51
|
Hu N, Zhao C, Li S, Qi W, Zhu J, Zheng M, Cao Y, Zhang H, Xu X, Liu J. Postharvest ripening of newly harvested corn: Structural, rheological, and digestive characteristics of starch. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
52
|
Wedamulla NE, Fan M, Choi YJ, Kim EK. Effect of pectin on printability and textural properties of potato starch 3D food printing gel during cold storage. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
53
|
Qadir N, Wani IA. Extrusion assisted interaction of rice starch with rice protein and fibre: Effect on physicochemical, thermal and in-vitro digestibility characteristics. Int J Biol Macromol 2023; 237:124205. [PMID: 36972820 DOI: 10.1016/j.ijbiomac.2023.124205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Rice starch has high digestibility due to its large carbohydrate content. Macromolecular enrichment of starch has the tendency to retard rate of starch hydrolysis. Hence, the current investigation was aimed to check the combined effect of extrusion assisted addition of rice protein (0, 10, 15 and 20 %) and fibre (0, 4, 8 and 12 %) to rice starch on physico-chemical and in-vitro digestibility characteristics of starch extrudates. It was observed from the study that 'a' and 'b' values, pasting temperature and resistant starch of starch blends and extrudates increased with the addition of protein and fibre. However, lightness value, swelling index, pasting properties and relative crystallinity of blends and extrudates decreased with the addition of protein and fibre. Maximum increase in thermal transition temperatures was observed for ESP3F3 extrudates due to absorption capacity of protein molecules which led to late onset of gelatinization. Therefore, enrichment of protein and fibre to rice starch during extrusion can be considered as a novel approach to reduce rate of rice starch digestion for catering nutritional requirements of diabetic population.
Collapse
Affiliation(s)
- Nafiya Qadir
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, India.
| | - Idrees Ahmed Wani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, India
| |
Collapse
|
54
|
Bugarín R, Gómez M. Can Citrus Fiber Improve the Quality of Gluten-Free Breads? Foods 2023; 12:1357. [PMID: 37048182 PMCID: PMC10093584 DOI: 10.3390/foods12071357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Citrus fiber has a high water absorption capacity, and its properties can be modified by shearing. In this study, the influence of the addition of normal or shear-activated citrus fiber was analyzed in two gluten-free bread formulations. Citrus fiber increases bread optimal hydration and breadcrumb alveolus size due to this high water retention capacity. However, results are negative in the formula based on starches and rice flour because specific volume is significantly reduced, while bread quality improves in the formula based on starches (corn and tapioca). In this case, the breads become less hard and more cohesive, elastic, and resilient, reducing staling. Baking yield also increased due to a greater hydration and a reduced weight loss during baking, without losing acceptability. The mechanical pre-activation of the fiber further increases optimal hydration, without major changes in the quality of the final bread. These effects are associated with cell rupture, and thus the formation of a three-dimensional network, including the increase of surface area and its interaction with water. Citrus fiber increases the hydration of the dough, as well as the cohesiveness, resilience, and elasticity of the crumb, reducing the increase in hardness during storage without affecting acceptability or increasing it.
Collapse
Affiliation(s)
| | - Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
55
|
Bai C, Zhu J, Xiong G, Wang W, Wang J, Qiu L, Zhang Q, Liao T. Fortification of puffed biscuits with chitin and crayfish shell: Effect on physicochemical property and starch digestion. Front Nutr 2023; 10:1107488. [PMID: 36998908 PMCID: PMC10045987 DOI: 10.3389/fnut.2023.1107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
Chitin is a polysaccharide and possesses numerous beneficial properties such as nontoxicity, biodegradability and biocompatibility, which draws much attention to its applications in food. Crayfish shell is a source of chitin alongside an antioxidants and a potential source of beneficial dietary fiber. In this study, chitin (CH) and crayfish shell (CS) with different concentrations were used to study their impact on pasting characteristics of flour mixture (wheat flour and glutinous rice flour) and influence on physicochemical and starch digestion property of puffed biscuit. The Rapid Visco-Analyzer results showed that the viscosity of powder mixture was decreased with the ratio of CH and CS increased. CH resulted in lowest peak viscosity and breakdown values of mixed powder. It was indicated that increasing amounts of CH and CS led to significantly reduced moisture content, expansion ratio but raised density of biscuits. CH and CS inhibited starch digestion and promoted a remarkable increase (P < 0.05) of resistant starch (RS) content. The hydrolysis kinetic analysis suggested a decelerating influence of CH on the hydrolysis content with lower values of equilibrium hydrolysis percentage (C∞) while CS on hydrolysis rate with lower kinetic constant (K). The estimated glycemic index (eGI) of the CH (15-20%) samples were below 55. These results are of great significance in delaying starch digestion and provided a better choice in design of fried puffed snacks for special crowd with chronic diseases such as diabetes, cardiovascular disease, and obesity.
