51
|
Lu D, Peng M, Yu M, Jiang B, Wu H, Chen J. Effect of Enzymatic Hydrolysis on the Zinc Binding Capacity and in vitro Gastrointestinal Stability of Peptides Derived From Pumpkin ( Cucurbita pepo L.) Seeds. Front Nutr 2021; 8:647782. [PMID: 33869265 PMCID: PMC8044297 DOI: 10.3389/fnut.2021.647782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Zinc is a crucial micronutrient for maintaining body immune system and metabolism function. However, insufficient intake from diet may lead to zinc deficiency and impair normal body function. In addition, conventional zinc salts supplementation has the disadvantage of low bioavailability since the zinc ions may be easily chelated by dietary fiber or phytate commonly found in diets rich in plants, and form precipitates that cannot be absorbed. Therefore, the objective of the present study is to prepare pumpkin seed derived peptides and to evaluate the effect of structure and surface properties on the zinc binding behavior of the pumpkin seed protein hydrolysate (PSPH), as well as their gastrointestinal stability. Briefly, different PSPHs were prepared using enzymatic hydrolysis method with bromelain, papain, flavourzyme, alcalase, and pepsin. The particle size, zeta potential, surface hydrophobicity, degree of hydrolysis, ATR-FTIR spectra, and zinc binding capacity were determined. The representative samples were chosen to characterize the binding energy and surface morphology of PSPH-Zn. At last, the in vitro gastrointestinal stability of PSPH and PSPH-Zn were evaluated. Our results showed that peptides hydrolyzed by papain had the largest average molecular weight, smallest particle size, highest hydrophobicity, and the greatest zinc binding capacity. Zinc showed better gastrointestinal stability in PSPHs chelates than in its salt. Meanwhile, PSPH-Zn with higher zinc binding capacity showed better stability. The result of this study indicated pumpkin seed hydrolyzed by papain may be used as a potential source for zinc fortification. The findings in this study may provide important implications for developing plant-based zinc chelating peptides.
Collapse
Affiliation(s)
- Dan Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mengyao Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Min Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hong Wu
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
52
|
Udechukwu MC, Dang C, Udenigwe CC. Identification of zinc-binding peptides in ADAM17-inhibiting whey protein hydrolysates using IMAC-Zn2+ coupled with shotgun peptidomics. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00048-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Food components possessing zinc ligands can be used to inhibit zinc-dependent enzymes. In this study, zinc-binding peptides were derived from whey protein hydrolysates, and their ultrafiltration (> 1 and < 1 kDa) fractions, produced with Esperase (WPH-Esp), Everlase and Savinase. Immobilized metal affinity chromatography (IMAC-Zn2+) increased the zinc-binding capacity of the peptide fraction (83%) when compared to WPH-Esp (23%) and its < 1 kDa fraction (40%). The increased zinc-binding capacity of the sample increased the inhibitory activity against the zinc-dependent “a disintegrin and metalloproteinase 17”. LC-MS/MS analysis using a shotgun peptidomics approach resulted in the identification of 24 peptides originating from bovine β-lactoglobulin, α-lactalbumin, serum albumin, β-casein, κ-casein, osteopontin-k, and folate receptor-α in the fraction. The identified peptides contained different combinations of the strong zinc-binding group of residues, His+Cys, Asp+Glu and Phe+Tyr, although Cys residues were absent in the sequences. In silico predictions showed that the IMAC-Zn2+ peptides were non-toxins. However, the peptides possessed poor drug-like and pharmacokinetic properties; this was possibly due to their long chain lengths (5–19 residues). Taken together, this work provided an array of food peptide-based zinc ligands for further investigation of structure-function relationships and development of nutraceuticals against inflammatory and other zinc-related diseases.
Graphical abstract
Collapse
|
53
|
Muleya M, Young SD, Bailey EH. A stable isotope approach to accurately determine iron and zinc bioaccessibility in cereals and legumes based on a modified INFOGEST static in vitro digestion method. Food Res Int 2021; 139:109948. [PMID: 33509501 DOI: 10.1016/j.foodres.2020.109948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The establishment of the INFOGEST in vitro static digestion method, a standardized international consensus, was an important milestone in the field of food digestion. We evaluated the contribution of iron and zinc in reagents used in the INFOGEST method in relation to sample iron and zinc and the potential interference of reagent-derived iron and zinc with bioaccessibility measurements. In most cases, reagent-derived iron and zinc contributed more than 50% of the total iron or zinc in the digesta containing selected cereals and legumes. Moreover, the chemical behaviour of reagent-derived iron and zinc was matrix dependent such that the application of a blanket blank correction was not appropriate. We therefore propose an improved approach involving isotopic labelling of reagent iron and zinc in order to discriminate between reagent-derived and sample-derived iron and zinc in each matrix. This stable isotope approach could improve the accuracy and reliability of iron and zinc bioaccessibility studies.
