51
|
Liu K, Zhang X, Liu R, Su W, Song Y, Tan M. Preparation of Lutein Nanoparticles by Glycosylation of Saccharides and Casein for Protecting Retinal Pigment Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6347-6359. [PMID: 38408187 DOI: 10.1021/acs.jafc.3c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of visual impairment in the aging population, lacks effective treatment options due to a limited understanding of its pathogenesis. Lutein, with its strong antioxidant properties and ability to mitigate AMD by absorbing ultraviolet (UV) rays, faces challenges related to its stability and bioavailability in functional foods. In this study, we aimed to develop delivery systems using protein-saccharide conjugates to enhance lutein delivery and protect adult retinal pigment epithelial (ARPE-19) cells against sodium iodate (NaIO3)-induced damage. Various saccharides, including mannose, galactose, lactose, maltose, dextran, and maltodextrin, were conjugated to casein via the Maillard reaction for lutein delivery. The resulting lutein-loaded nanoparticles exhibited small size and spherical characteristics and demonstrated improved thermal stability and antioxidant capacity compared to free lutein. Notably, these nanoparticles were found to be nontoxic, as evidenced by reduced levels of cellular reactive oxygen species production (167.50 ± 3.81, 119.57 ± 3.45, 195.15 ± 1.41, 183.96 ± 3.11, 254.21 ± 3.97, 283.56 ± 7.27%) and inhibition of the mitochondrial membrane potential decrease (58.60 ± 0.29, 65.05 ± 2.91, 38.88 ± 1.81, 42.95 ± 1.39, 23.52 ± 1.04, 25.24 ± 0.08%) caused by NaIO3, providing protection against cellular damage and death. Collectively, our findings suggest that lutein-loaded nanoparticles synthesized via the Maillard reaction hold promise for enhanced solubility, oral bioavailability, and biological efficacy in the treatment of AMD.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiumin Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ronggang Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yukun Song
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
52
|
Li Z, Zhong X, Luan C, Wen N, Shi C, Lin X, Zhao C, Zhang Y, Luo L, Zhang L, Wu Y, Yang J. Fabrication of high-preformance emulsifier from conjugating maltodextrin onto myofibrillar protein peptide with microwave- ultrasound synergy. ULTRASONICS SONOCHEMISTRY 2024; 104:106818. [PMID: 38452710 PMCID: PMC10924053 DOI: 10.1016/j.ultsonch.2024.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
In this study, we systematically investigated the emulsifying capabilities of myofibrillar protein (MP)- and MP peptide (MPP)-based conjugates synthesized through intensification techniques: water bath (WB), microwave, ultrasound, and the combined ultrasound-microwave (UM) methods. Compared with WB, microwave, and ultrasound treatments, the combined UM treatment greatly promoted the glycation reaction because ultrasound and microwave mutually reinforced modification effects. The resultant conjugate structure tended to unfold with more flexible conformation and homogeneous morphology. Moreover, the emulsifying properties of conjugates developed with single and combined ultrasound-assisted glycation displayed substantial improvement, and pre-hydrolysis further enhanced these performances, as observed in the Principal Component Analysis as well. Remarkably, MPP grafted by maltodextrin with the assistance of a combined UM field produced the smallest and most uniform emulsion system, positioning it as the most efficient emulsifier among all the fabricated glycoconjugates. Our study highlighted the potential of synergistically applying ultrasound and microwave techniques to develop a well-performance glycation with an ideal conjugate structure, in which they would be associated into a strong film that provided the robust physical barrier, creaming stability, heat retention, and oxidation resistance. These findings offered a basis for better utilizing complex ultrasonic technology to develop novel and improved MP-based food products.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xiaomei Zhong
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Cuirong Luan
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Nanhua Wen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chuanyang Shi
- Department of Nutrition and Food Studies, Steinhardt School of Culture, Education, and Human Development, New York University, NY, United States
| | - Xiaoyu Lin
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chao Zhao
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Yang Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lianyu Luo
- Fujian Flavorbio Technology Co., LTD, Fuzhou, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yijing Wu
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| | - Jie Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| |
Collapse
|
53
|
Gao K, Xu Y, Rao J, Chen B. Maillard reaction between high-intensity ultrasound pre-treated pea protein isolate and glucose: Impact of reaction time and pH on the conjugation process and the properties of conjugates. Food Chem 2024; 434:137486. [PMID: 37725841 DOI: 10.1016/j.foodchem.2023.137486] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
