51
|
Pan M, Yang J, Liu K, Xie X, Hong L, Wang S, Wang S. Irradiation technology: An effective and promising strategy for eliminating food allergens. Food Res Int 2021; 148:110578. [PMID: 34507726 DOI: 10.1016/j.foodres.2021.110578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Food allergies are one of the major health concerns worldwide and have been increasing at an alarming rate in recent times. The elimination of food allergenicity has been an important issue in current research on food. Irradiation is a typical nonthermal treatment technology that can effectively reduce the allergenicity of food, showing great application prospects in improving the quality and safety of foods. In this review, the mechanism and remarkable features of irradiation in the elimination of food allergens are mainly introduced, and the research progress on reducing the allergenicity of animal foods (milk, egg, fish and shrimp) and plant foods (soybean, peanut, wheat and nuts) using irradiation is summarized. Furthermore, the influencing factors for irradiation in the elimination of food allergens are analyzed and further research directions of irradiation desensitization technology are also discussed. This article aims to provide a reference for promoting the application of irradiation technology in improving the safety of foods.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
52
|
Rahman M, Islam MA, Das KC, Salimullah M, Mollah MZI, Khan RA. Effect of gamma radiation on microbial load, physico-chemical and sensory characteristics of common spices for storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3579-3588. [PMID: 34366475 PMCID: PMC8292502 DOI: 10.1007/s13197-021-05087-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
The effect of gamma radiation on the decontamination of microbial population, physico-chemical, radiation sensitivity and sensory characteristics of common spices for storage were evaluated. Spices were irradiated with gamma doses of 0 (as control), 2, 4, 6, 8 and 10 kGy, packed in the glass vials and stored at room temperature (22 ± 2°C) in the laboratory. In this research, Bacillus, Salmonella and Listeria species were identified in un-irradiated spice samples. Results also indicated that gamma radiation reduced the total microbial population compared to control and optimum gamma radiation doses (6 kGy for red chili and turmeric; 4 kGy for cumin, coriander, garlic and black pepper; 2 kGy for ginger powder samples) were identified for decontamination of the organisms in the studied spices. It was concluded that no significant differences before and after gamma radiation were observed in physico-chemical, nutritional and sensory properties but significantly changed in microbial load in spices samples.
Collapse
Affiliation(s)
- Mahfuzur Rahman
- Department of Nuclear Science & Engineering, Military Institute of Science and Technology, Dhaka, 1216 Bangladesh
| | - M. A. Islam
- Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Savar, Dhaka, 1349 Bangladesh
| | - Keshob C. Das
- National Institute of Biotechnology, Savar, Dhaka, 1349 Bangladesh
| | - Md. Salimullah
- National Institute of Biotechnology, Savar, Dhaka, 1349 Bangladesh
| | - M. Z. I. Mollah
- Institute of Radiation and Polymer Technology, Atomic Energy Research Establishment, Savar, Dhaka, 1349 Bangladesh
| | - Ruhul A. Khan
- Institute of Radiation and Polymer Technology, Atomic Energy Research Establishment, Savar, Dhaka, 1349 Bangladesh
| |
Collapse
|
53
|
Tolentino M, Diano G, Abrera G, Montefalcon DR, Cobar ML, Deocaris C, Baule A, Asaad C. Electron beam irradiation of raw ground beef patties in the Philippines: Microbial quality, sensory characteristics, and cost-analysis. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Rodrigues JP, de Souza Coelho CC, Soares AG, Freitas-Silva O. Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
55
|
He CQ, Mao L, Yao J, Zhao WC, Huang B, Hu N, Long DX. The Threshold Effects of Low-Dose-Rate Radiation on miRNA-Mediated Neurodevelopment of Zebrafish. Radiat Res 2021; 196:633-646. [PMID: 34399425 DOI: 10.1667/rade-20-00265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022]
Abstract
