51
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Chen H, Liu Y, Zhang J, Jiang Y, Li D. Pectin extracted from dragon fruit Peel: An exploration as a natural emulsifier. Int J Biol Macromol 2022; 221:976-985. [PMID: 36103906 DOI: 10.1016/j.ijbiomac.2022.09.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022]
Abstract
As a potential source of pectin, the peel of dragon fruit is a by-product of fruit processing and will bring considerable economic benefits. In this study, pectin (DFP) was extracted from dragon fruit peel by using a hot-acid method, and two commercial pectins were used as controls to correlate structural differences with physical and chemical properties through systematic evaluation. The galacturonic acid (GalA) content, degree of esterification (DM) and molecular weight (Mw) of DFP were 87.02 ± 0.89 %, 37.26 ± 1.37 % and 1181.75 ± 11.21 kDa, respectively. The FTIR and XRD analysis also confirmed that DFP is ultra-low methoxylated pectin and also contains characteristic functional groups naturally present in pectin. Compared to APA140 and LMP, DFP showed excellent emulsification at low concentrations. In particular, the extraordinary antioxidant activity of DFP may be attributed to polyphenols in free or bound form. Overall, DFP can be considered as a promising emulsifier and the results of the study provide an alternative to natural sources of emulsifiers in the food industry.
Collapse
Affiliation(s)
- Hongru Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yiyan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Jingkai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| |
Collapse
|
53
|
Deng Y, Liu Y, Zhang C, Xie P, Huang L. Characterization of Enzymatic Modified Soluble Dietary Fiber from Rhodomyrtus tomentosa fruits: A Potential Ingredient in Reducing AGEs Accumulation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
54
|
Pourramezan H, Khodaiyan F, Hosseini SS. Extraction optimization and characterization of pectin from sesame (Sesamum indicum L.) capsule as a new neglected by-product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6470-6480. [PMID: 35567377 DOI: 10.1002/jsfa.12014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/04/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With production of over 6 million tonnes a year of sesame, its capsules are considered to be an unutilized waste. In this study, extraction of pectin from this novel source was optimized using a green method, and the functional and physiochemical characteristics of the resultant pectin were compared to commercial pectin. RESULTS In this study, the sesame capsule pectin (SCP) extraction conditions were optimized to reach maximum yield, and the results showed that the maximum pectin extraction yield (138 g kg-1 ) was obtained under optimal conditions (microwave power 700 W, irradiation time 5 min, pH 1.5, and liquid-to-solid ratio 41.8 (mL g-1 ). The results showed that the pectin was low methoxyl type with a galacturonic acid content of 670 g kg-1 . The extracted pectin had a high molecular weight (341 kDa) and surface charge (34.09 ± 1.88 mV) and exhibited 66% DPPH radical scavenging. The obtained results from 1 H-nuclear magnetic resonance and Fourier transform infrared spectra validated the presence of pectin structure in the extracted sample. CONCLUSION Sesame capsule pectin, when compared to commercial pectin, demonstrated better functional properties in terms of emulsifying properties, oil holding capacity, foaming capacity and antioxidant activity. SCP showed similar properties in comparison to its commercial counterpart, which suggests that it could well be considered as a new and suitable source for pectin extraction. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hamidreza Pourramezan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| |
Collapse
|
55
|
Zioga M, Tsouko E, Maina S, Koutinas A, Mandala I, Evageliou V. Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
56
|
Meerasri J, Chollakup R, Sothornvit R. Factors affecting sericin hydrolysis and application of sericin hydrolysate in sericin films. RSC Adv 2022; 12:28441-28450. [PMID: 36320550 PMCID: PMC9533480 DOI: 10.1039/d2ra05220b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Sericin is a natural protein and a by-product obtained from silk processing. To enhance the antioxidant properties of sericin, sericin hydrolysis was studied. The solvent effects (distilled water, citric acid and hydrochloric acid) and hydrolysis methods (heat treatment (water bath) and mild ultrasonic treatment at 20%, 40% or 60% amplitude) were investigated on the properties of sericin hydrolysate (SH). Furthermore, solvent effects (distilled water and 15% ethanol) were examined for the properties of the sericin films incorporated with selected SH. The SH samples from acid hydrolysis and the ultrasonic method had a darkened visual appearance. However, the degree of hydrolysis and antioxidant activity of SH increased with ultrasonic-assisted acid hydrolysis. The molecular weight (MW) of sericin was notably reduced. As expected, hydrochloric acid hydrolysis resulted in a lower MW for the SH than from citric acid. Thus, SH from hydrochloric acid and 20% amplitude in the ultrasonic method were selected to produce a sericin film. As revealed, using distilled water as a general solvent provided films with lower solubility and water vapor permeability but higher tensile strength. Furthermore, the addition of SH enhanced the antioxidant properties of its hydrolysate as a novel protein packaging film material for various applications.