Collapse
Affiliation(s)
- Molly Muleya
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Elizabeth H Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|
54
|
Zhang Y, Ding X, Li M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem 2021; 349:129101. [PMID: 33540219 DOI: 10.1016/j.foodchem.2021.129101] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 01/20/2023]
Abstract
Mung bean protein was enzymatically hydrolyzed with either alcalase, neutral protease, or papain. The mung bean protein hydrolysates (MPH) showed good ability to chelate ferrous ions, and the chelates had high stability in vitro. The hydrolysates prepared by alcalase showed the highest degree of hydrolysis and the highest ferrous chelating rate. Single factor tests showed that the pH and the material ratio had significant effects on ferrous chelating rates. The optimal MPH to FeCl2·4H2O material ratio was 8:1 (w/w) and the optimal pH of the reaction was 7.0, which yielded a chelating rate of 96.19 ± 0.94%. The fraction 3 with the highest ferrous chelating activity up to 61.25 ± 1.02 μg/mg was obtained from MPH by affinity chromatography. Meanwhile, the MPH-Fe complex had higher digestive stability than just MPH in both in vitro and acid-alkali tolerance assays. The characterization results showed that ferrous ions mainly combined with the amino, carboxyl, imidazole and other chelating active groups in mung bean peptides to form peptide-iron chelates. Scanning electron microscopy (SEM) analysis showed that mung bean peptide chelated ferrous ions to form polymer particles. These results provided insight into ways to develop functional foods such as iron-fortified cereals.
Collapse
Affiliation(s)
- Yijun Zhang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China
| | - Xiangjun Ding
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Meiqing Li
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
55
|
Zhu S, Zheng Y, He S, Su D, Nag A, Zeng Q, Yuan Y. Novel Zn-Binding Peptide Isolated from Soy Protein Hydrolysates: Purification, Structure, and Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:483-490. [PMID: 33370528 DOI: 10.1021/acs.jafc.0c05792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a novel Zn-binding peptide, Lys-Tyr-Lys-Arg-Gln-Arg-Trp (KYKRQRW), was purified and identified from soy protein isolate hydrolysates (SPIHs). The Zn-binding peptide exhibited improved Zn-binding capacity (83.21 ± 2.65%) than SPIH solutions. CD, NMR, and Fourier transform infrared spectroscopy were used to confirm the complexation between Zn and the peptide. The results showed that the Zn-binding peptide formed a folding structure with part of the β-sheet (29.3-13.4%) turning into random coils (41.7-57.6%) during complexation. It was further proved that the binding sites were located at the oxygen atoms on the carboxyl group of the Trp side chain and nitrogen atoms on the amino group of the Lys side chain. Moreover, the Zn-peptide complex exhibited increased solubility than ZnSO4 during simulated gastrointestinal digestion. This study highlighted that the novel soy peptide possessed a strong zinc chelate rate and had a positive effect on the gastrointestinal stability of Zn which could be utilized as a functional ingredient in future.
Collapse
Affiliation(s)
- Suyin Zhu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yingmin Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Anindya Nag
- School of Engineering, Macquarie University, Sydney 2109, Australia
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
56
|
Meng K, Chen L, Xia G, Shen X. Effects of zinc sulfate and zinc lactate on the properties of tilapia (Oreochromis Niloticus) skin collagen peptide chelate zinc. Food Chem 2021; 347:129043. [PMID: 33476919 DOI: 10.1016/j.foodchem.2021.129043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
In this study, the properties difference of Tilapia (Oreochromis Niloticus) skin collagen peptide chelate zinc prepared by zinc sulfate (P-Zn-S) and zinc lactate (P-Zn-L) were investigated. The results indicated that compared with P-Zn-L, P-Zn-S exhibited higher Zn-chelating capacity and different structural morphology, which may closely relate to the composition amino acid of Asp, Glu, His, Lys, Arg, Cys and Pro. FTIR and UV-Vis analysis indicated that different zinc sources could influence the metal ligands and the types of amino acid residues which were involved in chelation reaction. P-Zn-L exhibited better zinc solubility and had higher dialyzable zinc than P-Zn-S, indicating that P-Zn-L had better zinc bioaccessibility. These results suggested that P-Zn-L with a granular structure could reduced gastric stability, promoted intestinal release, and was beneficial to zinc absorption, which can be used as dietary zinc carriers.