The biological effects and regulatory mechanisms of low-dose and low-dose-rate radiation are still rather controversial. Therefore, in this study we investigated the effects of low-dose-rate radiation on zebrafish neurodevelopment and the role of miRNAs in radiation-induced neurodevelopment. Zebrafish embryos received prolonged gamma-ray irradiation (0 mGy/h, 0.1 mGy/h, 0.2 mGy/h, 0.4 mGy/h) during development. Neurodevelopmental indicators included mortality, malformation rate, swimming speed, as well as the morphology changes of the lateral line system and brain tissue. Additionally, spatiotemporal expression of development-related miRNAs (dre-miR-196a-5p, dre-miR-210-3p, dre-miR-338) and miRNA processing enzymes genes (Dicer and Drosha) were assessed by qRT-PCR and whole mount in situ hybridization (WISH). The results revealed a decline in mortality, malformation and swimming speed, with normal histological and morphological appearance, in zebrafish that received 0.1 mGy/h; however, increased mortality, malformation and swimming speed were observed, with pathological changes, in zebrafish that received 0.2 mGy/h and 0.4 mGy/h. The expression of miRNA processing enzyme genes was altered after irradiation, and miRNAs expression was downregulated in the 0.1 mGy/h group, and upregulated in the 0.2 mGy/h and 0.4 mGy/h groups. Furthermore, ectopic expression of dre-miR-210-3p, Dicer and Drosha was also observed in the 0.4 mGy/h group. In conclusion, the effect of low-dose and low-dose-rate radiation on neurodevelopment follows the threshold model, under the regulation of miRNAs, excitatory effects occurred at a dose rate of 0.1 mGy/h and toxic effects occurred at a dose rate of 0.2 mGy/h and 0.4 mGy/h.
Collapse
Affiliation(s)
- Chu-Qi He
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Liang Mao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Jin Yao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Wei-Chao Zhao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Ding-Xin Long
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| |
Collapse
|
56
|
Akhila PP, Sunooj KV, Aaliya B, Navaf M, Sudheesh C, Sabu S, Sasidharan A, Mir SA, George J, Mousavi Khaneghah A. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
57
|
Taghvaei M, Tonyali B, Sommers C, Ceric O, Linghu Z, Smith JS, Yucel U. Formation kinetics of radiolytic lipid products in model food–lipid systems with gamma irradiation. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mostafa Taghvaei
- Food Science Institute Kansas State University Manhattan Kansas USA
| | - Bade Tonyali
- Food Science Institute Kansas State University Manhattan Kansas USA
| | | | - Olgica Ceric
- Veterinary Laboratory Investigation and Response Network U.S. Food and Drug Administration Laurel Maryland USA
| | - Ziyi Linghu
- Food Science Institute Kansas State University Manhattan Kansas USA
| | - Joseph Scott Smith
- Food Science Institute Kansas State University Manhattan Kansas USA
- Department of Animal Sciences and Industry Kansas State University Manhattan Kansas USA
| | - Umut Yucel
- Food Science Institute Kansas State University Manhattan Kansas USA
- Department of Animal Sciences and Industry Kansas State University Manhattan Kansas USA
| |
Collapse
|
58
|
Shang Y, Sun Q, Chen H, Wu Q, Chen M, Yang S, Du M, Zha F, Ye Q, Zhang J. Isolation and Characterization of a Novel Salmonella Phage vB_SalP_TR2. Front Microbiol 2021; 12:664810. [PMID: 34234757 PMCID: PMC8256156 DOI: 10.3389/fmicb.2021.664810] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a widely distributed foodborne pathogen. The use of Salmonella phages as biocontrol agents has recently gained significant interest. Because the Salmonella genus has high diversity, efforts are necessary to identify lytic Salmonella phages focusing on different serovars. Here, five Salmonella phages were isolated from soil samples, and vB_SalP_TR2 was selected as a novel phage with high lytic potential against the host Salmonella serovar Albany, as well as other tested serovars, including Corvallis, Newport, Kottbus, and Istanbul. Morphological analyses demonstrated that phage vB_SalP_TR2 belongs to the Podoviridae family, with an icosahedral head (62 ± 0.5 nm in diameter and 60 ± 1 nm in length) and a short tail (35 ± 1 nm in length). The latent period and burst size of phage vB_SalP_TR2 was 15 min and 211 PFU/cell, respectively. It contained a linear dsDNA of 71,453 bp, and G + C content was 40.64%. Among 96 putative open reading frames detected, only 35 gene products were found in database searches, with no virulence or antibiotic resistance genes being identified. As a biological control agent, phage vB_SalP_TR2 exhibited a high temperature and pH tolerance. In vitro, it lysed most S. Albany after 24 h at 37°C with multiplicities of infection of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100. In food matrices (milk and chicken meat), treatment with phage vB_SalP_TR2 also reduced the number of S. Albany compared with that in controls. These findings highlighted phage vB_SalP_TR2 as a potential antibacterial agent for the control of Salmonella in food samples.