Collapse
Affiliation(s)
- Jitrawadee Meerasri
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen, Kasetsart University Kamphaengsaen Campus Nakhonpathom 73140 Thailand
| | - Rungsima Chollakup
- Kasetsart Agricultural and Agro-Industry Product Improvement Institute, Kasetsart University Bangkok 10900 Thailand
| | - Rungsinee Sothornvit
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen, Kasetsart University Kamphaengsaen Campus Nakhonpathom 73140 Thailand
| |
Collapse
|
57
|
Structural, functional and physicochemical properties of pectin from grape pomace as affected by different extraction techniques. Int J Biol Macromol 2022; 224:739-753. [DOI: 10.1016/j.ijbiomac.2022.10.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
58
|
Zharylkasynova Z, Iskakova G, Baiysbayeva M, Izembayeva A, Slavov A. The influence of beet pectin concentrate and whole-ground corn flour on the quality and safety of hardtacks. POTRAVINARSTVO 2022. [DOI: 10.5219/1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, the main task of food manufacturers is to continuously improve quality while complying with legal regulations primarily related to ensuring product safety for consumers. In this regard, using pectin substances as natural detoxifiers and wholemeal flour in the production of hardtacks will solve the problem of meeting the population's needs for safe food products with high nutritional and biological value. The article substantiates the sequence and parameters of technological operations for producing pectin concentrate from ‘Ardan’ sugar beet. The effectiveness of the use of beet pectin concentrate and whole-ground corn flour in the production of hardtacks has been substantiated experimentally based on a study of their qualitative characteristics, chemical composition and safety. The optimal dosage of pectin concentrate was determined at 10% and whole-ground corn flour at 15% in the production of hardtacks from first-grade wheat flour, where the properties of the gluten and the quality of finished products were similar to the control samples. The use of ‘Ardan’ sugar beet pectin concentrate made it possible to alter the dough's properties to increase its firmness and elasticity. It was found that the food and biological value of the developed hardtacks was higher than that of the control samples. The products obtained complied with the safety requirements of TR CU 021/2011 Technical Regulations of the Customs Union ‘On Food Safety’.
Collapse
|
59
|
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022; 11:2683. [PMID: 36076865 PMCID: PMC9455162 DOI: 10.3390/foods11172683] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Pectin is a heterogeneous hydrocolloid present in the primary cell wall and middle lamella in all dicotyledonous plants, more commonly in the outer fruit coat or peel as compared to the inner matrix. Presently, citrus fruits and apple fruits are the main sources for commercial extraction of pectin, but ongoing research on pectin extraction from alternate fruit sources and fruit wastes from processing industries will be of great help in waste product reduction and enhancing the production of pectin. Pectin shows multifunctional applications including in the food industry, the health and pharmaceutical sector, and in packaging regimes. Pectin is commonly utilized in the food industry as an additive in foods such as jams, jellies, low calorie foods, stabilizing acidified milk products, thickener and emulsifier. Pectin is widely used in the pharmaceutical industry for the preparation of medicines that reduce blood cholesterol level and cure gastrointestinal disorders, as well as in cancer treatment. Pectin also finds use in numerous other industries, such as in the preparation of edible films and coatings, paper substitutes and foams. Due to these varied uses of pectin in different applications, there is a great necessity to explore other non-conventional sources or modify existing sources to obtain pectin with desired quality attributes to some extent by rational modifications of pectin with chemical and enzymatic treatments.
Collapse
Affiliation(s)
- Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Devina Vaidya
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Verma
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Gupta
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| |
Collapse
|
60
|
Jiang H, Zhang W, Pu Y, Chen L, Cao J, Jiang W. Development and characterization of a novel active and intelligent film based on pectin and betacyanins from peel waste of pitaya (Hylocereus undatus). Food Chem 2022; 404:134444. [PMID: 36244062 DOI: 10.1016/j.foodchem.2022.134444] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
In the present study, peel waste of pitaya (Hylocereus spp.) was used to develop a novel active and functional film. The film was developed with a combination of the white-fleshed pitaya peel pectin (WPPP) as a biopolymer and white-fleshed pitaya peel betacyanins (WPPB) as an active constituent, respectively. Furthermore, montmorillonite (MMT), a cheap and environmental-friendly silicate material, was introduced into film matrix as a filler to reduce the moisture sensitivity of the film. The effect of the incorporation of WPPB on the properties of WPPP/MMT films was investigated. The colorimetric response of WPPP/MMT/WPPB to pH and ammonia was examined, respectively. Moreover, WPPP/MMT/WPPB-2 was employed to monitor the freshness of shrimp. The color of the film changed from redness to reddish-brown, and further to brownness, echoing the shrimp turned from fresh to spoiled. Therefore, WPPP/MMT/WPPB-2 composite films showed promise for the applications in monitoring the freshness of shrimp.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
61
|
Liu N, Yang W, Li X, Zhao P, Liu Y, Guo L, Huang L, Gao W. Comparison of characterization and antioxidant activity of different citrus peel pectins. Food Chem 2022; 386:132683. [PMID: 35364490 DOI: 10.1016/j.foodchem.2022.132683] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
Pectins obtained from citrus peel of different cultivars and growth regions were compared based on physicochemical properties and antioxidant activity in vitro. The physicochemical features were elucidated using Fourier transform infrared (FT-IR), molecular weight distribution, monosaccharide composition, thermal behaviors and flow behaviors. Results showed that the different cultivars and growing areas have significant effects on the properties of citrus peel pectins (CPPs). Citrus peel pectins extracted by acetic acid were highly heterogeneous polysaccharides with broad molecular weight distributions and had high proportions of the RG-I domain. Among the 10 kinds of citrus peel pectins, Shatangju (CPP-6) and Xuecheng (CPP-7) own superior antioxidant biological activity and Dahongpao (CPP-3) and Buzhihuo (CPP-9) had excellent functional properties (thermal stability and viscosity). According to the correlation analysis, molecular weight, galacturonic acid content and degree of methyl-esterification were beneficial to increase the thermal stability and viscosity of citrus peel pectins, while the rhamnose content, rhamnogalacturonan I region and lower molecular weight can improve citrus peel pectins antioxidant activity. Our findings suggest that CPP-6 and CPP-7 may be useful as a potential natural antioxidant in pharmaceutical and cosmetic industries. Meanwhile, CPP-3 has great application potential in high temperature food and CPP-9 can be used as a thickener or stabilizer in the food industry.