In this study, pea protein isolate was pretreated with high intensity ultrasound (HIUS) at 300 W for 5 min. The Maillard reaction (MR) between the pretreated sample (UPPI) and glucose were performed by heating (80 °C) of their aqueous dispersion at various time (0, 6, 12, 18, and 24 h) and pH (6.0, 8.0, 10.0, and 12.0). According to browning index and glucose depletion, the conjugation between UPPI and glucose through MR was not markedly accelerated compared to PPI. FTIR and intrinsic/extrinsic fluorescence spectroscopy showed that HIUS pretreatment could alter secondary and tertiary structures of PPI. HIUS pretreatment coupled with MR increased hydrophobicity and particle size of UPPI-glucose conjugates. Solubility of UPPI and PPI was improved after MR; but the increment of former was lower than the latter. This study suggests that HIUS pretreatment is an effective method to improve the solubility of PPI regardless of the subsequent MR.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA 94710, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
54
|
Hu S, Xiao F, Du M, Pan J, Song L, Wu C, Zhu B, Xu X. Synergistic effect of residual sugar on freeze-thaw stability of high internal phase emulsions using glycosylated cod protein as interface stabilizer. Food Chem 2024; 432:137134. [PMID: 37639890 DOI: 10.1016/j.foodchem.2023.137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Nowadays, glycosylated protein seems to be one of the most effective stabilizers for preparing freeze-thaw stabile emulsion; nevertheless, few papers mentioned the relationship between the residual free sugars after the glycosylation reaction and the freeze-thaw stability of high internal phase emulsions (HIPEs). Herein, glucose was used to prepare glycosylated cod proteins (GCPs). The synergistic effect was related to the grafting degree of GCP, and the amount of glucose added to prepare freeze-thaw stable HIPEs was reduced from 20% to 4% when the grafting degree of GCP increased from 0% to 31.58% (i.e. 12% GCP). This might be due to fewer ice crystals forming in water phase or less destruction of emulsion droplets by ice crystals. The obtained results in this study will allow developing freeze-thaw stable HIPEs or new frozen ingredients.
Collapse
Affiliation(s)
- Sijie Hu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Feng Xiao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jinfeng Pan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
55
|
Chen K, Zhang M, Wang D, Mujumdar AS, Deng D. Development of quinoa (Chenopodium quinoa Willd) protein isolate-gum Arabic conjugates via ultrasound-assisted wet heating for spice essential oils emulsification: Effects on water solubility, bioactivity, and sensory stimulation. Food Chem 2024; 431:137001. [PMID: 37562335 DOI: 10.1016/j.foodchem.2023.137001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
Quinoa protein isolate-gum Arabic (QPI-GA) conjugates were developed by ultrasound-assisted wet heating to improve the water solubility and bioactivity of spice essential oils (EOs) in this study. The optimal conditions for QPI-GA conjugates preparation were found to be: heating temperature of 72 ℃, ultrasound power of 450 W, and reaction time of 46 min. QPI-GA conjugates displayed significantly higher emulsifying efficiency and stronger tolerance to pH variation, high salt concentration, and storage than raw materials. The emulsifying efficiency of emulsions was also influenced by the pH and viscosity of EOs, zeta potential of the emulsion as well as the relative density and lipid/water partition coefficient (P) of EOs were the possible factors impacting the stability of EO emulsions. The water solubility, antioxidant ability, and antibacterial ability of tested EOs were improved after emulsification. Meanwhile, encapsulation with QPI-GA conjugates played a good effect on reducing the sensory stimulation of EOs.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Dayuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co., Zhengzhou, Henan, China
| |
Collapse
|
56
|
Amiratashani F, Yarmand MS, Kiani H, Askari G, Naeini KK, Parandi E. Comprehensive structural and functional characterization of a new protein-polysaccharide conjugate between grass pea protein (Lathyrus sativus) and xanthan gum produced by wet heating. Int J Biol Macromol 2024; 254:127283. [PMID: 37806423 DOI: 10.1016/j.ijbiomac.2023.127283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The purpose of this work was to use a controlled wet-heating process to promote Maillard reaction (MR) between grass pea protein (GPPI) and xanthan gum (XG), and then analyse structural, functional and antioxidant properties of the conjugate (GPPI-XGCs). During heating, the degree of glycation of all conjugated samples was raised (up to 37.43 %) and, after heating for 24 h, the lightness of the samples decreased by 24.75 %. Circular dichroism showed changes in secondary structure with lower content of α-helix and random coil in conjugates. XRD patterns showed that MR destroyed the crystalline structure of the protein. In addition, Lys and Arg content of the produced conjugates decreased by 16.94 % and 6.17 %, respectively. Functional properties including foaming capacity and stability were increased by 45.17 % and 37.17 %, and solubility reached 98.88 %, due to the protein unfolding driven by MR. GPPI-XGCs showed significantly higher antioxidant activities with maximum ABTS-RS value of 49.57 %. This study revealed how MR can improve GPPI's properties, which can aid the food industry in producing a wide range of plant-based foods. Especially, among other characteristics, the foaming properties were significantly improved and the final product can be introduced as a promising foaming agent to be used in food formulation.