Collapse
Affiliation(s)
- Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qifan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hanfang Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuanghong Yang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingzhu Du
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fei Zha
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
59
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
60
|
Butot S, Galbusera L, Putallaz T, Zuber S. Electron Beam Susceptibility of Enteric Viruses and Surrogate Organisms on Fruit, Seed and Spice Matrices. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:218-228. [PMID: 33566336 PMCID: PMC8116251 DOI: 10.1007/s12560-021-09463-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to use high-energy electron beam (HEEB) treatments to find surrogate microorganisms for enteric viruses and to use the selected surrogates as proof of concept to investigate low-energy electron beam (LEEB) treatments for enteric virus inactivation at industrial scale on frozen blueberries. Six food matrices inoculated with HAV (hepatitis A virus), MNV S99 (murine norovirus), bacteriophages MS2 and Qβ, and Geobacillus stearothermophilus spores were treated with HEEB at 10 MeV using 4, 8 and 16 kGy doses. G. stearothermophilus spores showed the highest inactivation on all matrices except on raisins, with a dose-dependent effect. HAV reached the maximum measurable log10 reduction (> 3.2 log10) when treated at 16 kGy on raisins. MNV showed the highest resistance of all tested microorganisms, independent of the dose, except on frozen blueberries. On frozen blueberries, freeze-dried raspberries, sesame seeds and black peppercorns, HAV showed a mean inactivation level in between those of MS2 and G. stearothermophilus. Based on this, we selected both surrogate organisms as first approximation to estimate HAV inactivation on frozen blueberries during LEEB treatment at 250 keV using 16 kGy. Reductions of 3.1 and 1.3 log10 were measured for G. stearothermophilus spores and MS2, respectively, suggesting that a minimum reduction of 1.4 log10 can be expected for HAV under the same conditions.
Collapse
Affiliation(s)
- Sophie Butot
- Nestlé Research, Institute of Food Safety and Analytical Science, 1000, 26, Lausanne, Switzerland
| | - Luca Galbusera
- Nestlé Research, Institute of Food Safety and Analytical Science, 1000, 26, Lausanne, Switzerland
| | - Thierry Putallaz
- Nestlé Research, Institute of Food Safety and Analytical Science, 1000, 26, Lausanne, Switzerland
| | - Sophie Zuber
- Nestlé Research, Institute of Food Safety and Analytical Science, 1000, 26, Lausanne, Switzerland.
| |
Collapse
|
61
|
Guzik P, Kulawik P, Zając M, Migdał W. Microwave applications in the food industry: an overview of recent developments. Crit Rev Food Sci Nutr 2021; 62:7989-8008. [PMID: 33970698 DOI: 10.1080/10408398.2021.1922871] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microwave radiation has the ability to heat a material with dielectric properties. Material absorbs microwave energy and then converts it into heat, which gives the possibility of a wide use of microwaves in many industry sectors or agricultural sciences. Microwaves are especially widely used in food industry. The main objective of this paper is to present an overview of recent development regarding microwave applications in food industry. Many techniques in food processing (pasteurization, sterilization, drying, thawing, blanching and stunning) are assisted by microwave energy. It should be mentioned also the use of microwaves in nutrients and nutraceuticals production. Waste generation is an integral part of food production. Microwaves have also application in wastes management. The results of experiments, factors affecting heating and their practical application have been discussed. Many cases have been compared with conventional process methods. The use of microwaves shows many advantages. The most important aspect is shortening the time of the thermal process (even by 50%) and reducing the costs of the operation. In addition, it allows to increase the efficiency of processes while maintaining high quality. The examples of microwave applications given in the article are environmentally- friendly because the conditions of thermal processing allow for reducing the use of solvents and the amount of sewage by decreasing the demand for water. It is anticipated that microwaves will become increasingly popular, with the development of new microwave technologies solving many problems in the future.