Collapse
Affiliation(s)
- Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
62
|
Wu Z, Qin D, Li H, Guo D, Cheng H, Sun J, Huang M, Ye X, Sun B. Physicochemical and functional properties of Lycium ruthenicum pectin by different extraction methods. Front Nutr 2022; 9:946606. [PMID: 36017218 PMCID: PMC9395692 DOI: 10.3389/fnut.2022.946606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Three different extraction methods were used to extract high-temperature water-extracted pectin (HWp), high-temperature acid-extracted pectin (HAp), and high-temperature alkali-extracted pectin (HALp) from Lycium ruthenicum. The physicochemical properties, structure, and functional properties of three different pectins were studied. The results showed that HWp and HALp can extract rhamnogalacturonan-I (RG-I) from L. ruthenicum better. Through structural feature analysis, HWp and HALp have a branched structure, and HWp has a higher degree of esterification than HAp and HALp. Zeta potential results show that HWp solution is more stable. The thermal analysis results show that the thermal stability is HALp > HAp > HWp. HWp has the highest viscosity. The inhibitory activity results showed that HWp, HAp, and HALp have a certain inhibitory effect on α-glucosidase activity. This study shows the effects of different extraction methods on the properties of L. ruthenicum pectin and aims to provide a theoretical basis for the pharmaceutical and food industries to choose more suitable pectin extraction methods.
Collapse
Affiliation(s)
- Ziyang Wu
- Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Dan Qin
- Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hehe Li
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Dongqi Guo
- Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Huan Cheng
- Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jinyuan Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Mingquan Huang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xingqian Ye
- Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Baoguo Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
63
|
Niu H, Hou K, Chen H, Fu X. A review of sugar beet pectin-stabilized emulsion: extraction, structure, interfacial self-assembly and emulsion stability. Crit Rev Food Sci Nutr 2022; 64:852-872. [PMID: 35950527 DOI: 10.1080/10408398.2022.2109586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, sugar beet pectin as a natural emulsifier has shown great potential in food and pharmaceutical fields. However, the emulsification performance depends on the molecular structure of sugar beet pectin, and the molecular structure is closely related to the extraction method. This review summarizes the extraction methods of pectin, structure characterization methods and the current research status of sugar beet pectin-stabilized emulsions. The structural characteristics of sugar beet pectin (such as degree of methylation, degree of acetylation, degree of blockiness, molecular weight, ferulic acid content, protein content, neutral sugar side chains, etc.) are of great significance to the emulsifying activity and stability of sugar beet pectin. Compared with traditional hot acid extraction method, ultrasonic-assisted extraction, microwave-assisted extraction, subcritical water-assisted extraction, induced electric field-assisted extraction and enzyme-assisted extraction can improve the yield of sugar beet pectin. At the same time, compared with harsh extraction conditions (too high temperature, too strong acidity, too long extraction time, etc.), mild extraction conditions can better preserve these emulsifying groups in sugar beet pectin molecules, which are beneficial to improve the emulsifying properties of sugar beet pectin. In addition, the interfacial self-assembly behavior of sugar beet pectin induced by the molecular structure is crucial to the long-term stability of the emulsion. This review provides a direction for extracting or modifying sugar beet pectin with specific structure and function, which is instructive for finding alternatives to gum arabic.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- Maritime Academy, Hainan Vocational University of Science and Technology, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
64
|
One-step electrogelation of pectin hydrogels as a simpler alternative for antibacterial 3D printing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
65
|
Lin X, Chen S, Wang R, Li C, Wang L. Fabrication, characterization and biological properties of pectin and/or chitosan-based films incorporated with noni (Morinda citrifolia) fruit extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
66
|
Characterization of Pectin from Grape Pomace: A Comparison of Conventional and Pulsed Ultrasound-Assisted Extraction Techniques. Foods 2022; 11:foods11152274. [PMID: 35954041 PMCID: PMC9368614 DOI: 10.3390/foods11152274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
The yield, physicochemical and rheological parameters of grape pomace pectin (Fetească Neagră and Rară Neagră) obtained by conventional extraction (CE) were compared to those acquired by pulsed ultrasound-assisted extraction (PUAE). Extraction temperature (70–90 °C), pH (1–3) and time (1–3 h) were considered as independent variables for CE, while amplitude (20–100%), pH (1–3) and time (20–60 min) for PUAE. The optimal conditions for maximum yield and physicochemical parameters of pectin samples extracted by CE were temperature of 90 °C, pH 1.9 for 164 min (9.96% yield, 79.91 g/100 g of galacturonic acid (GalA) content, 81.28% of degree of esterification (DE) and 5.52 × 104 g/mol of molecular weight (Mw) for Fetească Neagră (FN) pectin; 11.08% yield, 80.05 g/100 g of GalA content, 80.86% of DE and 5.59 × 104 g/mol of Mw for Rară Neagră (RN) pectin), while for PUAE they were amplitude of 100%, pH 1.8 for 60 min (8.83% yield, 80.24 g/100 g of GalA content, 81.07% of DE and 4.19 × 104 g/mol of Mw for FN pectin; 8.94% yield, 78.64 g/100 g of GalA content, 80.04% of DE and 4.23 × 104 g/mol of Mw for RN pectin). The yield and physicochemical parameters of CE pectin were higher than PUAE pectin. The FT-IR spectra of pectin samples revealed the occurrence of polysaccharide compound, while rheology characteristics confirming its application in different food products.