Collapse
Affiliation(s)
- Chan Bai
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jiguo Zhu
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing, China
- School of Petrochemical Science, Lanzhou University of Technology, Lanzhou, China
| | - Guangquan Xiong
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenqing Wang
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing, China
- School of Petrochemical Science, Lanzhou University of Technology, Lanzhou, China
| | - Juguang Wang
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Liang Qiu
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingfang Zhang
- School of Petrochemical Science, Lanzhou University of Technology, Lanzhou, China
| | - Tao Liao
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
56
|
Nie M, Piao C, Wang A, Xi H, Chen Z, He Y, Wang L, Liu L, Huang Y, Wang F, Tong LT. Physicochemical properties and in vitro digestibility of highland barley starch with different extraction methods. Carbohydr Polym 2023; 303:120458. [PMID: 36657856 DOI: 10.1016/j.carbpol.2022.120458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The objective of this study was to compare the structural, thermal, rheological and digestive properties of highland barley starch (HBS) by different extraction methods. Five techniques were used to extract HBS: Alkali extraction, Ultrasound extraction, double enzyme extraction (DE), three enzyme extraction (TE) and ultrasonic assisted TE (U-TE). The results indicated that the Ultrasound extracted HBS had fewer Maltese crosses, lower molecular weight (Mw), and higher content of damaged starch (P < 0.05). Meanwhile, DE extracted HBS had higher Mw, and the content of short amylopectin than that of Alkali extracted HBS (P < 0.05). Additionally, the DE extracted HBS showed the highest relative crystallinity and good short-range ordered structure, which led to the outcome of stronger thermal stability and higher values of G' and G'' (P < 0.05). These results indicated that enzymatic extraction could better protect the resistance of HBS by protecting its physicochemical properties.
Collapse
Affiliation(s)
- Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihan Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yue He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
57
|
Lu X, Zhan J, Ma R, Tian Y. Structure, thermal stability, and in vitro digestibility of rice starch-protein hydrolysate complexes prepared using different hydrothermal treatments. Int J Biol Macromol 2023; 230:123130. [PMID: 36610573 DOI: 10.1016/j.ijbiomac.2022.123130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
In this study, rice starch-protein hydrolysate (WPH-S) complexes with high resistant starch (RS) content were prepared by heat-moisture treatment (HMT) and annealing (ANN). The effects of different hydrothermal treatments on the structure and thermal stability of the WPH-S complexes and their relationship with starch digestibility were further discussed. The results showed that RS contents of ANN-WPH-S complexes (35.09-40.26 g/100 g) were higher than that of HMT-WPH-S complexes (24.15-38.74 g/100 g). Under hydrothermal treatments, WPH decreased the hydrolysis kinetic constant (k) of starch form 4.07 × 10-2-4.63 × 10-2 min-1 to 3.29 × 10-2-3.67 × 10-2 min-1. HMT and ANN promoted hydrogen bonding between WPH and starch molecules, thus increasing the molecular size of starch. In addition, the shear stability of WPH-S mixture was improved with the hysteresis loop area decreased after HMT/ANN treatments, resulting in a more stable structure. Most importantly, the hydrothermal treatment made the scatterers of WPH-S complexes denser and the surface smoother. Especially after ANN treatment, the WPH60-S complex formed a denser aggregate structure, which hindered the in vitro digestion of starch to a certain extent. These results enrich our understanding of the regulation of starch digestion by protein hydrolysates under different hydrothermal treatments and have guiding significance for the development of foods with a low glycemic index.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
58
|
Huang J, Yu M, Wang S, Shi X. Effects of jicama (Pachyrhizus erosus L.) non-starch polysaccharides with different molecular weights on structural and physiochemical properties of jicama starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
59
|
Bai Y, Gilbert RG. Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Review. Nutrients 2022; 14:nu14235107. [PMID: 36501138 PMCID: PMC9740804 DOI: 10.3390/nu14235107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity and type II diabetes are closely related to the rapid digestion of starch. Starch is the major food-energy source for most humans, and thus knowledge about the regulation of starch digestion can contribute to prevention and improved treatment of carbohydrate metabolic disorders such as diabetes. Pectins are plant polysaccharides with complex molecular structures and ubiquitous presence in food, and have diverse effects on starch digestion. Pectins can favorably regulate in vivo starch digestion and blood glucose level responses, and these effects are attributed to several reasons: increasing the viscosity of digesta, inhibiting amylase activity, and regulating some in vivo physiological responses. Pectins can influence starch digestion via multiple mechanisms simultaneously, in ways that are highly structure-dependent. Utilizing the multi-functionalities of pectin could provide more ways to design low glycemic-response food and while avoiding the unpalatable high viscosity in food by which is commonly caused by many other dietary fibers.
Collapse
Affiliation(s)
- Yeming Bai
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert G. Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: ; Tel.: +61-4-1221-5144
| |
Collapse
|
60
|
Octenyl succinate hydroxypropyl acidolysis tamarind gum: synthesis, optimization, structure and properties. Polym J 2022. [DOI: 10.1038/s41428-022-00702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
61
|
Nie M, Piao C, Li J, He Y, Xi H, Chen Z, Wang L, Liu L, Huang Y, Wang F, Tong L. Effects of Different Extraction Methods on the Gelatinization and Retrogradation Properties of Highland Barley Starch. Molecules 2022; 27:molecules27196524. [PMID: 36235062 PMCID: PMC9573687 DOI: 10.3390/molecules27196524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to compare the gelatinization and retrogradation properties of highland barley starch (HBS) using different extraction methods. We obtained HBS by three methods, including alkali extraction (A-HBS), ultrasound extraction (U-HBS) and enzyme extraction (E-HBS). An investigation was carried out using a rapid viscosity analyzer (RVA), texture profile analysis (TPA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectrometry (FTIR). It is shown that the different extraction methods did not change the crystalline type of HBS. E-HBS had the lowest damaged starch content and highest relative crystallinity value (p < 0.05). Meanwhile, A-HBS had the highest peak viscosity, indicating the best water absorption (p < 0.05). Moreover, E-HBS had not only higher G′ and G″ values, but also the highest gel hardness value, reflecting its strong gel structure (p < 0.05). These results confirmed that E-HBS provided better pasting stability and rheological properties, while U-HBS provides benefits of reducing starch retrogradation.