Collapse
Affiliation(s)
- Keke Meng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Lei Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China; College of Food Science and Technology, Hainan University, Hainan 570228, China.
| |
Collapse
|
57
|
Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
58
|
Sun X, Udenigwe CC. Chemistry and Biofunctional Significance of Bioactive Peptide Interactions with Food and Gut Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12972-12977. [PMID: 31994880 DOI: 10.1021/acs.jafc.9b07559] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food-derived bioactive peptides (BAPs) have gained significant interest as functional agents for developing food products with health benefits. To elucidate the underlying bioactivity mechanisms, current research investigates mostly the structure-activity relationship of native peptides. However, peptide structures are highly susceptible to chemical modifications, which can subsequently influence their physiological behaviors and bioactivities. This paper highlights the peptide structure modifications occurring with major food components during processing and the digestive environment of the gut as well as associated changes in peptide properties and biofunctions. Given the modification propensity of peptides, focus should be shifted toward characterizing the nature, biofunctions, gut activity, bioavailability, and safety of the modified peptides toward achieving pragmatic food applications of BAPs.
Collapse
Affiliation(s)
- Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, People's Republic of China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
59
|
Sun X, Sarteshnizi RA, Boachie RT, Okagu OD, Abioye RO, Pfeilsticker Neves R, Ohanenye IC, Udenigwe CC. Peptide-Mineral Complexes: Understanding Their Chemical Interactions, Bioavailability, and Potential Application in Mitigating Micronutrient Deficiency. Foods 2020; 9:E1402. [PMID: 33023157 PMCID: PMC7601898 DOI: 10.3390/foods9101402] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Iron, zinc, and calcium are essential micronutrients that play vital biological roles to maintain human health. Thus, their deficiencies are a public health concern worldwide. Mitigation of these deficiencies involves micronutrient fortification of staple foods, a strategy that can alter the physical and sensory properties of foods. Peptide-mineral complexes have been identified as promising alternatives for mineral-fortified functional foods or mineral supplements. This review outlines some of the methods used in the determination of the mineral chelating activities of food protein-derived peptides and the approaches for the preparation, purification and identification of mineral-binding peptides. The structure-activity relationship of mineral-binding peptides and the potential use of peptide-mineral complexes as functional food ingredients to mitigate micronutrient deficiency are discussed in relation to their chemical interactions, solubility, gastrointestinal digestion, absorption, and bioavailability. Finally, insights on the current challenges and future research directions in this area are provided.
Collapse
Affiliation(s)
- Xiaohong Sun
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (X.S.); (R.A.S.); (R.T.B.); (I.C.O.)
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China
| | - Roghayeh Amini Sarteshnizi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (X.S.); (R.A.S.); (R.T.B.); (I.C.O.)
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Ruth T. Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (X.S.); (R.A.S.); (R.T.B.); (I.C.O.)
| | - Ogadimma D. Okagu
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (O.D.O.); (R.O.A.); (R.P.N.)
| | - Raliat O. Abioye
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (O.D.O.); (R.O.A.); (R.P.N.)
| | - Renata Pfeilsticker Neves
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (O.D.O.); (R.O.A.); (R.P.N.)
| | - Ikenna Christian Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (X.S.); (R.A.S.); (R.T.B.); (I.C.O.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (X.S.); (R.A.S.); (R.T.B.); (I.C.O.)