Collapse
|
67
|
Microwave-assisted extraction of pectin from grape pomace. Sci Rep 2022; 12:12722. [PMID: 35882905 PMCID: PMC9325980 DOI: 10.1038/s41598-022-16858-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
The utilization of microwave technique for the pectin extraction from grape pomace (Fetească Neagră and Rară Neagră), its influence on yield, galacturonic acid content, degree of esterification and molecular weight of pectin were analyzed. The optimal conditions of the extraction process were microwave power of 560 W, pH of 1.8 for 120 s. The pectin samples extracted by MAE in optimal conditions were analyzed by comparing with commercial apple and citrus pectin based on FT-IR analysis, thermal behavior, rheological characteristics and microstructure. The FT-IR analysis established the presence of different functional groups which are attributed to the finger print region of extracted pectin, while the rheological behavior presented a good viscoelasticity of pectin solutions. The obtained data assumes that grape pomace has a great potential to be a valuable source of pectin which can be extracted by simple and quick techniques, while maintaining analogous quality to conventional sources of pectin.
Collapse
|
68
|
High-Intensity Ultrasound-Assisted Extraction of Pectin from Mango Wastes at Different Maturity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4606024. [PMID: 35873805 PMCID: PMC9307332 DOI: 10.1155/2022/4606024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Valorisation of food processing by-products is a welcome and developing area. The mango processing industry produces 40% to 60% of the fruit as solid waste, in which components of industrial interest, such as pectin, are lost. This study reports on energy-efficient high-intensity ultrasound-assisted extraction (HIUAE) to extract pectin from mango peels. The analysis considered the ripening stage of the fruit (0, 2, and 4), HIUAE frequency (37 kHz and 80 kHz), and extraction time (20 min, 25 min, and 30 min). Extractions of pectin from mango peels with HIUAE have been fairly studied. However, this work differs from those studies in including mango maturity grade as a factor. Pectin extraction yields ranged from 13% to 30%, with no influence (p > 0.05) of time, and the highest yields were obtained at the lowest maturity stage (0) and lowest frequency (37 kHz). This latest condition (37 kHz) also yielded pectin with the highest gel strength, purity, and quality. This work demonstrated that the mango maturity stage influenced pectin extraction yield. Ultrasound-assisted extraction of pectin from mango peels could be an efficient approach toward waste valorisation and extraction of pectin with high yield and good quality attributes for the food industry.
Collapse
|
69
|
Khalil RK, Abdelrahim DS, Sharaby MR. Novel active edible food packaging films based entirely on citrus peel wastes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
70
|
|
71
|
Costa KPB, Reichembach LH, de Oliveira Petkowicz CL. Pectins with commercial features and gelling ability from peels of Hylocereus spp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
72
|
Structure, physicochemical characterisation and properties of pectic polysaccharide from Premma puberula pamp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
73
|
Das I, Arora A. One stage hydrothermal treatment: A green strategy for simultaneous extraction of food hydrocolloid and co-products from sweet lime (Citrus Limetta) peels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Liang T, Hu J, Song H, Xiong L, Li Y, Zhou Y, Mao L, Tian J, Yan H, Gong E, Fei J, Sun Y, Zhang H, Wang X. Comparative study on physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins from normal and Huanglongbing-infected navel orange peels. J Food Biochem 2022; 46:e14280. [PMID: 35746862 DOI: 10.1111/jfbc.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
This study aimed at comparing the physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges. Results indicated the pectins were high methoxy pectins mainly composed of homogalacturonan and rhamnogalacturonan-I. The pectins exhibited similar functional groups, surface morphology, and particle size, and had no triple-helical conformation in solution. They exerted fat and glucose absorption capacities and were mixed-type noncompetitive α-glucosidase inhibitors with IC50 values of 1.182 and 2.524 mg/ml, respectively. Both N-NOP and H-NOP showed hypoglycemic activity in alloxan-induced diabetic mice. Administration of them could promote the synthesis of hepatic glycogen and/or serum insulin to lower blood glucose levels and enhance antioxidant status to alleviate oxidative stress injury in diabetic mice. Moreover, N-NOP had higher yield, molecular weight, ζ-potential, oil holding capacity, α-glucosidase inhibitory effect and in vivo hypoglycemic activity, whereas H-NOP possessed higher uronic acid, degree of esterification, thermal stability, water holding capacity, swelling capacity, and fat absorption capacity. It could be concluded that some similarities and differences existed between N-NOP and H-NOP in physicochemical characteristics, functional properties, α-glucosidase inhibitory effects, and hypoglycemic activity. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges. PRACTICAL APPLICATIONS: Pectin has been widely used in the food and pharmaceutical industries for several decades due to its health benefit, gelling, thickening, and emulsification performances. Diabetes mellitus is a worldwide concern in recent years. Pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges possessed in vitro and in vivo hypoglycemic activities, indicating they were potential anti-antidiabetic substitutes of chemical drugs. Moreover, comparative understanding on the physicochemical characteristic, α-glucosidase inhibitory effect and hypoglycemic activity of pectins from peels of normal and Huanglongbing-infected Navel oranges was conducive to the recycling and utilization of Navel orange peels. Recently, the biological activity of pectin from peels of normal Navel oranges has been rarely reported, and the information on pectin from peels of Huanglongbing-infected Navel orange is rare. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges.