Collapse
Affiliation(s)
- Mengzi Nie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiaxin Li
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue He
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihan Xi
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiying Chen
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| | - Litao Tong
- Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| |
Collapse
|
62
|
Fan Z, Cheng P, Zhang P, Zhang G, Han J. Rheological insight of polysaccharide/protein based hydrogels in recent food and biomedical fields: A review. Int J Biol Macromol 2022; 222:1642-1664. [DOI: 10.1016/j.ijbiomac.2022.10.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
63
|
Luo Y, Li Y, Li L, Xie X. Physical modification of maize starch by gelatinizations and cold storage. Int J Biol Macromol 2022; 217:291-302. [PMID: 35835304 DOI: 10.1016/j.ijbiomac.2022.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/07/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
The effects of gelatinization at three selected temperatures (DSC characteristic peaks temperature: TO, TP, and TC) and subsequent cold storage (CS) treatment on structural characteristics, pasting, and rheological properties of maize starch (MS) were investigated. The pasting, rheological properties of MS was changed with the increase of gelatinization temperature from TO to TC, but were not further significantly changed if the gelatinization temperature was higher than TC. Pasting and thermal properties analysis suggested that gelatinization at TC (TC treatment) significantly increased the gelatinization and pasting temperature of MS. Moreover, TC treatment decreased breakdown viscosity by 8.49 times and setback viscosity by 2.53 times. Dynamic rheological measurements revealed that the TC treatment caused the lower G' and G" of MS, and decreased the thickening coefficient by 55.17 %. These results indicated that TC treatment could enhance the thermal stability properties of MS, inhibiting the shear and short-term retrogradation, the shear-thinning behavior of MS. Interestingly, the CS treatment further inhibited the shear and short-term retrogradation and the shear-thinning behavior of MS. The leaked starch molecules aggregate to form a harder structure after gelatinization and starch molecules were further aggregated after CS treatment, these all were hypothesized to be responsible for these results.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
64
|
Ji X, Wang Z, Jin X, Qian Z, Qin L, Guo X, Yin M, Liu Y. Effect of inulin on the pasting and retrogradation characteristics of three different crystalline starches and their interaction mechanism. Front Nutr 2022; 9:978900. [PMID: 36159497 PMCID: PMC9493248 DOI: 10.3389/fnut.2022.978900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
At present, there are hardly any studies about the effect of inulin (IN) on the physicochemical properties and structures of different crystalline starches. In this study, three different crystalline starches (wheat, potato, and pea starch) were compounded with natural IN, and its pasting, retrogradation, and structural characteristics were investigated. Then, the potential mechanism of interaction between IN and starch was studied. The results showed that there were some differences in the effects of IN on the three different crystalline starch. Pasting experiments showed that the addition of IN not only increased pasting viscosity but also decreased the values of setback and breakdown. For wheat starch and pea starch, IN reduced their peak viscosity from 2,515 cP, 3,035 cP to 2,131 cP and 2,793 cP, respectively. Retrogradation experiment dates demonstrated that IN delayed gelatinization of all three starches. IN could reduce the enthalpy of gelatinization and retrogradation to varying degrees and inhibit the retrogradation of starch. Among them, it had a better inhibitory effect on potato starch. The addition of IN reduced the retrogradation rate of potato starch from 38.45 to 30.14%. Fourier-transform infrared spectroscopy and interaction force experiments results showed that IN interacted with amylose through hydrogen bonding and observed the presence of electrostatic force in the complexed system. Based on the above, experimental results speculate that the mechanism of interaction between IN and three crystalline starches was the same, and the difference in physicochemical properties was mainly related to the ratio of amylose to amylopectin in different crystalline starches. These findings could enrich the theoretical system of the IN with starch compound system and provide a solid theoretical basis for further applications.