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (O.D.O.); (R.O.A.); (R.P.N.)
| |
Collapse
|
60
|
Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chem 2020; 340:128056. [PMID: 33032152 DOI: 10.1016/j.foodchem.2020.128056] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
In the study, a novel kind of peptides-zinc (AKP-Zn) chelate was obtained using the Antarctic krill (Euphausia superba) peptides (AKP) as raw material, the reaction was carried out with the mass ratio of the AKP to ZnSO4·7H2O of 1:2 at pH 6.0 and 60 °C for 10 min. The structure and composition of the AKP, including particle size, Zeta potential, molecular weight distribution, amino acid composition, microstructure and surface elemental composition, changed significantly after chelating with zinc. The result of Fourier transform infrared spectroscopy indicated that zinc could be chelated by carboxyl oxygen and amino nitrogen atoms of the AKP. Furthermore, compared with zinc sulfate and zinc gluconate, the AKP-Zn chelate was more stable at various pH conditions and the simulated gastrointestinal digestion experiment. These findings would provide a scientific basis for developing new zinc supplements and the high-value utilization of Antarctic krill protein resource.
Collapse
|
61
|
Walters ME, Willmore WG, Tsopmo A. Antioxidant, Physicochemical, and Cellular Secretion of Glucagon-Like Peptide-1 Properties of Oat Bran Protein Hydrolysates. Antioxidants (Basel) 2020; 9:antiox9060557. [PMID: 32604813 PMCID: PMC7346174 DOI: 10.3390/antiox9060557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
The aim of this work was to determine the physicochemical and biological activities of hydrolyzed proteins from sonicated oat brans. In addition to the control bran sample, two types of pre-treatment procedures-namely, ultrasonic bath and probe-type sonication-were performed to extract proteins, followed by hydrolysis with various proteases. Physicochemical analyses showed that Flavourzyme-hydrolysates had greater amounts of aromatic amino acids, Papain-hydrolysates low surface charges (-0.78 to -1.32 mV) compared to the others (-3.67 to -9.17 mV), and Alcalase-hydrolysates a higher surface hydrophobicity. The hydrolysates had good radical scavenging activities but, as the ultrasonic pre-treatment of the brans showed, in certain cases there was a reduction in activities of up to 22% for ROO• and HO• and 15% for O2•- radicals. In anti-diabetic tests, the maximum inhibition of α-amylase was 31.8%, while that of dipeptidyl peptidase-4 was 53.6%. In addition, the secretion of glucagon-like peptide-1 in NCI-H716 cells was enhanced by 11.5% in the presence of hydrolysates.
Collapse
Affiliation(s)
- Mallory E. Walters
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| | - William G. Willmore
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Correspondence: ; Tel.: +1-613-520-2600
| |
Collapse
|
62
|
Caetano-Silva ME, Netto FM, Bertoldo-Pacheco MT, Alegría A, Cilla A. Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Crit Rev Food Sci Nutr 2020; 61:1470-1489. [PMID: 32370550 DOI: 10.1080/10408398.2020.1761770] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive peptides derived from food protein sources have been widely studied in the last years, and scientific researchers have been proving their role in human health, beyond their nutritional value. Several bioactivities have been attributed to these peptides, such as immunomodulatory, antimicrobial, antioxidant, antihypertensive, and opioid. Among them, metal-binding capacity has gained prominence. Mineral chelating peptides have shown potential to be applied in food products so as to decrease mineral deficiencies since peptide-metal complexes could enhance their bioavailability. Furthermore, many studies have been investigating their potential to decrease the Fe pro-oxidant effect by forming a stable structure with the metal and avoiding its interaction with other food constituents. These complexes can be formed during gastrointestinal digestion or can be synthesized prior to intake, with the aim to protect the mineral through the gastrointestinal tract. This review addresses: (i) the amino acid residues for metal-binding peptides and their main protein sources, (ii) peptide-metal complexation prior to or during gastrointestinal digestion, (iii) the function of metal (especially Fe, Ca, and Zn)-binding peptides on the metal bioavailability and (iv) their reactivity and possible pro-oxidant and side effects.
Collapse
Affiliation(s)
| | - Flavia Maria Netto
- Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
63
|
Rodzik A, Pomastowski P, Sagandykova GN, Buszewski B. Interactions of Whey Proteins with Metal Ions. Int J Mol Sci 2020; 21:E2156. [PMID: 32245108 PMCID: PMC7139725 DOI: 10.3390/ijms21062156] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Whey proteins tend to interact with metal ions, which have implications in different fields related to human life quality. There are two impacts of such interactions: they can provide opportunities for applications in food and nutraceuticals, but may lead to analytical challenges related to their study and outcomes for food processing, storage, and food interactions. Moreover, interactions of whey proteins with metal ions are complicated, requiring deep understanding, leading to consequences, such as metalloproteins, metallocomplexes, nanoparticles, or aggregates, creating a biologically active system. To understand the phenomena of metal-protein interactions, it is important to develop analytical approaches combined with studies of changes in the biological activity and to analyze the impact of such interactions on different fields. The aim of this review was to discuss chemistry of β-lactoglobulin, α-lactalbumin, and lactotransferrin, their interactions with different metal ions, analytical techniques used to study them and the implications for food and nutraceuticals.