Collapse
Affiliation(s)
- Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawei Hu
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - He Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lili Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yang Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lifang Mao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiamin Tian
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Huan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawen Fei
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuan Sun
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Hanyue Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
75
|
Extraction of Pectin from Satsuma Mandarin Peel: A Comparison of High Hydrostatic Pressure and Conventional Extractions in Different Acids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123747. [PMID: 35744870 PMCID: PMC9227400 DOI: 10.3390/molecules27123747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Satsuma mandarin peel pectin was extracted by high hydrostatic pressure-assisted citric acid (HHPCP) or hydrochloric acid (HHPHP), and the physiochemical, structural, rheological and emulsifying characteristics were compared to those from conventional citric acid (CCP) and hydrochloric acid (CHP). Results showed that HHP and citric acid could both increase the pectin yield, and HHPCP had the highest yield (18.99%). Structural characterization, including NMR and FTIR, demonstrated that HHPHP showed higher Mw than the other pectins. The viscosity of the pectin treated with HHP was higher than that obtained with the conventional method, with HHPHP exhibiting significantly higher viscosity. Interestingly, all the pectin emulsions showed small particle mean diameters (D4,3 being 0.2–1.3 μm) and extremely good emulsifying stability with centrifugation and 30-day storage assays, all being 100%. Satsuma mandarin peel could become a highly promising pectin source with good emulsifying properties, and HHP-assisted acid could be a more efficient method for pectin extraction.
Collapse
|
76
|
Qin C, Yang G, Zhu C, Wei M. Characterization of edible film fabricated with HG-type hawthorn pectin gained using different extraction methods. Carbohydr Polym 2022; 285:119270. [DOI: 10.1016/j.carbpol.2022.119270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
|
77
|
Sharma P, Vishvakarma R, Gautam K, Vimal A, Kumar Gaur V, Farooqui A, Varjani S, Younis K. Valorization of citrus peel waste for the sustainable production of value-added products. BIORESOURCE TECHNOLOGY 2022; 351:127064. [PMID: 35351555 DOI: 10.1016/j.biortech.2022.127064] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Globally the generation and mismanagement of waste from fruit processing and post-harvest impose a severe burden on waste management strategies along with environmental pollution, health hazards. Citrus waste is one of such worrying fruit waste, which is rich in several value-added chemicals, including pectin. Pectin is a prebiotic polysaccharide possessing a multitude of health benefits. Citrus pectin has excellent gelling, thickening, water holding capacity, and encapsulating properties, which pave its functionality in versatile industrial fields including food processing and preservation, drug and therapeutic agents, cosmetics, and personal care products. The utilization of citrus wastes to derive valuable bioproducts can offer an effective approach towards sustainable waste management. With the ever-increasing demand, several strategies have been devised to increase the efficiency of pectin recovery from citrus waste. This review article discusses the sources, effect, and technology-mediated valorization of citrus waste, the functional and nutritive application of pectin along with its socio-economic and environmental perspective.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Krishna Gautam
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Archana Vimal
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow 226026 Uttar Pradesh, India.