Collapse
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Zhiwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| | - Zhenpeng Qian
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Le Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Xudan Guo
- Basic Medical College, Hebei University of Chinese Medicine, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei TCM Formula Preparation Technology Innovation Center, Shijiazhuang, China
- *Correspondence: Xudan Guo
| | - Mingsong Yin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
- Mingsong Yin
| | - Yanqi Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
- Yanqi Liu
| |
Collapse
|
65
|
Changes in the structural and catalytic characteristics of α-amylase under moderate electric field. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Yan Y, Xue X, Jin X, Niu B, Chen Z, Ji X, Shi M, He Y. Effect of annealing using plasma-activated water on the structure and properties of wheat flour. Front Nutr 2022; 9:951588. [PMID: 36034897 PMCID: PMC9403792 DOI: 10.3389/fnut.2022.951588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, wheat flour (WF) was modified by annealing (ANN) using plasma-activated water (PAW) for the first time. Compared with WF and DW-WF, the results of scanning electron microscopy (SEM) and particle-size analysis showed that the granule structure of wheat starch in PAW-WF was slightly damaged, and the particle size of PAW-WF was significantly reduced. The results of X-ray diffraction and Fourier transforming infrared spectroscopy indicated that PAW-ANN could reduce the long-range and short-range order degrees of wheat starch and change the secondary structure of the protein in WF, in which the content of random coils and α-helices was significantly increased. In addition, the analysis of solubility, viscosity, and dynamic rheological properties showed that PAW-ANN improved the solubility and gel properties of WF and decreased its viscosity properties and short-term regeneration. PAW-ANN, as a green modification technology, has the potential for further application in WF modification, as well as in the production of flour products.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xinhuan Xue
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan He
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
67
|
Almeida RLJ, Santos NC, Feitoza JVF, de Alcântara Ribeiro VH, de Alcântara Silva VM, de Figueiredo MJ, Ribeiro CAC, Galdino PO, Queiroga AHF, de Sousa Muniz CE. The impact of the pulsed electric field on the structural, morphological, functional, textural, and rheological properties of red rice starch (
Oryza sativa
). J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Chemical Engineering Department Federal University of Rio Grande do Norte Natal Brazil
| | | | | | | | - Maria José de Figueiredo
- Department of Agro‐Industrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| | | | | | | | | |
Collapse
|
68
|
Lin D, Ma Y, Qin W, Loy DA, Chen H, Zhang Q. The structure, properties and potential probiotic properties of starch-pectin blend: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
69
|
Almeida RLJ, Rios NS, dos Santos ES. Modification of red rice starch by a combination of hydrothermal pretreatments and α-amylase hydrolysis. Carbohydr Polym 2022; 296:119963. [DOI: 10.1016/j.carbpol.2022.119963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
70
|
Wang D, Wang K, Zhao L, Liu X, Hu Z. Fabrication and application of pickering emulsion stabilized by high pressure homogenization modified longan shell nanofiber. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
71
|
Ogundele GF, Adebayo TK, Adeyanju AA, Bamidele OP. Nutritional composition and In vitro starch digestibility of
Banku
flour processed from Cassava (
Manihot esculenta Crantz
) root and Quality Protein Maize grains. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Tesleem K. Adebayo
- Department of Food Technology, Federal Polytechnic Offa Kwara State Nigeria
| | - Adeyemi A. Adeyanju
- Department of Food Science and Microbiology Landmark University Omu‐Aran Kwara State
| | | |
Collapse
|
72
|
Song X, Chiou BS, Xia Y, Chen M, Liu F, Zhong F. The improvement of texture properties and storage stability for kappa carrageenan in developing vegan gummy candies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3693-3702. [PMID: 34894157 DOI: 10.1002/jsfa.11716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND As plant-based foods have become more mainstream in recent years, carrageenan has been used to replace animal-derived gelatin in confectionery products. However, texture defects and water seepage during storage limit the development of kappa carrageenan (KC) gummy candies. RESULTS This study evaluated the effects of hydrocolloids on the texture properties and storage stability of KC gummy candies. The results showed that 4 g kg-1 carboxymethylcellulose (CMC) composited with 20 g kg-1 KC formed a flexible gummy candy with low fragility and limited water seepage during storage. Further investigation revealed that 4 g kg-1 CMC promoted side-by-side intermolecular aggregation of KC helices through hydrogen bonding, which stabilized a denser network structure compared to the pure KC hydrogel. However, high CMC proportions (8-12 g kg-1 ) led to electrostatic repulsion that dominated in the system, inhibiting the gel-forming process and thus resulting in a weak gel structure with accelerated syneresis. CONCLUSION This study found that 4 g kg-1 CMC was able to improve the flexibility and decrease unacceptable fragility of KC gummy candies, with water seepage decreased during storage significantly. It provided preliminary evidence for utilizing hydrocolloids to adjust texture and control water migration in KC gels, and has potential to promote wide development of vegan gummy candies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyu Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, US Department of Agriculture, Albany, CA, USA
| | - Yixun Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
73
|
Santamaria M, Montes L, Garzon R, Moreira R, Rosell CM. Unraveling the impact of viscosity and starch type on the in vitro starch digestibility of different gels. Food Funct 2022; 13:7582-7590. [PMID: 35730891 DOI: 10.1039/d2fo00697a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starch is one of the most important carbohydrates that is present in many foods. Gelatinization is an important property of starch, associated with physical changes that promote an increase in viscosity. The objective of this research was to understand how the viscosity of starch gels affects their hydrolysis and whether that effect was dependent on the type of starch. Different gels (corn, wheat, and rice) with variable or constant viscosity were analyzed using diverse methodologies to determine the changes in the pasting behavior. A rapid force analyzer, a vibration viscometer and a rheometer were used to differentiate the gels based on the starch source and concentration. At a fixed starch concentration, corn gel displayed the highest viscosity, slowing the enzymatic starch hydrolysis. The higher viscosity of those gels prepared with a fixed starch concentration significantly enhanced the slowly digestible starch (SDS) and reduced the kinetic constant (k). Nevertheless, gels with constant viscosity (550 mPa s) showed comparable hydrolysis kinetics, obtaining similar SDS, total hydrolyzed starch and k. The correlation matrix confirmed the relationship between k and gel viscosity (r = -0.82), gelatinization rate (α-slope) (r = -0.87), breakdown (r = -0.84) and elastic modulus (G' 37 °C) (r = -0.73). Therefore, these parameters could be used as predictors of the hydrolysis performance of starch gels as well as in reverse engineering for the design of healthy foods.