Collapse
Affiliation(s)
- Paulina Guzik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Marzena Zając
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Władysław Migdał
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| |
Collapse
|
62
|
Moraes ARA, Camargo KC, Simões MOM, Ferraz VP, Pereira MT, Evangelista FCG, Sabino AP, Duarte LP, Alcântara AFC, de Sousa GF. Chemical Composition of Magonia pubescens Essential Oils and Gamma-Radiation Effects on Its Constituents and Cytotoxic Activity in Leukemia and Breast Cancer Model. Chem Biodivers 2021; 18:e2100094. [PMID: 33860612 DOI: 10.1002/cbdv.202100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 11/12/2022]
Abstract
Magonia pubescens A. St.-Hil. is a Brazilian species often used in ethnopharmacology for wound and pain healing and seborrhea treatment. For the first time, essential oils (EOs) obtained from M. pubescens inflorescences were studied. The plant materials (Montes Claros, Brazil, 2018) were submitted to different gamma-radiation doses and their chemical compositions were analyzed by GC/MS and GC-FID. The cytotoxic activity of the EOs was evaluated against K562 and MDA-MB-231 cancer cell lines. A total of 30 components were identified, being 24 compounds detected for the first time in M. pubescens. The main obtained components were hotrienol (35.9 %), cis-linalool oxide (17.0 %) and trans-linalool oxide (10.2 %). The chemical composition of the EO was slightly affected by the applied radiation doses. Irradiated and non-irradiated EOs showed cytotoxic activity against both cell lines and the non-irradiated EO sample was the most active against the K562 cell lines (IC50 =22.10±1.98).
Collapse
Affiliation(s)
- Acácio R A Moraes
- Universidade Federal de Minas Gerais, Instituto de Ciência Exatas, Departamento de Química, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Karen C Camargo
- Universidade Federal de Minas Gerais, Instituto de Ciência Exatas, Departamento de Química, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Maria O M Simões
- Universidade Estadual de Montes Claros, Departamento de Biologia Geral, Av. Ruy Braga, CEP 39400-000, Montes Claros, MG, Brazil
| | - Vany P Ferraz
- Universidade Federal de Minas Gerais, Instituto de Ciência Exatas, Departamento de Química, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Márcio T Pereira
- Centro de Desenvolvimento da Tecnologia Nuclear, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Fernanda C G Evangelista
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Adriano P Sabino
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Lucienir Pains Duarte
- Universidade Federal de Minas Gerais, Instituto de Ciência Exatas, Departamento de Química, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Antônio F C Alcântara
- Universidade Federal de Minas Gerais, Instituto de Ciência Exatas, Departamento de Química, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Grasiely F de Sousa
- Universidade Federal de Minas Gerais, Instituto de Ciência Exatas, Departamento de Química, Av. Pres. Antônio Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
63
|
Jia W, Shi Q, Shi L. Effect of irradiation treatment on the lipid composition and nutritional quality of goat meat. Food Chem 2021; 351:129295. [PMID: 33631611 DOI: 10.1016/j.foodchem.2021.129295] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
The knowledge of the changes in the lipid species in irradiated goat meat is expected to clarify the beneficial effects of irradiation on meat preservation. This study explored the characteristic lipid composition and the changes in irradiated goat meat based on quantitative lipidomics strategy by LC-MS. Totally, 12 subclasses of 174 lipids were identified with significant differences (p < 0.05, VIP > 1), and the absolute quantitative analysis of characteristic lipids was achieved. Significant lipid variables were involved in the major pathways of glycerophospholipid and sphingolipid metabolism. Moreover, significant increases during irradiation were found in total TG, PC, PE, LPE, Cer, LPC and SPH, while the total DG, PS, PG, PI and SM decreased after irradiation. Noteworthily, DHA-enriched PC (18:4/22:6) + H, a core nutrient for human health, exhibited an increase in the irradiated group. These results provide a basis for lipid quantitative alterations in irradiated goat meat and application of irradiation in meat preservation.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Qingyun Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
64
|
Andoni E, Ozuni E, Bijo B, Shehu F, Branciari R, Miraglia D, Ranucci D. Efficacy of Non-thermal Processing Methods to Prevent Fish Spoilage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2020.1866131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Egon Andoni
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Enkeleda Ozuni
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Bizena Bijo
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | - Fatmira Shehu
- Veterinary Faculty of Tirana, Department of Public Health, Rr “Pajsi Vodica”, Koder-Kamez, Tirana, Albania
| | | | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
65
|
Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Res Int 2021; 142:110191. [PMID: 33773667 DOI: 10.1016/j.foodres.2021.110191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