| |
Collapse
|
78
|
Chen S, Xiao L, Li S, Meng T, Wang L, Zhang W. The effect of sonication-synergistic natural deep eutectic solvents on extraction yield, structural and physicochemical properties of pectins extracted from mango peels. ULTRASONICS SONOCHEMISTRY 2022; 86:106045. [PMID: 35617886 PMCID: PMC9136184 DOI: 10.1016/j.ultsonch.2022.106045] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 05/21/2023]
Abstract
In this study, eco-friendly deep eutectic solvents (DESs) were used as extracting agents for the first time in the extraction of pectins from mango peel. Two novel green solvents including betaine-citric acid (Bet-CA) and choline chloride-malic acid (ChCl-MaA) were screened, and the extraction conditions were further optimized by full factor design experimental along with RSM. In addition, ultrasound treatment also had an influence on extraction yield, structural and physicochemical properties of extracted pectins. Two DES-extracted pectins had significantly higher yield, larger molecular weight and particles size than HCl-extracted pectin. High intensity ultrasound power enhanced the yield of low-ester pectins, but decreased the molecular weight and particles size of the pectins extracted. Monosaccharide compositions analysis showed that higher content of galacturonic acid (GalA) and larger HG region were observed in two DESs-extracted pectins. Fourier transform infrared spectra (FT-IR) of all pectins extracted were similar, with slight differences. Two DESs-extracted pectins exhibited higher DE values than HCl-extracted pectin. Thermal analysis and zeta potential results showed that HCl-extracted pectin had better stability than ChCl-MaA-extracted pectin. Additionally, HCl-extracted pectin had higher viscosity properties than two DESs-extracted pectins or commercial pectin (CP). Moreover, it was found that HCl-extracted pectin was in a colloid state, while two DESs-extracted pectins or CP were in a flow state. Ultrasound treatment significantly improved the yields of pectin/low-ester pectin. Additionally, ultrasound treatment remarkably decreased the viscosity and viscoelastic properties of the pectins extracted. The results were conducive to our understanding of the relationship between extraction conditions and physicochemical properties of the pectins extracted, which provides theoretical basis for the functional application of mango peel pectins in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Sijun Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Leyan Xiao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tingyu Meng
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
79
|
Tien NNT, Le NL, Khoi TT, Richel A. Characterisation of dragon fruit peel pectin extracted with natural deep eutectic solvent and sequential microwave‐ultrasound‐assisted approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nguyen Ngoc Thanh Tien
- Laboratory of Biomass and Green Technologies University of Liege – Gembloux Argo‐Bio Tech Passage des Desportés 2 Gembloux B‐5030 Belgium
- Department of Environmental Engineering International University Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Ngoc Lieu Le
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
- School of Biotechnology International University Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Tran Tien Khoi
- Department of Environmental Engineering International University Quarter 6, Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies University of Liege – Gembloux Argo‐Bio Tech Passage des Desportés 2 Gembloux B‐5030 Belgium
| |
Collapse
|
80
|
Çabas BM, Azazi I, Döner D, Bayana D, Çokgezme ÖF, İçier F. Comparative performance analysis of ohmic thawing and conventional thawing of spinach puree. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Buse Melek Çabas
- Food Engineering Department Graduate School of Natural and Applied Sciences, Ege University Izmir Turkey
| | - Işın Azazi
- Engineering Faculty, Food Engineering Department Ege University Izmir Turkey
| | - Deniz Döner
- Food Engineering Department Graduate School of Natural and Applied Sciences, Ege University Izmir Turkey
| | - Damla Bayana
- Food Engineering Department Graduate School of Natural and Applied Sciences, Ege University Izmir Turkey
| | - Ömer Faruk Çokgezme
- Engineering Faculty, Food Engineering Department Ege University Izmir Turkey
| | - Filiz İçier
- Engineering Faculty, Food Engineering Department Ege University Izmir Turkey
| |
Collapse
|
81
|
Gilani S, Najafpour G. Evaluation of the extraction process parameters on bioactive compounds of cinnamon bark: A comparative study. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Lasunon P, Sengkhamparn N. Effect of Ultrasound-Assisted, Microwave-Assisted and Ultrasound-Microwave-Assisted Extraction on Pectin Extraction from Industrial Tomato Waste. Molecules 2022; 27:molecules27041157. [PMID: 35208946 PMCID: PMC8877420 DOI: 10.3390/molecules27041157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
This work aimed to study the effect of ultrasound-assisted (UAE), microwave-assisted (MAE), and ultrasound-microwave-assisted (UMAE) methods for pectin extraction from industrial tomato waste. The overall performance index from the fuzzy analytical method with three criteria, pectin yield, galacturonic acid, and lycopene content, was applied to evaluate the best extraction conditions by using the weight of 75, 20, and 5, respectively. The UAE conditions was performed at a temperature of 80 °C for 20 min with the variations in the extraction pH and the solid liquid (SL) ratio. The best UAE conditions with high pectin yield, and high total carboxyl group, as well as a lycopene content, was the pH of 1.5 and the SL ratio of 1:30. The MAE conditions was performed with variations in the microwave powers and times. The results showed that the best MAE conditions were 300 W for 10 min, which gave high pectin yield with high galacturonic acid and lycopene content. Various conditions of UMAE at the best conditions of MAE and UAE were performed and exhibited that the UAE had more positively affected the pectin yield. However, the FTIR spectra of obtained pectins from different extraction techniques showed a similar pectin structure.