Collapse
Affiliation(s)
- Maria Santamaria
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Valencia, Spain.
| | - Leticia Montes
- Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, Santiago de Compostela, E-15782, Spain
| | - Raquel Garzon
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Valencia, Spain.
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, Santiago de Compostela, E-15782, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Valencia, Spain. .,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
74
|
Liu W, Zhang Y, Xu Z, Pan W, Shen M, Han J, Sun X, Zhang Y, Xie J, Zhang X, Yu L(L. Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
Hu K, Chen D, Sun Z. Structures, physicochemical properties, and hypoglycemic activities of soluble dietary fibers from white and black glutinous rice bran: a comparative study. Food Res Int 2022; 159:111423. [DOI: 10.1016/j.foodres.2022.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
76
|
Jia Z, Luo Y, Barba FJ, Wu Y, Ding W, Xiao S, Lyu Q, Wang X, Fu Y. Effect of β-cyclodextrins on the physical properties and anti-staling mechanisms of corn starch gels during storage. Carbohydr Polym 2022; 284:119187. [DOI: 10.1016/j.carbpol.2022.119187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
77
|
Tang H, Liu Y, Li Y, Liu X. Octenyl succinate acidolysis carboxymethyl sesbania gum with high esterification degree: preparation, characterization and performance. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
78
|
Cheng Y, Guan Y, Guo F, Wang Z, Zeng M, Qin F, Chen J, Li W, He Z. Effects of dietary fibre and soybean oil on the digestion of extruded and roller‐dried maize starch. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Cheng
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanming Guan
- China National Research Institute of Food and Fermentation Industries Co., Ltd. Beijing 100015 China
| | - Fengxian Guo
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Weiwei Li
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Zhiyong He
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
79
|
Almeida RLJ, Santos NC, Santos Pereira T, Monteiro SS, Silva LRI, Silva Eduardo R, Alves IL, Santos ES. Extraction and modification of Achachairu's seed (
Garcinia humilis
) starch using high‐intensity low‐frequency ultrasound. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Tamires Santos Pereira
- Department of Process Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Shênia Santos Monteiro
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | - Raphael Silva Eduardo
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Israel Luna Alves
- Department of Food Technology Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Everaldo Silvino Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| |
Collapse
|
80
|
Tian X, Wang Z, Wang X, Ma S, Sun B, Wang F. Mechanochemical effects on the structural properties of wheat starch during vibration ball milling of wheat endosperm. Int J Biol Macromol 2022; 206:306-312. [PMID: 35240210 DOI: 10.1016/j.ijbiomac.2022.02.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Pure wheat endosperm was fully ground in a vibratory ball mill and structural changes in wheat starch were measured to assess the effect of mechanochemical action during the grinding process. Vibratory ball milling changed the endosperm granule size to ~30 μm (D50). There was a significant increase in damaged starch content, and this was positively correlated with the grinding time. The relative crystallinity of starch decreased by 5% after milling 105 min, and the short-range order decreased. The damaged structure of amylopectin starch decreased with milling time, as detected macroscopically by the peak viscosity and final viscosity of milling samples. Overall, the in vitro digestion results showed that mechanical modification caused irregular defects inside wheat starch crystals, increased the sensitivity of wheat starch to enzymes, enhanced the hydrolysis rate three-fold, and increased the maximum starch hydrolysis by 50%. Mechanochemistry effects was used to analyze the quality changes in wheat milling.
Collapse
Affiliation(s)
- Xiaoling Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
81
|
Shevkani K, Kaur R, Singh N, Hlanze DP. Colour, composition, digestibility, functionality and pasting properties of diverse kidney beans (Phaseolus vulgaris) flours. Curr Res Food Sci 2022; 5:619-628. [PMID: 35373145 PMCID: PMC8967972 DOI: 10.1016/j.crfs.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
The present work evaluated nine diverse kidney bean accessions for colour, composition, digestibility, protein profile, starch crystallinity, techno-functional properties, pasting properties and microstructure with the objective of identifying key attributes affecting their digestibility and functionality. The accessions exhibited dry matter digestibility, resistant starch (RS) content, water absorption capacity, fat absorption capacity, emulsifying activity index (EAI), foaming capacity (FC) and foam stability (FS) of 14.6–47.2%, 32.0–50.5%, 1.7–2.7 g/g, 1.4–1.7 g/g, 50.1–70.1 m2/g, 70.8–98.3% and 82.4–91.3%, respectively. Starch-lipid complexes (SLC), proteins and non-starch carbohydrates contributed to lower starch and dry matter-digestibility. Principal component analysis revealed positive relation of emulsification, foaming and water absorption capacity with proteins, starch, RS and ash-content while negative with crystallinity and amount of lipids, non-starch carbohydrates and digestible starch. Hydration ability of proteins promoted foaming whereas flour with lower vicilins level was less surface active and exhibited the lowest EAI, FC and FS. Pasting temperature related positively with SLC, while average starch granule size was in strong positive relationship with RS content, peak viscosity and breakdown viscosity. The results could be useful for enhanced utilization of kidney beans in different foods. Diverse bean flours were evaluated for digestibility and techno-functional properties. Starch-lipid complexes, proteins and non-starch components reduced digestibility. Protein hydration and vicilins contributed to foaming properties.