Collapse
Affiliation(s)
- Farzane Amiratashani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Yarmand
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Hossein Kiani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Gholamreza Askari
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Kiana Kassaeian Naeini
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| |
Collapse
|
57
|
Gao K, Zha F, Rao J, Chen B. Nonenzymatic glycation as a tunable technique to modify plant proteins: A comprehensive review on reaction process, mechanism, conjugate structure, and functionality. Compr Rev Food Sci Food Saf 2024; 23:e13269. [PMID: 38284590 DOI: 10.1111/1541-4337.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Plant proteins are expected to become a major protein source to replace currently used animal-derived proteins in the coming years. However, there are always challenges when using these proteins due to their low water solubility induced by the high molecular weight storage proteins. One approach to address this challenge is to modify proteins through Maillard glycation, which involves the reaction between proteins and carbohydrates. In this review, we discuss various chemical methods currently available for determining the indicators of the Maillard reaction in the early stage, including the graft degree of glycation and the available lysine or sugar, which are involved in the very beginning of the reaction. We also provide a detailed description of the most popular methods for determining graft sites and assessing different plant protein structures and functionalities upon non-enzymatic glycation. This review offers valuable insights for researchers and food scientists in order to develop plant-based protein ingredients with improved functionality.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
58
|
Fu JJ, Yu JX, He FY, Huang YN, Wu ZP, Chen YW. Physicochemical and functional characteristics of glycated collagen protein from giant salamander skin induced by ultrasound Maillard reaction. Int J Biol Macromol 2024; 254:127558. [PMID: 37865368 DOI: 10.1016/j.ijbiomac.2023.127558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Chinese giant salamander skin collagen (CGSSC) was successfully conjugated with glucose (Glu)/xylose (Xy) by ultrasound Maillard reaction (MR) in nature deep eutectic solvents (NADES). The effects of ultrasound and reducing sugar types on the degree graft (DG) of MR products (MRPs), as well as the influence of DG on the structure and functional properties of MRPs were investigated. The results indicated that the ultrasound assisted could markedly enhance the MR of CGSSC, and low molecular weight reducing sugars were more reactive in MR. The ultrasound MR significantly changed the microstructure, secondary and tertiary structures of CGSSC. Moreover, the free sulfhydryl content of MRPs were increased, thus enhancing the surface hydrophobicity, emulsifying properties and antioxidant activity, which were positively correlated with DG. These findings provided theoretical insights into the effects of ultrasound assisted and different sugar types on the functional properties of collagen induced by MR.