Collapse
|
83
|
Méndez D, Fabra M, Odriozola-Serrano I, Martín-Belloso O, Salvia-Trujillo L, López-Rubio A, Martínez-Abad A. Influence of the extraction conditions on the carbohydrate and phenolic composition of functional pectin from persimmon waste streams. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
84
|
Effect of Radiofrequency Pre-treatment on the Extraction of Bioactives from Clitoria ternatea and Hibiscus rosa sinensis and Insights to Enzyme Inhibitory Activities. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02770-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
85
|
Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
86
|
Zheng J, Li H, Wang D, Li R, Wang S, Ling B. Radio frequency assisted extraction of pectin from apple pomace: Process optimization and comparison with microwave and conventional methods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
87
|
Microwave vs. conventional extraction of pectin from Malus domestica ‘Fălticeni’ pomace and its potential use in hydrocolloid-based films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
88
|
Mendez D, Fabra M, Martínez-Abad A, Μartínez-Sanz Μ, Gorria M, López-Rubio A. Understanding the different emulsification mechanisms of pectin: Comparison between watermelon rind and two commercial pectin sources. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
89
|
Dong H, Dai T, Liang L, Deng L, Liu C, Li Q, Liang R, Chen J. Physicochemical properties of pectin extracted from navel orange peel dried by vacuum microwave. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
90
|
Vellaisamy Singaram AJ, Ganesan ND. Modeling the influence of extraction parameters on the yield and chemical characteristics of microwave extracted mango ( Mangifera indica L.) peel pectin by response surface methodology. Prep Biochem Biotechnol 2021; 52:711-723. [PMID: 34669553 DOI: 10.1080/10826068.2021.1989697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Extraction is considered to be a critical unit operation to recover bioactive compounds from the in-situ state of many plant-based food processing wastes. The characteristics of pectin were predicted to vary with the source of raw material, extraction and post-extraction conditions. The study was focused to investigate the optimal conditions for extracting mango peel pectin (MPP) with increased yield and quality by microwave-assisted extraction (MAE). Box Behnken experimental design was used to model the influence of extraction parameters (microwave power, pH, and time) on the responses (yield, esterification degree, equivalent weight, anhydrouronic acid, and methoxyl content of pectin). The predicted models were adequately fitted to the experimental data (p ≤ 0.001) for all the response variables. A higher yield of pectin with better quality was obtained with optimal conditions of microwave power 606 watts (W), extraction time 5.15 min, and pH 1.83. The MPP obtained is categorized as low-methoxyl pectin as the range for the degree of esterification (DE) at all possible treatment variations remained below 50%. The study revealed that mango peel was an effective alternative source of pectin which could be extracted by microwave method on large scale.
Collapse
Affiliation(s)
| | - Nandhini Devi Ganesan
- Department of Biotechnology, Centre for Food Technology, Anna University, Chennai, India
| |
Collapse
|
91
|
Duan X, Yang Z, Yang J, Liu F, Xu X, Pan S. Structural and Emulsifying Properties of Citric Acid Extracted Satsuma Mandarin Peel Pectin. Foods 2021; 10:foods10102459. [PMID: 34681508 PMCID: PMC8536158 DOI: 10.3390/foods10102459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Satsuma mandarin peel pectin (MPP) was extracted by citric acid and its structure and emulsifying ability were evaluated. Structural characterization, including NMR, FTIR, monosaccharide compositions demonstrated that MMP showed lower DM value and higher Mw than commercial citrus pectin (CCP). In addition, MPP exhibited significantly better emulsification performance than CCP. When MPP concentration was increased to 1%, 1.5% (10 g/L, 15 g/L) and the pH was 3 (acidic condition), a stable emulsion containing 10% oil fraction could be obtained. The particle size of the obtained emulsion was ranging from 1.0–2.3 μm, its emulsifying activity ranged from 93–100% and emulsifying stability was 94–100%. Besides, MPP can better ensure the storage stability of higher oil ratio emulsions. The results demonstrated that the stable emulsifying properties of MPP may largely depend on the lower DM value and higher Mw. MPP could be used as a novel polysaccharide emulsifier, especially under acidic conditions, providing a promising alternative for natural emulsifiers that could be used in the food industry.
Collapse
Affiliation(s)
- Xingke Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Z.Y.); (J.Y.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Zhixuan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Z.Y.); (J.Y.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jinyan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Z.Y.); (J.Y.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Z.Y.); (J.Y.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Correspondence:
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Z.Y.); (J.Y.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (Z.Y.); (J.Y.); (X.X.); (S.P.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
92
|
Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers (Basel) 2021; 13:polym13203503. [PMID: 34685262 PMCID: PMC8539143 DOI: 10.3390/polym13203503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.