Collapse
|
82
|
Almeida RLJ, Santos NC, Silva GM, Feitoza JVF, Silva VM, Ribeiro VH, Eduardo R, Muniz CE. Effects of hydrothermal pretreatments on thermodynamic and technological properties of red bean starch. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Gabriel Monteiro Silva
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | - Virgínia Mirtes Silva
- Department of Engineering and Management of Natural Resources Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Victor Herbert Ribeiro
- Department of Engineering and Management of Natural Resources Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Raphael Eduardo
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Cecília Elisa Muniz
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| |
Collapse
|
83
|
A promising strategy for mechanically modified wheat flour by milling of wheat endosperm. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
84
|
Zhou Z, Ye F, Lei L, Zhou S, Zhao G. Fabricating low glycaemic index foods: Enlightened by the impacts of soluble dietary fibre on starch digestibility. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
85
|
Chen Y, Wang Y, Yu Z, Chen H. Effect of hydrophilic‐lipophilic balance values of sucrose esters on corn starch retrogradation. Cereal Chem 2022. [DOI: 10.1002/cche.10526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan Chen
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Yu‐Sheng Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Zhen Yu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Hai‐Hua Chen
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
86
|
Li Y, Liang W, Huang M, Huang W, Feng J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct 2022; 13:170-185. [PMID: 34874372 DOI: 10.1039/d1fo02012a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, holocellulose nanocrystals (hCNCs) were isolated from burdock insoluble dietary fiber (IDF) by enzymatic hydrolysis and ultrasonic treatment and their inhibitory effects against α-amylase and α-glucosidase were investigated. The hydrodynamic diameter of hCNCs decreased from about 600 to 200 nm with increasing sonication time, accompanied by an improvement in cellulose and glucose contents. Steady-state fluorescence studies suggested that static complexes were formed between hCNCs and α-amylase or α-glucosidase via a spontaneous and endothermic approach, which was driven by both hydrophobic interactions and hydrogen bonding. The median inhibitory concentration (IC50) values of hCNCs against the tested enzymes were positively correlated with their size, and non-competitive and mixed types of inhibition were detected using the Lineweaver-Burk plots. During the simulated digestion, the inclusion of burdock hCNCs obviously retarded the starch hydrolysis in both dose- and size-dependent manners, suggesting their potential in blocking the postprandial serum glucose upsurge.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of food science and engineering, College of light industry and food engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
87
|
Sharma M, Pondicherry KS, Duizer L. Understanding relations between rheology, tribology, and sensory perception of modified texture foods. J Texture Stud 2021; 53:327-344. [PMID: 34921392 DOI: 10.1111/jtxs.12656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
The aim of this work was to examine relations between instrumental and sensory parameters in a texture modified food matrix, with and without saliva. Nine pureed carrot samples (eight thickened and a control) were developed with starch (0.4 and 0.8% wt/wt), xanthan (0.2 and 0.4% wt/wt) or starch-xanthan blends that met International Dysphagia Diet Standardisation Initiative (IDDSI) Level 4 guidelines using fork and spoon tests. Rheological and tribological tests were conducted on the food and simulated bolus prepared by adding fresh stimulated saliva to the food (1:5, saliva:food) to mimic oral processing. Perceived sensory properties were identified using a temporal dominance of sensations (TDS) test (n = 16) where panelists were given a list of nine attributes. The area under the curve was extracted from TDS curves for each attribute/sample and this was correlated with rheological (viscosity at 10 s-1 , G', G″, and tan δ at 1 Hz) and tribological (friction coefficient in three regimes) data. The viscosity of the control sample decreased after adding hydrocolloids (except Starch_0.8%) and with saliva incorporation. G' and G″ either increased or were similar for xanthan and blends and decreased for starch-thickened samples. Hydrocolloid addition increased friction for all samples and was higher with saliva addition. Sensory results showed that samples with starch were perceived as thick and grainy while xanthan was perceived as smooth and slippery. A greater number of sensory attributes correlated with viscoelastic parameters compared to friction coefficients. Correlations were highest with the saliva added samples, further highlighting the importance of including saliva during instrumental testing.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | - Lisa Duizer
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
88
|
Ji X, Yin M, Hao L, Shi M, Liu H, Liu Y. Effect of inulin on pasting, thermal, rheological properties and in vitro digestibility of pea starch gel. Int J Biol Macromol 2021; 193:1669-1675. [PMID: 34742552 DOI: 10.1016/j.ijbiomac.2021.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
The influence of inulin (IN) on pasting, thermal, rheological properties, and in vitro digestibility of pea starch gel was investigated. Results showed that as the concentration of IN in PS increased, the pasting temperature of PS gradually increased, while the value of peak viscosity, breakdown, and setback decreased. Rheological test suggested that all PS-IN gels were typical non-Newtonian fluids and exhibited a solid-like behavior. With the increased concentration of IN, hardness, chewiness, and gumminess of PS-IN gels significantly declined, in which the minimum value was at addition level of 20%. The presence of IN increased the gelatinization temperatures of PS-IN gels, while decreased the gelatinization enthalpy. Fourier-transform infrared spectroscopy (FT-IR) results indicated that no covalent bonding but intermolecular hydrogen bonding occurred between PS and IN. No influence of IN on the diffraction peak of PS after pasting was confirmed by X-ray diffraction analysis. In addition, IN decreased the content of rapidly and slowly digestible starch of PS, while increasing the content of resistant starch. These results will expand the application range of PS, and also provide a theoretical basis for the development of inulin-starch based products.