Collapse
Affiliation(s)
- Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jin-Xiu Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yang-Na Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Zhi-Ping Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Lishui, Zhejiang 323000, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
59
|
Aziznia S, Askari G, Emamdjomeh Z, Salami M. Effect of ultrasonic assisted grafting on the structural and functional properties of mung bean protein isolate conjugated with maltodextrin through maillard reaction. Int J Biol Macromol 2024; 254:127616. [PMID: 37918607 DOI: 10.1016/j.ijbiomac.2023.127616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Four different methods of maillard reaction including ultrasound (150 W, 10 min) assisted, classical wet heating (80 °C, 60min), moderate water bath heating (60°C, 12 to 30 h) and dry state method (60 °C, 79 % relative humidity and 48 h) were used to Mung bean protein isolate - Maltodexrtin conjugates (MPI-MD) preparation. The samples prepared under ultrasound and wet heating were chosen for further analysis according to degree of graft and UV-absorbance at 420 nm. Higher glycosylation at short time and lower browning were obtained under ultrasound treatment. Covalent attachment in conjugates confirmed by SDS-polyacrylamide gel electrophoresis. The structural analysis revealed prominent unfolding effect of ultrasound waves on the protein's molecules. The decrease of α-helix content was related to the exposure of buried amino group residues during reaction. Glycation of MPI under ultrasound caused changes in tertiary structure of protein and leads to decrease in the fluorescence intensity compared with native and wet heating treatments. FTIR spectra confirmed the conjugation of the MPI and MD and suggested that protein structure was changed and ultrasound promoted the graft reaction more than wet heating treatment. Conjugated MPI showed higher emulsification and solubility index than MPI, moreover the effect of ultrasonic waves on ameliorated functional properties was impressive than those for wet heating treatment. Overall, this study showed use of ultrasonication in maillard reaction was a suitable method for producing MPI- MD conjugates and improved the efficiency of graft reaction and functional properties of grafts.
Collapse
Affiliation(s)
- Somayeh Aziznia
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| | - Gholamreza Askari
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| | - Zahra Emamdjomeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| | - Maryam Salami
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| |
Collapse
|
60
|
Kamandloo F, Salami M, Ghamari F, Ghaffari SB, EmamDjomeh Z, Ghasemi A, Kennedy JF. Development and evaluation of anti-reflux functional-oral suspension raft composed of sodium alginate-mung bean protein complex. Int J Biol Macromol 2024; 256:128490. [PMID: 38035967 DOI: 10.1016/j.ijbiomac.2023.128490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to develop a sodium alginate (Na alginate) and mung bean protein (MBP) raft complex to improve gastric reflux symptoms. Na alginate and MBP complexes with different ratios (1:1, 2:1, and 3:1, respectively) were used for raft formulations through a wet Maillard reaction. Structural properties of raft strength, reflux resistance, intrinsic fluorescence emission spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were investigated for rafts. The suspension 1:1 Na alginate/MBP with 0 h Maillard reaction time exhibited the lowest sedimentation volume among the suspensions. In contrast, 3:1 Na alginate/MBP with 6 h Maillard reaction time showed the highest sedimentation volume. Based on the results, the 3:1 Na alginate/MBP rafts had the best results, and the results were within acceptable limits. Functional properties, including antioxidant properties, the Helicobacter pylori inhibition assay, the pancreatic lipase inhibition assay, and angiotensin-converting enzyme (ACE) inhibition, were investigated for rafts. The Na alginate/MBP raft has similar characteristics to Gaviscon syrup and can be used for obesity, Helicobacter pylori infection, high blood pressure, and gastric reflux.
Collapse
Affiliation(s)
- Farzaneh Kamandloo
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Functional Food Research Core (FRC), University of Tehran, Iran.
| | - Fatemeh Ghamari
- Department of Science Payame Noor University, P.O. box 19395-4697, Tehran, Iran
| | - Seyed-Behnam Ghaffari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zahra EmamDjomeh
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Functional Food Research Core (FRC), University of Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| |
Collapse
|
61
|
Han G, Zhao S, Sun F, Xia X, Liu H, Kong B. A novel strategy for improving the stability of myofibrillar protein emulsions at low ionic strength using high-intensity ultrasound combined with non-enzymatic glycation. ULTRASONICS SONOCHEMISTRY 2023; 101:106694. [PMID: 37979277 PMCID: PMC10692711 DOI: 10.1016/j.ultsonch.2023.106694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/30/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Poor emulsification of myofibrillar proteins (MPs) limits the production of meat protein emulsion-type products, and it is related to the myosin self-assembles in low-salt settings. The effect of high-intensity ultrasound (HIU) pretreatment combined with non-enzymatic glycation on MP-stabilized emulsions in low-salt settings was investigated in this study, and the potential mechanism was revealed. The results indicated that, compared to using either HIU or glycation treatment alone, HIU pretreatment in combination with glycation significantly improves the physical stability of emulsions while increasing the distribution uniformity and reducing the droplet particle size from 18.05 μm to 2.54 μm (P < 0.05). Correspondingly, the emulsion prepared using this approach exhibited a relatively high absolute zeta potential (-23.58 mV) and a high interfacial protein content (38.78 %) (P < 0.05), promoting molecular rearrangement and forming a continuous and stable interfacial layer. HIU pretreatment combined with glycation could offer reinforced electrostatic repulsion and steric hindrance to depolymerize self-assembled filamentous polymers, thus enhancing the stability of droplets. Additionally, the thermal sensitivity of the glycated MPs pretreated by HIU was remarkably reduced, thus improving the thermal stability of the corresponding emulsions.