This study assessed the impact of eight unit operations [slow pasteurization, high-temperature short time (HTST) pasteurization, cooking, baking, drying, fermentation, supercritical carbon dioxide (CO2), irradiation and extrusion] in different food matrices (milk, orange juice, meatballs, bread, crystallized pineapple, yogurt, orange juice, ground black pepper, snacks, and spaghetti) on the resistance of eight (Bacillus flexus Hk1 Bacillus subtilis Bn1, Bacillus licheniformis Me1, Bacillus mojavensis KJS3, Bacillus subtilis PXN21, Bacillus subtilis PB6, Bacillus coagulans MTCC 5856 and Bacillus coagulans GBI-30, 6086) Bacillus strains with claimed probiotic properties (PB). The number of decimal reductions (γ) caused by the unit operations varied (p < 0.05) amongst the PB. Most of the unit operations caused ≤ 2 γ of PB in the food matrices evaluated. Irradiation caused up to 4.9 γ (p < 0.05) amongst the PB tested. B. subtilis Bn1, B. mojavensis KJS3, B. licheniformis Me1, and B. coagulans GBI-30 showed higher resistance to most of the tested unit operations. These results indicate that the choice of PB for application in foods should also be based on their resistance to unit operations employed during processing. Finally, the high resistance of PB to the unit operations tested comprise valuable data for the development and diversification of probiotic foods with sporeforming strains with claimed probiotic properties.
Collapse
|
66
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
67
|
Liu D, Huang Q, Gu W, Zeng XA. A review of bacterial biofilm control by physical strategies. Crit Rev Food Sci Nutr 2021; 62:3453-3470. [PMID: 33393810 DOI: 10.1080/10408398.2020.1865872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biofilms are multicellular communities of microorganisms held together by a self-produced extracellular matrix, which contribute to hygiene problems in the food and medical fields. Both spoilage and pathogenic bacteria that grow in the complex structure of biofilm are more resistant to harsh environmental conditions and conventional antimicrobial agents. Therefore, it is important to develop eco-friendly preventive methodologies to eliminate biofilms from foods and food contact equipment. The present paper gives an overview of the current physical methods for biofilm control and removal. Current physical strategies adopted for the anti-biofilm treatment mainly focused on use of ultrasound power, electric or magnetic field, plasma, and irradiation. Furthermore, the mechanisms of anti-biofilm action and application of different physical methods are discussed. Physical strategies make it possible to combat biofilm without the use of biocidal agents. The remarkable microbiocidal properties of physical strategies are promising tools for antimicrobial applications.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Quanfeng Huang
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Xin-An Zeng
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
68
|
Characterisation of single malt Scotch Whisky using low powered ultrasound and UV‐Visible spectroscopy. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
69
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1715-1735. [PMID: 33192209 PMCID: PMC7651826 DOI: 10.1007/s10311-020-01126-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 05/02/2023]
Abstract
Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110 India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| |
Collapse
|
70
|
Qiu L, Zhang M, Mujumdar AS, Liu Y. Recent developments in key processing techniques for oriental spices/herbs and condiments: a review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1839492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S. Mujumdar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co. Ltd, Zhongshan, China
| |
Collapse
|
71
|
Rock CL, Thomson C, Gansler T, Gapstur SM, McCullough ML, Patel AV, Andrews KS, Bandera EV, Spees CK, Robien K, Hartman S, Sullivan K, Grant BL, Hamilton KK, Kushi LH, Caan BJ, Kibbe D, Black JD, Wiedt TL, McMahon C, Sloan K, Doyle C. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J Clin 2020; 70:245-271. [PMID: 32515498 DOI: 10.3322/caac.21591] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The American Cancer Society (ACS) publishes the Diet and Physical Activity Guideline to serve as a foundation for its communication, policy, and community strategies and, ultimately, to affect dietary and physical activity patterns among Americans. This guideline is developed by a national panel of experts in cancer research, prevention, epidemiology, public health, and policy, and reflects the most current scientific evidence related to dietary and activity patterns and cancer risk. The ACS guideline focuses on recommendations for individual choices regarding diet and physical activity patterns, but those choices occur within a community context that either facilitates or creates barriers to healthy behaviors. Therefore, this committee presents recommendations for community action to accompany the 4 recommendations for individual choices to reduce cancer risk. These recommendations for community action recognize that a supportive social and physical environment is indispensable if individuals at all levels of society are to have genuine opportunities to choose healthy behaviors. This 2020 ACS guideline is consistent with guidelines from the American Heart Association and the American Diabetes Association for the prevention of coronary heart disease and diabetes as well as for general health promotion, as defined by the 2015 to 2020 Dietary Guidelines for Americans and the 2018 Physical Activity Guidelines for Americans.