Collapse
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Mingsong Yin
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Lirui Hao
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China.
| | - Yanqi Liu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
89
|
Santamaria M, Garzon R, Moreira R, Rosell CM. Estimation of viscosity and hydrolysis kinetics of corn starch gels based on microstructural features using a simplified model. Carbohydr Polym 2021; 273:118549. [PMID: 34560961 DOI: 10.1016/j.carbpol.2021.118549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Viscosity is an important rheological property, which may have impact on the glycemic response of starchy foods. However, the relationship between starch gels viscosity on its hydrolysis has not been elucidated. The aim of this work was to assess the effect of gels viscosity on the microstructure, and the kinetics of enzymatic hydrolysis of starch. Corn starch gels were prepared from starch:water ratios varying from 1:4 to 1:16. A structural model was proposed that correlated (R-square = 0.98) the porous structure (cavity sizes, thickness walls) of gels and its viscosity. Kinetics constants of hydrolysis decreased with increasing starch content and consequently with gel viscosity. Relationships of viscosity with the microstructural features of gels suggested that enzyme diffusion into the gel was hindered, with the subsequent impact on the hydrolysis kinetics. Therefore, starch digestibility could be governed by starch gels viscosity, which also affected their microstructure.
Collapse
Affiliation(s)
- Maria Santamaria
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain.
| | - Raquel Garzon
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain.
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, Santiago de Compostela, E-15782, Spain.
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain.
| |
Collapse
|
90
|
Ji X, Luo Y, Shen M, Yang J, Han X, Xie J. Effects of carboxymethyl chitosan on physicochemical, rheological properties and in vitro digestibility of yam starch. Int J Biol Macromol 2021; 192:537-545. [PMID: 34655578 DOI: 10.1016/j.ijbiomac.2021.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
The effects of carboxymethyl chitosan (CMCS) on the pasting, rheological, and physical properties of yam starch (YS) were investigated. Different concentrations of CMCS were added to the YS, followed by heating paste treatment at 95 °C. Then the blends were subjected to the determination of physicochemical, rheological properties and in vitro digestibility. Our results showed that CMCS reduced the paste viscosity of YS and the addition of CMCS did not effectively inhibit the movement of water molecules. Rheological measurements results showed that YS-CMCS blends exhibited shear thinning behavior. Furthermore, because of the presence of amylose inhibited the swelling of the starch and leaching of amylose, the addition of CMCS had no significant difference between solubility and swelling power of YS.
Collapse
Affiliation(s)
- Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiuying Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
91
|
Zhou R, Wang Y, Wang Z, Liu K, Wang Q, Bao H. Effects of Auricularia auricula-judae polysaccharide on pasting, gelatinization, rheology, structural properties and in vitro digestibility of kidney bean starch. Int J Biol Macromol 2021; 191:1105-1113. [PMID: 34560153 DOI: 10.1016/j.ijbiomac.2021.09.110] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Auricularia auricula-judae polysaccharide (AP) has unique molecular structures and multiple bioactivities with excellent gel-forming property and thermal tolerance. However, few researches focus on the interactions between AP and legume starches. In this study, the effects of AP on the pasting, gelatinization, rheology, microstructure, and in vitro digestibility of kidney bean starch (KBST) were evaluated. The pasting, gelling and structural properties of AP-KBST mixtures were characterized by rapid visco analyzer, rheometry, texture analyzer, laser particle analyzer, low-field nuclear magnetic resonance, Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. And an in vitro method was employed to measure the digestibility of AP-KBST composites. The pasting viscosity, swelling degree of starch granules, viscoelasticity, gel strength, cold storage stability and water-retention capacity of KBST were enhanced with increasing AP concentration. The combination of AP and KBST exhibited a higher short-range ordered and a firmer and denser structure than that of KBST alone. Moreover, AP increased the contents of resistant starch and slowly digestible starch, which were positively correlated with the storage modulus and the degree of order, thereby suggesting that the formation of strong and ordered gel network structure by synergistic interactions between AP and KBST was responsible for the reduced starch digestibility.
Collapse
Affiliation(s)
- Rui Zhou
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Yijun Wang
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Zaixu Wang
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Ke Liu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Qi Wang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, Ontario N1G 5C9, Canada
| | - Honghui Bao
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China.
| |
Collapse
|
92
|
Liu W, Wang R, Li J, Xiao W, Rong L, Yang J, Wen H, Xie J. Effects of different hydrocolloids on gelatinization and gels structure of chestnut starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
93
|
Zou S, Wang L, Wang A, Zhang Q, Li Z, Qiu J. Effect of Moisture Distribution Changes Induced by Different Cooking Temperature on Cooking Quality and Texture Properties of Noodles Made from Whole Tartary Buckwheat. Foods 2021; 10:foods10112543. [PMID: 34828823 PMCID: PMC8625768 DOI: 10.3390/foods10112543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/04/2022] Open
Abstract
While precooking and processing have improved the quality of gluten-free noodles, the effects of different cooking temperatures on their quality—neither gluten-free noodles nor whole Tartary buckwheat noodles—have rarely been clarified. This study investigated the key role of moisture distribution induced by different cooking temperatures in improving the noodle quality of whole Tartary buckwheat. The results showed that cooking temperatures higher than 70 °C led to a sharp increase in cooking loss, flavonoid loss and the rate of broken noodles, as well as a sharp decrease in water absorption. Moreover, the noodles cooked at 70 °C showed the lowest rate of hardness and chewiness and the highest tensile strength of all cooking temperatures from 20 °C to 110 °C. The main positive attribute of noodles cooked at 70 °C might be their high uniform moisture distribution during cooking. Cooking at 70 °C for 12 min was determined as the best condition for the quality improvement of whole Tartary buckwheat noodles. This is the first study to illustrate the importance of cooking temperatures on the quality of Tartary buckwheat noodles. More consideration must also be given to the optimal cooking conditions for different gluten-free noodles made from minor coarse cereals.