Collapse
Affiliation(s)
- Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
62
|
Han G, Zhao S, Liu Q, Xia X, Chen Q, Liu H, Kong B. High-intensity ultrasound combined with glycation enhances the thermal stability and in vitro digestion behaviors of myofibrillar protein aqueous solution. Int J Biol Macromol 2023; 251:126301. [PMID: 37573906 DOI: 10.1016/j.ijbiomac.2023.126301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
The low thermal stability of myofibrillar proteins (MPs) is a technological barrier to them being applied in beverage formulas. In this study, we investigated the effect of high-intensity ultrasound (HIU) pretreatment combined with glycation on the thermal stability, structural characteristics, and in vitro digestion behavior of MPs in water. The results indicated that HIU pretreatment combined with glycation significantly inhibited thermal aggregation and reduced the particle size of MPs compared to using either HIU or glycation treatments individually. The grafting of dextran (DX) shielded the sulfhydryl (-SH) and hydrophobic groups and inhibited disulfide bond cross-linking and hydrophobic association. Moreover, HIU pretreatment facilitated the shielding effect of glycation by destroying the filamentous myosin structure and exposing the internal -SH and hydrophobic groups as well as the grafting sites, maximally inhibiting thermal aggregation. In addition, the smaller protein particles and more flexible structure caused by HIU pretreatment combined with glycation increased their binding affinity toward protease. Overall, these findings can promote the technological development of modulating the MP structure-digestion for formulating novel meat protein-based products.
Collapse
Affiliation(s)
- Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
63
|
Zhang Q, Dou L, Sun T, Li X, Xue B, Xie J, Bian X, Shao Z, Gan J. Physicochemical and functional property of the Maillard reaction products of soy protein isolate with L-arabinose/D-galactose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7040-7049. [PMID: 37318938 DOI: 10.1002/jsfa.12790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) is widely used in the food industry because of its nutritional and functional properties. During food processing and storage, the interaction with co-existing sugars can cause changes in the structural and functional properties of SPI. In this study, SPI-l-arabinose conjugate (SPI:Ara) and SPI-d-galactose conjugate (SPI:Gal) were prepared using Maillard reaction (MR), and the effects of five-carbon/six-carbon sugars on the structural information and function of SPI were compared. RESULTS MR unfolded and stretched the SPI, changing its ordered conformation into disorder. Lysine and arginine of SPI were bonded with the carbonyl group of sugar. The MR between SPI and l-arabinose has a higher degree of glycosylation compared to d-galactose. MR of SPI enhanced its solubility, emulsifying property and foaming property. Compared with SPI:Ara, SPI:Gal exhibited better aforementioned properties. The functionalities of amphiphilic SPI were enhanced by MR, SPI:Gal possessed better hypoglycemic effect, fat binding capacity and bile acid binding ability than SPI:Ara. MR endowed SPI with enhanced biological activities, SPI:Ara showed higher antioxidant activities, and SPI:Gal exhibited stronger antibacterial activities. CONCLUSION Our work revealed that l-arabinose/d-galactose exhibited different effects on the structural information of SPI, and further affected its physicochemical and functional property. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyun Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lanxing Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zehuai Shao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhong Gan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
64
|
Gu M, Cui Y, Muhammad AUR, Zhang M, Wang X, Sun L, Chen Q. Dynamic microfluidic-assisted transglutaminase modification of soy protein isolate-chitosan: Effects on structural and functional properties of the adduct and its antioxidant activity after in vitro digestion. Food Res Int 2023; 172:113219. [PMID: 37689960 DOI: 10.1016/j.foodres.2023.113219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 09/11/2023]
Abstract
In this study, soy protein isolate (SPI)-chitosan (CS) adducts were prepared by using dynamic microfluidic-assisted transglutaminase (TGase) modification. It was shown that the solubility and degree of binding of SPI-CS adducts prepared by dynamic microfluidic-assisted TGase modification were better. After the samples were treated twice at 400 bar, the degree of binding for SPI-CS adducts increased to 31.97 ± 1.31%, and the solubility increased to 66.25 ± 1.10%. With the increase of microfluidic pressure, the exposed free sulfhydryl groups increased, the particle size reduced, and the surface hydrophobicity first increased and then decreased. Under the action of the pressure generated by microfluidics, the structure of the protein in the SPI-CS adduct was unfolded and transformed from an ordered structure to a disordered one. The SPI-CS adducts prepared with assisted dynamic microfluidic treatment showed significantly higher ABTS radical scavenging rate, DPPH radical scavenging rate and reducing power after in vitro digestion compared with that of SPI-CS adducts prepared with TGase alone. This result indicated that appropriate dynamic microfluidic treatment improved the structural and functional properties of TGase-modified SPI-CS adducts and significantly increased the antioxidant activity after in vitro digestion.
