hematology Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch, 8011, New Zealand
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Auckland, 1142, New Zealand.,Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, University of Auckland, Auckland, 1023, New Zealand
| | - Laurence D Melton
- School of Chemical Sciences, University of Auckland, Auckland, 1142, New Zealand.,Riddet Centre of Research Excellence for Food Research, Palmerston North, 4442, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
76
|
Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC. Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients 2019; 11:nu11071479. [PMID: 31261786 PMCID: PMC6682894 DOI: 10.3390/nu11071479] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebrovascular accidents are currently the second major cause of death and the third leading cause of disability in the world, according to the World Health Organization (WHO), which has provided protocols for stroke prevention. Although there is a multitude of studies on the health benefits associated with anthocyanin (ACN) consumption, there is no a rigorous systematization of the data linking dietary ACN with stroke prevention. This review is intended to present data from epidemiological, in vitro, in vivo, and clinical studies dealing with the stroke related to ACN-rich diets or ACN supplements, along with possible mechanisms of action revealed by pharmacokinetic studies, including ACN passage through the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Bogdan Nicolae Manolescu
- Department of Organic Chemistry "C.D. Nenitescu", Faculty of Applied Chemistry and Science of Materials, Polytechnic University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania.
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia, 020956 Bucharest, Romania.
| | - Lavinia L Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| | - Ileana C Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania.
| |
Collapse
|
77
|
Rocchetti G, Lucini L, Giuberti G, Bhumireddy SR, Mandal R, Trevisan M, Wishart DS. Transformation of polyphenols found in pigmented gluten-free flours during in vitro large intestinal fermentation. Food Chem 2019; 298:125068. [PMID: 31260977 DOI: 10.1016/j.foodchem.2019.125068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
Abstract
In this work, 18 gluten-free flours (prepared from cereals, pseudocereals and legumes), differing in pigmentation, were screened for their phenolic profiles, cooked and, then, subjected to digestion and large intestinal fermentation in vitro. A combined targeted/untargeted metabolomic approach was used to elucidate the microbial biotransformation processes of polyphenols following digestion. This preliminary work demonstrated an increase in 3,5-dihydroxybenzoic acid (on average from 0.67 up to 1.30 μmol/g dry matter) throughout large intestinal fermentation of pseudocereals (esp. quinoa), due to their high alkylresorcinol contents. Isoflavones were converted into equol- or O-desmethylangolensin- derivatives, whereas anthocyanins were degraded into lower-molecular-weight phenolics (i.e., protocatechuic aldehyde and 4-hydroxybenzoic acid, with the latter exhibiting the highest increase over time). A decreasing trend was observed for antioxidant activities (i.e., FRAP and ORAC values) moving from digested to faecal fermented samples. These findings highlight that gluten-free flours are able to deliver bioaccessible polyphenols to the colon.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | | | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| |
Collapse
|
78
|
Röhrig T, Kirsch V, Schipp D, Galan J, Richling E. Absorption of Anthocyanin Rutinosides after Consumption of a Blackcurrant ( Ribes nigrum L.) Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6792-6797. [PMID: 31134806 DOI: 10.1021/acs.jafc.9b01567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dominant anthocyanins in blackcurrant are delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside. Data on their absorption and distribution in the human body are limited. Therefore, we performed a human pilot study on five healthy male volunteers consuming a blackcurrant ( Ribes nigrum L.) extract. The rutinosides and their degradation products gallic acid and protocatechuic acid were determined in plasma and urine. The rutinosides' concentrations peaked in both plasma and urine samples within 2 h of extract ingestion. The recoveries of delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside from urine samples were 0.040 ± 0.011% and 0.048 ± 0.016%, respectively, over a 48 h period. Protocatechuic acid concentration increased significantly after ingestion of the blackcurrant extract. Our results show that after ingestion of a blackcurrant extract containing delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, significant quantities of biologically active compounds circulated in the plasma and were excreted via urine. Furthermore, these results contribute to the understanding of anthocyanin metabolism in humans.