Collapse
Affiliation(s)
- Agnieszka Rodzik
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Gulyaim N. Sagandykova
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
64
|
Effect of Molecular Weight of Tilapia (Oreochromis Niloticus) Skin Collagen Peptide Fractions on Zinc-Chelating Capacity and Bioaccessibility of the Zinc-Peptide Fractions Complexes in Vitro Digestion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the effect of the molecular weight of tilapia skin collagen peptide fractions on their zinc chelation capacity and the bioaccessibility of their zinc complexes, we evaluated the zinc-chelating ability of different molecular weight peptide, the solubility, and the stability of the complexes during simulated in vitro digestion. Low molecular weight peptide (P1) exhibited a higher zinc-chelating ability, which can be attributed to the variety of metal chelate amino acid residues. The highest solubility and the lowest release of zinc during peptic digestion for the P1-zinc complex and the zinc binding to P1 were retained at approximately 50% after peptic-pancreatic digestion. Fourier transform infrared spectroscopy indicated the primary involvement of the N-H group in all peptide-zinc complexes. This finding suggests that low molecular weight peptidefraction with strong zinc chelation ability can be used as delivery agents to improve zinc bioaccessibility.
Collapse
|
65
|
Wang D, Liu K, Cui P, Bao Z, Wang T, Lin S, Sun N. Egg-White-Derived Antioxidant Peptide as an Efficient Nanocarrier for Zinc Delivery through the Gastrointestinal System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2232-2239. [PMID: 31986031 DOI: 10.1021/acs.jafc.9b07770] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An antioxidant peptide derived from egg white, Asp-His-Thr-Lys-Glu (DHTKE), possesses specific amino acids related to zinc delivery. This study aimed to demonstrate the molecular basis of interactions between the egg white peptide (DHTKE) and zinc ions and investigate the effect of the DHTKE-Zn complex on zinc delivery through the gastrointestinal system. Approximately one DHTKE molecule can bind one zinc ion (n = 1.048 ± 0.085) through its carboxyl, amino, and imidazole nitrogen groups on Asp, His, and Glu. The formed DHTKE-Zn complex presented uniformly distributed globular particles with a particle size of 100-500 nm and underwent dissociation and re-chelation during gastrointestinal digestion. Moreover, the DHTKE peptide mostly remained stable, with a retention rate of 98.32% under gastrointestinal digestion, although one degradation product (DHTK) was identified by nanoscale liquid chromatography-electrospray ionization-tandem mass spectrometry in the gastrointestinal digests; the effectiveness of DHTKE-Zn digests on enhancing absorption of zinc was comparable to that of the initial complex.
Collapse
Affiliation(s)
- Di Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , 1 Qinggongyuan , Ganjingzi District, Dalian , Liaoning 116034 , People's Republic of China
| | - Kexin Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , 1 Qinggongyuan , Ganjingzi District, Dalian , Liaoning 116034 , People's Republic of China
| | - Pengbo Cui
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , 1 Qinggongyuan , Ganjingzi District, Dalian , Liaoning 116034 , People's Republic of China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , 1 Qinggongyuan , Ganjingzi District, Dalian , Liaoning 116034 , People's Republic of China
| | - Tongtong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , 1 Qinggongyuan , Ganjingzi District, Dalian , Liaoning 116034 , People's Republic of China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , 1 Qinggongyuan , Ganjingzi District, Dalian , Liaoning 116034 , People's Republic of China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology , Dalian Polytechnic University , 1 Qinggongyuan , Ganjingzi District, Dalian , Liaoning 116034 , People's Republic of China
| |
Collapse
|
66
|
Fan W, Wang Z, Mu Z, Du M, Jiang L, EI-Seedi HR, Wang C. Characterizations of a Food Decapeptide Chelating with Zn(II). EFOOD 2020. [DOI: 10.2991/efood.k.200727.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
67
|