Collapse
Affiliation(s)
- Meiyu Gu
- Key Laboratory of Dairy Science, Ministry of Education and Department of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Yifan Cui
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Asad Ur Rehman Muhammad
- Key Laboratory of Dairy Science, Ministry of Education and Department of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Mengyue Zhang
- Key Laboratory of Dairy Science, Ministry of Education and Department of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xibo Wang
- Key Laboratory of Dairy Science, Ministry of Education and Department of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Lina Sun
- Key Laboratory of Dairy Science, Ministry of Education and Department of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
65
|
Cui H, Xu R, Hu W, Li C, Abdel-Samie MA, Lin L. Effect of soy protein isolate nanoparticles loaded with litsea cubeba essential oil on performance of lentinan edible films. Int J Biol Macromol 2023:124686. [PMID: 37146850 DOI: 10.1016/j.ijbiomac.2023.124686] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Environmental issues caused by plastic packaging materials have gotten increasingly severe, and substantial research has been conducted on environmentally friendly active packaging materials. In this study, the Litsea cubeba essential oil loaded soy protein isolate nanoparticles (LSNPs) with appropriate particle size, high storage stability and salt solution stability were fabricated. The LSNPs with the highest encapsulation efficiency of 81.76 % were added into the lentinan edible film. The microstructures of the films were observed by scanning electron microscopy. The physical properties of the films were measured. The results show that the lentinan film with LSNPs in the volume ratio of 4:1 (LF-4) had the highest elongation at break of 196 %, the lowest oxygen permeability of 12 meq/kg, and good tensile strength, water vapor barrier property, antibacterial property, oxidation resistance and thermal stability. The study suggested that LF-4 film could inhibit the growth of bacteria and delay the oxidation of lipid and protein on beef surface for 7 d.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and Technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
66
|
Zhang Z, Holden G, Wang B, Adhikari B. Maillard reaction-based conjugation of Spirulina protein with maltodextrin using wet-heating route and characterisation of conjugates. Food Chem 2023; 406:134931. [PMID: 36529088 DOI: 10.1016/j.foodchem.2022.134931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Spirulina protein concentrate (SPC) was extracted from Spirulina biomass and its structure and technofunctional properties were modified through Maillard reaction with maltodextrin (MD). Wet-heating route was adapted and Maillard reaction was controlled within initial to intermediate stage by avoiding or minimising the formation of melanoidins. A glycation degree of up to 29.1 % was achieved after reaction between SPC and MD, and molecular weight of the SPC increased accordingly. The solubility of SPC was improved only in the pH range around its isoelectric point after conjugation. The antioxidative property of the SPC-MD conjugate was also improved as the DPPH radical scavenging activity increased 19.7 to 30.2 %. Oil-in-water emulsion stabilised by SPC-MD conjugate produced at 6 h had significantly reduced droplet size, increased surface charge, and higher physical stability in temperature range 25-60 °C. The outcome of this research will help broaden the application of SPC in food as emulsifier and encapsulating shell material.