Collapse
Affiliation(s)
- Cheryl L Rock
- Department of Family Medicine and Public Health, School of Medicine, University of California at San Diego, San Diego, California
| | - Cynthia Thomson
- Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health Distinguished Outreach Faculty, University of Arizona, Tucson, Arizona
| | - Ted Gansler
- Intramural Research, American Cancer Society, Atlanta, Georgia
| | - Susan M Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Marjorie L McCullough
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Alpa V Patel
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | | | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Colleen K Spees
- Division of Medical Dietetics and Health Sciences, School of Health and Rehabilitation Sciences, Comprehensive Cancer Center and James Solove Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Kimberly Robien
- Department of Exercise and Nutrition Sciences, Department of Epidemiology, Milken Institute School of Public Health, George Washington University, Washington, DC
| | - Sheri Hartman
- Department of Family Medicine and Public Health, University of San Diego Moores Cancer Center, La Jolla, California
| | | | - Barbara L Grant
- Saint Alohonsus Regional Medical Center Cancer Care Center, Boise, Idaho
| | - Kathryn K Hamilton
- Carol G. Simon Cancer Center, Morristown Memorial Hospital, Morristown, New Jersey
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Bette J Caan
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Debra Kibbe
- Georgia Health Policy Center, Andrew Young School of Policy Studies, Georgia State University, Atlanta, Georgia
| | - Jessica Donze Black
- Community Health, American Heart Association/American Stroke Association, Washington, DC
| | - Tracy L Wiedt
- Cancer Control, American Cancer Society, Atlanta, Georgia
| | - Catherine McMahon
- Strategy and Operations, American Cancer Society Cancer Action Network, Washington, DC
| | - Kirsten Sloan
- Strategy and Operations, American Cancer Society Cancer Action Network, Washington, DC
| | - Colleen Doyle
- Cancer Control, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
72
|
Impact of ionizing radiation on cake from Brazilian macadamia nut (Macadamia integrifolia) after oil extraction. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
73
|
Ndraha N, Wong HC, Hsiao HI. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr Rev Food Sci Food Saf 2020; 19:1187-1217. [PMID: 33331689 DOI: 10.1111/1541-4337.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium that is naturally present in the marine environment. Oysters, which are water filter feeders, may accumulate this pathogen in their soft tissues, thus increasing the risk of V. parahaemolyticus infection among people who consume oysters. In this review, factors affecting V. parahaemolyticus accumulation in oysters, the route of the pathogen from primary production to consumption, and the potential effects of climate change were discussed. In addition, intervention strategies for reducing accumulation of V. parahaemolyticus in oysters were presented. A literature review revealed the following information relevant to the present study: (a) managing the safety of oysters (for human consumption) from primary production to consumption remains a challenge, (b) there are multiple factors that influence the concentration of V. parahaemolyticus in oysters from primary production to consumption, (c) climate change could possibly affect the safety of oysters, both directly and indirectly, placing public health at risk, (d) many intervention strategies have been developed to control and/or reduce the concentration of V. parahaemolyticus in oysters to acceptable levels, but most of them are mainly focused on the downstream steps of the oyster supply chain, and (c) although available regulation and/or guidelines governing the safety of oyster consumption are mostly available in developed countries, limited food safety information is available in developing countries. The information provided in this review may serve as an early warning for managing the future effects of climate change on the safety of oyster consumption.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.).,Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| |
Collapse
|
74
|
Mesocarp oil quality of macauba palm fruit improved by gamma irradiation in storage. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
75
|
Zhou X, Ye X, He J, Wang R, Jin Z. Effects of electron beam irradiation on the properties of waxy maize starch and its films. Int J Biol Macromol 2020; 151:239-246. [PMID: 32006580 DOI: 10.1016/j.ijbiomac.2020.01.287] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Waxy maize starch was irradiated under different doses of radiation (2-30 kGy), and starch physicochemical properties were analysed. Films were subsequently produced from native and irradiated waxy maize starches and their properties were tested. The starch molecular weight markedly decreased with increasing irradiation dose. And the branch chain length, melting temperature, melting enthalpy, and relative crystallinity decreased slightly, especially at an irradiation dose below 15 kGy. This indicated that more α-1,6-glucosidic bonds than α-1,4-glucosidic bonds were cleaved by a low dose of irradiation; hence, more linear chains were released. Films prepared from 10 kGy irradiated waxy maize starch displayed enhanced mechanical properties and increased solubility, owing to a moderate increase in linear starch chains and a decrease in starch molecular weight, respectively. The resulting rapidly-dissolvable films from irradiated waxy maize starch have potential for use in instant food packaging.