Liu X, Wang Z, Zhang J, Song L, Li D, Wu Z, Zhu B, Nakamura Y, Shahidi F, Yu C, Zhou D. Isolation and identification of zinc-chelating peptides from sea cucumber (Stichopus japonicus) protein hydrolysate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6400-6407. [PMID: 31283025 DOI: 10.1002/jsfa.9919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Zinc is known to play an essential role in the biological activities in the human body. In this study, a zinc-chelating peptide (ZCP) produced by Alcalase-assisted hydrolysis of the body wall of sea cucumber was isolated and identified. The ZCP was purified stepwise by ultrafiltration, anion-exchange chromatography, and gel filtration chromatography, in conjunction with ultraviolet-visual (UV-visual) spectrophotometry, which was used to analyze each purified fraction. RESULTS Analysis of the purified ZCP revealed that its zinc-chelating ability was 33.31%. Analysis of isothermal titration calorimetry suggested that the binding of ZCP and zinc (N ≈ 2) was endothermic, with weak binding affinity. Fourier transform infrared spectroscopy spectra (FTIR) indicated that carboxylic and amide groups in ZCP were the primary binding sites of Zn. Sequencing the result by ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) showed that a representative ZCP had the sequence WLTPTYPE with a molecular weight of 1005.5 Da. CONCLUSION These results provide a promising foundation for the production of zinc supplements from sea-cucumber-derived ZCPs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Zixu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Jing Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Zixuan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada
| | - Chenxu Yu
- National Engineering Research Center of Seafood, Dalian, China
- Department of Agricultural and Biosystems Engineering, Iowa State University, Iowa, USA
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| |
Collapse
|
68
|
Zinc-Chelating Mechanism of Sea Cucumber ( Stichopus japonicus)-Derived Synthetic Peptides. Mar Drugs 2019; 17:md17080438. [PMID: 31349695 PMCID: PMC6723998 DOI: 10.3390/md17080438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, three synthetic zinc-chelating peptides (ZCPs) derived from sea cucumber hydrolysates with limited or none of the common metal-chelating amino-acid residues were analyzed by flame atomic absorption spectroscopy, circular dichroism spectroscopy, size exclusion chromatography, zeta-potential, Fourier transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy. The amount of zinc bound to the ZCPs reached maximum values with ZCP:zinc at 1:1, and it was not further increased by additional zinc presence. The secondary structures of ZCPs were slightly altered, whereas no formation of multimers was observed. Furthermore, zinc increased the zeta-potential value by neutralizing the negatively charged residues. Only free carboxyl in C-terminus of ZCPs was identified as the primary binding site of zinc. These results provide the theoretical foundation to understand the mechanism of zinc chelation by peptides.
Collapse
|
69
|
Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chem 2019; 284:80-89. [PMID: 30744872 DOI: 10.1016/j.foodchem.2019.01.103] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/25/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
In this study, alcalase and neutrase were used in combination to prepare collagen peptides with high calcium binding ability. The optimal conditions for the preparation of peptide-calcium chelate (mass ratio of peptide/calcium of 4.5:1 for 40 min at 50 °C and pH 9) were determined by response surface methodology (RSM), under which a calcium chelating rate of 78.38% was obtained. The results of Ultraviolet-Visible (UV-Vis), fluorescence and Fourier transform infrared (FT-IR) spectra synthetically indicated that calcium could be chelated by carboxyl oxygen and amino nitrogen atoms of collagen peptides, thus forming peptide-calcium chelate. The chelate was stable at various temperatures and pH values, and exhibited excellent stability in the gastrointestinal environment, which could promote calcium absorption in human gastrointestinal tract. Moreover, Caco-2 cell monolayer model was used to investigate the effect of peptide-calcium chelate on promoting calcium absorption. Results showed that peptide-calcium chelate could significantly improve calcium transport in Caco-2 cell monolayer and reverse the inhibition of calcium absorption by phosphate and phytate. The findings provide a scientific basis for developing new calcium supplements and the high-value utilization of pig bone.
Collapse
|
70
|
Karaś M. Influence of physiological and chemical factors on the absorption of bioactive peptides. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Monika Karaś
- Department of Biochemistry and Food Chemistry University of Life Sciences Skromna Str. 8 20‐704 Lublin Poland
| |
Collapse
|
71
|
Wang Q, Xiong YL. Zinc-binding behavior of hemp protein hydrolysates: Soluble versus insoluble zinc-peptide complexes. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
72
|
Dullius A, Goettert MI, de Souza CFV. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|