Collapse
Affiliation(s)
- Zijia Zhang
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | - Greg Holden
- Bega Corporate Centre, Melbourne, VIC 3008, Australia
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
67
|
Gao C, Jia J, Yang Y, Ge S, Song X, Yu J, Wu Q. Structural change and functional improvement of wheat germ protein promoted by extrusion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Ren ST, Fu JJ, He FY, Chai TT, Yu-Ting L, Jin DL, Chen YW. Characteristics and antioxidant properties of Harpadon nehereus protein hydrolysate-xylose conjugates obtained from the Maillard reaction by ultrasound-assisted wet heating in a natural deep eutectic solvents system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2273-2282. [PMID: 36620949 DOI: 10.1002/jsfa.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Harpadon nehereus is a high-protein marine fish. A valuable way to add value to H. nehereus is to convert it into protein hydrolysate. The Maillard reaction is an effective way to improve the functional properties of peptides and proteins, which are affected by many factors such as reactant concentration, water activity, pH, temperature, and heating time. However, the traditional Maillard reaction method is inefficient. The purpose of this study was therefore to explore the effect of the ultrasound-assisted wet heating method on the Maillard reaction of H. nehereus protein hydrolysate (HNPH) in a new-type green solvent - a natural hypereutectic solvent (NADES). RESULTS Harpadon nehereus protein hydrolysate-xylose (Xy) conjugates were prepared via a Maillard reaction in a NADES system using an ultrasound-assisted wet heating method. The effects of different treatment conditions on the Maillard reaction were studied. The optimized glycation degree (DG) of HNPH-Xy conjugates was obtained with a water content of 10%, a reaction temperature of 80 °C, a reaction time of 35 min, and an ultrasonic power level of 300 W. Compared with HNPH, the structure of HNPH-Xy conjugates were significantly changed. Moreover, the functional properties and antioxidant activity of HNPH-Xy were all superior to the HNPH. CONCLUSIONS An ultrasound-assisted wet-heating Maillard reaction between HNPH and Xy in the NADES system could be a promising way to improve the functional properties of HNPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shao-Tian Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Ting-Ting Chai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Liu Yu-Ting
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
69
|
Li Q, Li W, Li L, Zong X, Coldea TE, Yang H, Zhao H. Enhancing the foaming properties of brewer's spent grain protein by ultrasound treatment and glycation reaction. Food Funct 2023; 14:2781-2792. [PMID: 36861319 DOI: 10.1039/d2fo03734c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The denaturation state and relatively poor solubility of brewer's spent grain protein (BSGP) have limited its industrial application. Ultrasound treatment and glycation reaction were applied to improve the structural and foaming properties of BSGP. The results showed that all ultrasound, glycation, and ultrasound-assisted glycation treatments increased the solubility and surface hydrophobicity of BSGP while decreasing its zeta potential, surface tension and particle size. Meanwhile, all these treatments resulted in a more disordered and flexible conformation of BSGP, as observed by CD spectroscopy and SEM. After grafting, the result of FTIR spectroscopy confirmed the covalent binding of -OH between maltose and BSGP. Ultrasound-assisted glycation treatment further improved the free SH and S-S content, which might be due to -OH oxidation, indicating that ultrasound promoted the glycation reaction. Furthermore, all these treatments significantly increased the foaming capacity (FC) and foam stability (FS) of BSGP. Notably, BSGP treated with ultrasound showed the best foaming properties, increasing the FC from 82.22% to 165.10% and the FS from 10.60% to 131.20%, respectively. In particular, the foam collapse rate of BSGP treated with ultrasound-assisted glycation was lower than that of ultrasound or traditional wet-heating glycation treatment. The enhanced hydrogen bonding ability and hydrophobic interaction between protein molecules caused by ultrasound and glycation might be responsible for the improved foaming properties of BSGP. Thus, ultrasound and glycation reactions were efficient methods for producing BSGP-maltose conjugates with superior foaming properties.
Collapse
Affiliation(s)
- Qing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Li Li
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Xuyan Zong
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
70
|
Geng M, Feng X, Wu X, Tan X, Shang B, Huang Y, Teng F, Li Y. Characterization and utilization of soy protein isolate-(-)-epigallocatechin gallate-maltose ternary conjugate as an emulsifier for nanoemulsions: Enhanced physicochemical stability of the β-carotene nanoemulsion. Food Chem 2023; 417:135842. [PMID: 36931013 DOI: 10.1016/j.foodchem.2023.135842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
In this study, a ternary conjugate was prepared by covalent bonding of protein, polysaccharide, and polyphenol via ultrasound and the Maillard reaction. Subsequently, the β-carotene nanoemulsion was prepared with the soy protein isolate-(-)-epigallocatechin gallate-maltose (SPI-EGCG-maltose) conjugate as the emulsifiers via ultrasound. The SPI-EGCG-maltose conjugate showed superior solubility, emulsification and foaming properties at 4 h reaction time. Meanwhile, the retention rates of β-carotene in the nanoemulsion after 30 d of storage, 8 h of light, and 55 °C of heat were >60%, >75%, and >60%, respectively. Furthermore, ultrasound treatment at 500 W for 10 min produced an inhibitory effect on the degradation of β-carotene. This study indicates that the nanoemulsion based on the ternary conjugate can effectively inhibit the β-carotene degradation by the external environment and prevent the oxidation and degradation of β-carotene in the nanoemulsion.