Collapse
Affiliation(s)
- Xing Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojia Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ren Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
76
|
Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
77
|
Hassanpour M, Rezaie MR, Baghizadeh A. Practical analysis of aflatoxin M1 reduction in pasteurized Milk using low dose gamma irradiation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:863-872. [PMID: 32030159 PMCID: PMC6985341 DOI: 10.1007/s40201-019-00403-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/24/2019] [Indexed: 05/31/2023]
Abstract
Milk and dairy products can be exposed to potential dangers such as aflatoxin M1 (AFM1). Various factors affect the formation of aflatoxin, which can be due to environmental changes and the lack of suitable substrate for healthy livestock feeding. The goal of this study is to reduce the toxin in pasteurized milk to a level below the European Codex Alimentarius Commission standard. For this purpose, the proper structure of the radioactive granite stone was first designed as a low level gamma irradiation (LLGI) without contact with pasteurized milk, and and the pasteurized milk containing AFM1 that placed in this structure is measured and compared with the control sample values using Association of Official Analytical Chemists (AOAC) method. Then, the reduction of the resulting aflatoxin in the milk and the LLGI dose rate are obtained. The LLGI dose rate is calculated using the Monte Carlo N-Particle Transport Code (MCNP). For simulation, in addition to the spectrum of gamma radiation emitted by radioactive granites, weight percent of each composition of the pasteurized milk and its component elements are also calculated. The results showed a 51.5% reduction of aflatoxin in pasteurized milk after 4 days and 99% reduction after 8 days compared to the control sample. The LLGI dose rate in milk is 0.39 mGy per day. According to the international atomic energy agency (IAEA) report and pervious results, this dose rate level does not significantly affect chemical and sensory quality of milk, but can extend the shelf-life and provide a safer milk. Therefore, the structure constructed using radioactive granite in this study can be considered as one of the suitable methods for reducing aflatoxin.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Reza Rezaie
- Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, Graduate University of Advanced Technology, Kerman, Iran
| | - Amin Baghizadeh
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
78
|
Balayan MH, Pepoyan AZ, Manvelyan AM, Tsaturyan VV, Grigoryan B, Abrahamyan A, Chikindas ML. Combined use of eBeam irradiation and the potential probiotic Lactobacillus rhamnosus Vahe for control of foodborne pathogen Klebsiella pneumoniae. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01522-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Purpose
The implementation of electron beam radiation coupled with the use of probiotics is one of the newest food processing technologies that may be used to ensure food safety and improve shelf life of food products. The purpose of this study was to evaluate the effect of 50–150-Gy electron beam irradiation on the antimicrobial activity of the putative probiotic strain Lactobacillus rhamnosus Vahe.
Methods
Low-dose electron beam irradiation of lactobacilli cells was performed using the Advanced Research Electron Accelerator Laboratory’s electron accelerator, and the agar well diffusion method and Verhulst logistic function were used to evaluate the effect of radiation on anti–Klebsiella pneumoniae activity of the cell free supernatant of L. rhamnosus Vahe cells in vitro.
Results
Our results suggest that 50–150-Gy electron beam irradiation decreases the viability of the investigated lactobacilli, but does not significantly change the probiotic’s activity against K. pneumoniae.
Conclusions
Results indicate that the combined use of irradiation and L. rhamnosus Vahe might be suggested for non-thermal food sterilizing technologies.
Collapse
|