Collapse
|
93
|
Jiang H, Zhang W, Xu Y, Zhang Y, Pu Y, Cao J, Jiang W. Applications of plant-derived food by-products to maintain quality of postharvest fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
94
|
Zhao Y, Li B, Li C, Xu Y, Luo Y, Liang D, Huang C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021; 10:1845. [PMID: 34441621 PMCID: PMC8392450 DOI: 10.3390/foods10081845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Edible packaging is a sustainable product and technology that uses one kind of "food" (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the "product-packaging" system, and provides a "zero-emission" scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Cuicui Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yi Luo
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Dongwu Liang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
95
|
Khubber S, Kazemi M, Amiri Samani S, Lorenzo JM, Simal-Gandara J, Barba FJ. Structural-functional Variability in Pectin and Effect of Innovative Extraction Methods: An Integrated Analysis for Tailored Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sucheta Khubber
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Sara Amiri Samani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jose M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Avd. Parque Tecnológico De Galicia, San Cibrao Das Viñas, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Francisco J. Barba
- Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Universitat De València, Burjassot, València, Spain
| |
Collapse
|
96
|
Extraction, Characterization, and Applications of Pectins from Plant By-Products. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146596] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, pectins are widely used in the cosmetic, pharmaceutical, and food industries, mainly as texturizing, emulsifying, stabilizing, and gelling agents. Pectins are polysaccharides composed of a large linear segment of α-(1,4) linked d-galactopyranosyluronic acids interrupted by β-(1,2)-linked l-rhamnoses and ramified by short chains composed of neutral hexoses and pentoses. The characteristics and applications of pectins are strongly influenced by their structures depending on plant species and tissues but also extraction methods. The aim of this review is therefore to highlight the structures of pectins and the various methods used to extract them, including conventional ones but also microwave heating, ultrasonic treatment, and dielectric barrier discharge techniques, assessing physico-chemical parameters which have significant effects on pectin characteristics and applications as techno-functional and bioactive agents.
Collapse
|
97
|
Muñoz-Almagro N, Ruiz-Torralba A, Méndez-Albiñana P, Guerra-Hernández E, García-Villanova B, Moreno R, Villamiel M, Montilla A. Berry fruits as source of pectin: Conventional and non-conventional extraction techniques. Int J Biol Macromol 2021; 186:962-974. [PMID: 34237373 DOI: 10.1016/j.ijbiomac.2021.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Three non-conventional extraction techniques (enzyme-assisted with cellulase, citric acid ultrasound-assisted and enzyme-ultrasound-assisted treatment) and conventional citric acid extraction were applied to obtain pectin from raspberry, blueberry, strawberry and redcurrant, and were compared in terms of extraction yields and physicochemical properties of the extracted pectins. Except for pectin from raspberry, conventional citric acid extraction led to the highest extraction yield (~8%) and, for the same berries, the lowest pectin recovery was found for the extraction with cellulase (~4%). Regarding the structural characteristics of pectins, enzymatically extracted pectins from redcurrant and strawberry exhibited the highest levels of galacturonic acid (≥73%) whereas, in general, this monosaccharide was found from 51 to 69% in the rest of samples. Although, ultrasound-assisted extraction did not improve pectin yield, it minimized the levels of "non-pectic" components leading to the obtainment of purer pectin. The different monomeric composition and the wide range of molecular weight of the obtained pectins pointed out their usefulness in different potential food applications (e.g., thickening, gelling ingredients) and biological activities. This has been evidenced by the differences found in their physicochemical and techno-functional characteristics. Finally, it can be considered that the berries here studied are efficient sources of pectin.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Arancha Ruiz-Torralba
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Pablo Méndez-Albiñana
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Guerra-Hernández
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Belén García-Villanova
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Rodrigo Moreno
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Antonia Montilla
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
98
|
Kumar M, Tomar M, Saurabh V, Sasi M, Punia S, Potkule J, Maheshwari C, Changan S, Radha, Bhushan B, Singh S, Anitha T, Alajil O, Satankar V, Dhumal S, Amarowicz R, Kaur C, Sharifi-Rad J, Kennedy JF. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides. Carbohydr Polym 2021; 269:118319. [PMID: 34294331 DOI: 10.1016/j.carbpol.2021.118319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022]
Abstract
Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Maharishi Tomar
- Seed Technology Division, ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Minnu Sasi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 10012, India
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central institute for Research on Cotton Technology, Mumbai 400019, India
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Bharat Bhushan
- ICAR - Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab 141 004, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Omar Alajil
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR-Central Institute for Research on Cotton Technology, Nagpur 440023, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India.
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
99
|
Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality. PLANTS 2021; 10:plants10061148. [PMID: 34200110 PMCID: PMC8226707 DOI: 10.3390/plants10061148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Mango peel, a byproduct from the mango processing industry, is a potential source of food-grade mango peel pectin (MPP). Nonetheless, the influence of fruit physical characteristics and phytochemicals of peels on their correspondent pectin level has never been examined, particularly when high-quality food additives are of commercial need. Subsequently, the ultimate aim of the present study was to comprehend their relationship using chemometric data analyses as part of raw material sourcing criteria. Principal component analysis (PCA) advised that mangoes of 'mahachanok' and 'nam dok mai' could be distinguished from 'chok anan' and 'kaew' on the basis of physiology, peel morphology, and phytochemical characteristics. Only pectin extracted from mango var. 'chok anan' was classified as low-methoxyl type (Mox value ~4%). Using the partial least-squares (PLS) regression, the multivariate correlation between the fruit and peel properties and the degree of esterification (DE) value was reported at R2 > 0.9 and Q2 > 0.8. The coefficient factors illustrated that yields of byproducts such as seed and total biomass negatively influenced DE values, while they were positively correlated with crude fiber and xylose contents of the peels. Overall, it is interesting to highlight that, regardless of the differences in fruit varieties, the amount of biomass and peel proximate properties can be proficiently applied to establish classification of desirable properties of the industrial MPP.
Collapse
|
100
|
Lin Y, An F, He H, Geng F, Song H, Huang Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|