Collapse
Affiliation(s)
- Teresa Röhrig
- Division of Food Chemistry and Toxicology, Department of Chemistry , Technische Universitaet Kaiserslautern , Erwin-Schroedinger-Strasse 52 , D-67663 Kaiserslautern , Germany
| | - Verena Kirsch
- Division of Food Chemistry and Toxicology, Department of Chemistry , Technische Universitaet Kaiserslautern , Erwin-Schroedinger-Strasse 52 , D-67663 Kaiserslautern , Germany
| | - Dorothea Schipp
- ds-statistik.de , Pirnaer Strasse 1 , 01824 Rosenthal-Bielatal , Germany
| | - Jens Galan
- Specialist in Inner & General Medicine , Hochgewanne 19 , 67269 Gruenstadt , Germany
| | - Elke Richling
- Division of Food Chemistry and Toxicology, Department of Chemistry , Technische Universitaet Kaiserslautern , Erwin-Schroedinger-Strasse 52 , D-67663 Kaiserslautern , Germany
| |
Collapse
|
79
|
Rafiei H, Omidian K, Bandy B. Phenolic Breakdown Products of Cyanidin and Quercetin Contribute to Protection against Mitochondrial Impairment and Reactive Oxygen Species Generation in an In Vitro Model of Hepatocyte Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6241-6247. [PMID: 31117508 DOI: 10.1021/acs.jafc.9b02367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A question in cell culture and dietary studies on protection by flavonoids against conditions such as hepatocyte steatosis is whether effects might be due to phenolic breakdown/digestion products. In HepG2 hepatocytes, treatment with quercetin, cyanidin, or their phenolic breakdown/digestion products (protocatechuic acid, 2,4,6-trihydroxybenzaldehyde, and caffeic acid), starting 2 h prior to oleic acid for 24 h, protected similarly against increases in intracellular lipid and reactive oxygen species and decreased mitochondrial membrane potential. Cyanidin or the phenolic products also protected against decreased mitochondrial content. After preincubation for only 1 h (to limit spontaneous degradation) and removal prior to oleic acid, only the phenolic products protected against decreased mitochondrial content, and without adding oleic acid, only protocatechuic acid and caffeic acid, and less so cyanidin, induced mitochondrial content. The results suggest that phenolic breakdown/digestion products of cyanidin and quercetin contribute to the protective effects in vitro, and perhaps in vivo.
Collapse
Affiliation(s)
- Hossein Rafiei
- College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B5 , Canada
| | - Kosar Omidian
- College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B5 , Canada
| | - Brian Bandy
- College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B5 , Canada
| |
Collapse
|
80
|
Bakuradze T, Tausend A, Galan J, Groh IAM, Berry D, Tur JA, Marko D, Richling E. Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free Radic Res 2019; 53:1045-1055. [DOI: 10.1080/10715762.2019.1618851] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tamara Bakuradze
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Angelina Tausend
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Jens Galan
- Medical Institute, Hochgewanne 19, Grünstadt, Germany
| | | | - David Berry
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, Universität Wien, Vienna, Austria
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands & CIBEROBN, Palma de Mallorca, Spain
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Universität Wien, Vienna, Austria
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
81
|
Medina dos Santos N, Berilli Batista P, Batista ÂG, Maróstica Júnior MR. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
82
|
Costea T, Hudiță A, Ciolac OA, Gălățeanu B, Ginghină O, Costache M, Ganea C, Mocanu MM. Chemoprevention of Colorectal Cancer by Dietary Compounds. Int J Mol Sci 2018; 19:E3787. [PMID: 30487390 PMCID: PMC6321468 DOI: 10.3390/ijms19123787] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the leading causes of death, and the third most diagnosed type of cancer, worldwide. It is most common amongst men and women over 50 years old. Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota, and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols, essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer. We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing enzymes, etc. Moreover, this review will also focus on the natural dietary compounds' bioavailability, their synergistic protective effect, as well as the association with conventional therapy. Dietary natural compounds play a major role in colorectal chemoprevention and continuous research in this field is needed.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Oana-Alina Ciolac
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Octav Ginghină
- Department of Surgery, "Sf. Ioan" Emergency Clinical Hospital, 042122 Bucharest, Romania.
- Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Constanța Ganea
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
83
|
Sandoval-Ramírez BA, Catalán Ú, Fernández-Castillejo S, Rubió L, Macià A, Solà R. Anthocyanin Tissue Bioavailability in Animals: Possible Implications for Human Health. A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11531-11543. [PMID: 30345762 DOI: 10.1021/acs.jafc.8b04014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anthocyanins (ACNs) are promising health-enhancing phenolic compounds. We focus on ACN animal tissue bioavailability to provide an evidentiary link between tissue ACNs and their associated health properties. We performed a systematic review of electronic libraries; 279 results were retrieved, and 13 publications met inclusion criteria. Extracted information included animal model employed, administration route, doses, analysis method, and ACN concentration values in tissues. Total ACN concentrations were detected in mice kidney (2.17 × 105 pmol/g), liver (1.73 × 105 pmol/g), heart (3.6 × 103 pmol/g), and lung (1.16 × 105 pmol/g); and in pig brain (6.08 × 103 pmol/g). ACNs showed a predominance of parent ACNs in long-term experiments versus an ACN metabolite predominance in short-term experiments. ACNs detected in animal tissues, such as cyanidin-3-glucoside, suggest it may have an important role in human health. This information could be useful to determine proper ACN-intake biomarkers in biological samples in futures studies.
Collapse
Affiliation(s)
- Berner Andrée Sandoval-Ramírez
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV) , 43204 Reus , Spain
| | - Sara Fernández-Castillejo
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
| | - Laura Rubió
- Food Technology Department, Agrotecnio Research Center , University of Lleida , Av/78 Alcalde Rovira Roure 191 , 25198 Lleida , Spain
| | - Alba Macià
- Food Technology Department, Agrotecnio Research Center , University of Lleida , Av/78 Alcalde Rovira Roure 191 , 25198 Lleida , Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut) , Universitat Rovira i Virgili , 43201 Reus , Spain
- Hospital Universitari Sant Joan de Reus (HUSJR) , 43204 Reus , Spain
| |
Collapse
|
84
|
Zhang X, Sandhu A, Edirisinghe I, Burton-Freeman B. An exploratory study of red raspberry (Rubus idaeus L.) (poly)phenols/metabolites in human biological samples. Food Funct 2018; 9:806-818. [PMID: 29344587 DOI: 10.1039/c7fo00893g] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.
Collapse
Affiliation(s)
- Xuhuiqun Zhang
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, IL, USA.
| | | | | | | |
Collapse
|
85
|
Mueller D, Jung K, Winter M, Rogoll D, Melcher R, Kulozik U, Schwarz K, Richling E. Encapsulation of anthocyanins from bilberries – Effects on bioavailability and intestinal accessibility in humans. Food Chem 2018; 248:217-224. [DOI: 10.1016/j.foodchem.2017.12.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022]
|
86
|
Thilakarathna WPDW, Langille MGI, Rupasinghe HPV. Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
87
|
Olejnik A, Kaczmarek M, Olkowicz M, Kowalska K, Juzwa W, Dembczyński R. ROS-modulating anticancer effects of gastrointestinally digested Ribes nigrum L. fruit extract in human colon cancer cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
88
|
Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
89
|
Xu Z, Sun T, Li W, Sun X. Inhibiting effects of dietary polyphenols on chronic eye diseases. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
90
|
Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine. Nutrients 2017; 9:nu9101111. [PMID: 29023424 PMCID: PMC5691727 DOI: 10.3390/nu9101111] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.
Collapse
|