Collapse
Affiliation(s)
- Shuping Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Dong Lu, Haidian District, Beijing 100083, China; (S.Z.); (Z.L.)
- Research Institute of Farm Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Lijuan Wang
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China;
| | - Aili Wang
- Key Laboratory of Coarse Cereal Processing, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Qian Zhang
- Research Institute of Farm Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Dong Lu, Haidian District, Beijing 100083, China; (S.Z.); (Z.L.)
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China;
| | - Ju Qiu
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China;
- Correspondence: ; Tel./Fax: +86-10-8210-7742
| |
Collapse
|
94
|
Effects of Pectin on the Physicochemical Properties and Freeze-Thaw Stability of Waxy Rice Starch. Foods 2021; 10:foods10102419. [PMID: 34681468 PMCID: PMC8536014 DOI: 10.3390/foods10102419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the effects of the addition of pectin (PEC) on the physicochemical properties and freeze-thaw stability of waxy rice starch (WRS) were investigated. As PEC content increased, the pasting viscosity and pasting temperature of WRS significantly increased (p < 0.05), whereas its breakdown value and setback value decreased. Differential scanning calorimetry showed that the addition of PEC increased the gelatinization temperature of WRS, but decreased its gelatinization enthalpy. Rheological measurements indicated that the addition of PEC did not change the shear-thinning behavior of WRS-PEC blends, and the storage modulus and loss modulus were positively correlated with PEC content. Moreover, the textural parameter of WRS decreased with the increase in PEC content. Furthermore, the addition of PEC decreased the transmittance of starch paste, but enhanced the freeze-thaw stability of WRS to some extent. These results may contribute to the development of WRS-based food products.
Collapse
|
95
|
Wang Y, Ning Y, Yuan C, Cui B, Liu G, Zhang Z. The protective mechanism of a debranched corn starch/konjac glucomannan composite against dyslipidemia and gut microbiota in high-fat-diet induced type 2 diabetes. Food Funct 2021; 12:9273-9285. [PMID: 34606538 DOI: 10.1039/d1fo01233a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to explore the protection mechanism of a debranched corn starch/konjac glucomannan (DCSK) composite against type 2 diabetes (T2D) related to dyslipidemia and gut microbiota in mice fed on a high-fat diet (HFD). The results showed that the consumption of DCSK led to a significant improvement in the biochemical parameters and physiological indices associated with T2D in the HFD group, including the decrease in blood glucose, triglyceride, total cholesterol, and high-density lipoprotein cholesterol levels, as well as the suppression of the oxidative stress of the liver and kidneys. Furthermore, the health of the intestinal microbiota in the HFD-fed mice was altered dramatically after DCSK consumption. Metabolomics revealed 13 differential metabolites strongly linked to DCSK intervention, and DCSK supplementation regulated amino acid metabolism, nucleotide metabolism, and lipid metabolism. These findings demonstrated that DCSK has an outstanding ability to improve hyperglycemia, hyperlipidemia, and gut microbiota associated with T2D.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Grain and Oil, Henan University of Technology, Zhengzhou 450001, China
| | - Yuejia Ning
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
96
|
Effects of creeping fig seed polysaccharide on pasting, rheological, textural properties and in vitro digestibility of potato starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
97
|
Wheat flour superheated steam treatment induced changes in molecular rearrangement and polymerization behavior of gluten. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
98
|
Ma Y, Zhang W, Pan Y, Ali B, Xu D, Xu X. Physicochemical, crystalline characterization and digestibility of wheat starch under superheated steam treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Xie F, Wang Z, Liu J. Effects of Pectins with Different Structural and Conformational Characteristics on Gelatinization and Retrogradation of Corn Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fan Xie
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
- Shanghai Engineering Research Center of Food Microbiology School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 China
| | - Zhengwu Wang
- Department of Food Science & Technology School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jianhua Liu
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
| |
Collapse
|
100
|
Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme. Food Chem 2021; 367:130762. [PMID: 34390912 DOI: 10.1016/j.foodchem.2021.130762] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Inhibitory effects of flavonoids on starch digestibility were well known, but the structural mechanism was not clear. This study was focused on the diverse effect of quercetin and rutin on digestibility of Tartary buckwheat starch. Results showed that quercetin and rutin reduced the starch digestion by altering starch structure in bound forms and inhibiting digestive enzyme activity in free forms simultaneously, and quercetin showed a stronger effect than rutin. Molecular docking and saturation transfer difference-nuclear magnetic resonance (STD-NMR) revealed different binding site of rutin from quercetin was due to its hydroxyl and hydrogen on the glycoside structure. Rutin interacted with enzymes mainly by CH and OH on the glycoside structure which induced steric hindrance and restricted the inhibitory effect of quercetin fraction. The glycoside structure weakened inhibition of rutin on digestive enzymes in free forms rather than influence its anti-digestive effects in bound forms with starch.
Collapse
|