Collapse
Affiliation(s)
- Mengjie Geng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xumei Feng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baiyu Shang
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Fei Teng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Soybean Engineering Technology Research Center, Harbin, Heilongjiang 150030, China; Heilongjiang Academy of Green Food Science, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
71
|
Kuang Y, Zhao S, Liu P, Liu M, Wu K, Liu Y, Deng P, Li C, Jiang F. Schiff base type casein-konjac glucomannan conjugates with improved stability and emulsifying properties via mild covalent cross-linking. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
72
|
Yang S, Zhang G, Chu H, Du P, Li A, Liu L, Li C. Changes in the functional properties of casein conjugates prepared by Maillard reaction with pectin or arabinogalactan. Food Res Int 2023; 165:112510. [PMID: 36869514 DOI: 10.1016/j.foodres.2023.112510] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The aim of this study was to prepare conjugates of casein (CA) with pectin (CP) or arabinogalactan (AG) by the Maillard reaction (wet-heating) and to investigate the effects of CP or AG on the structural and functional properties of casein. The results indicated that the highest grafting degree of CA with CP or AG was observed at 90 °C for 1.5 h or 1 h, respectively. Secondary structure showed that grafting with CP or AG reduced the α-helix level and increased the random coil level of CA. Glycosylation treatment of CA-CP and CA-AG exhibited lower surface hydrophobicity and higher absolute ζ-potential values, further significantly improving the functional properties of CA (e.g., solubility, foaming property, emulsifying property, thermal stability, and antioxidant activity). Accordingly, our results indicated that it is feasible for CP or AG to improve the functional properties of CA by the Maillard reaction.
Collapse
Affiliation(s)
- Siqi Yang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hong Chu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Du
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Aili Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Academy of Green Food Science, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
73
|
Cui H, Zang Z, Jiang Q, Bao Y, Wu Y, Li J, Chen Y, Liu X, Yang S, Si X, Li B. Utilization of ultrasound and glycation to improve functional properties and encapsulated efficiency of proteins in anthocyanins. Food Chem 2023; 419:135899. [PMID: 37023676 DOI: 10.1016/j.foodchem.2023.135899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The purpose of this study is to explore the optimal conditions for the preparation of bovine serum albumin (BSA)/casein (CA)-dextran (DEX) conjugates by ultrasonic pretreatment combined with glycation (U-G treatment). When BSA and CA were treated with ultrasound (40% amplitude, 10 min), the grafting degree increased 10.57% and 6.05%, respectively. Structural analysis revealed that ultrasonic pretreatment changed the secondary structure, further affected functional properties of proteins. After U-G treatment, the solubility and thermal stability of BSA and CA was significantly increased, and the foaming and emulsifying capacity of proteins were also changed. Moreover, ultrasonic pretreatment and glycation exhibited a greater impact on BSA characterized with highly helical structure. Complexes fabricated by U-G-BSA/CA and carboxymethyl cellulose (CMC) exhibited protection on anthocyanins (ACNs), delaying the thermal degradation of ACNs. In conclusion, the protein conjugates treated by ultrasonic pretreatment combined with glycation have excellent functionality and are potential carrier materials.
Collapse
Affiliation(s)
- Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaoli Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
74
|
Cui F, Wang Q, Han L, Wang D, Li J, Li T, Li X. Effect of Maillard conjugates of peptides and polydextrose on Antarctic krill oil emulsion stability and digestibility. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
75
|
Improving Pea Protein Emulsifying Capacity by Glycosylation to Prepare High-Internal-Phase Emulsions. Foods 2023; 12:foods12040870. [PMID: 36832945 PMCID: PMC9956244 DOI: 10.3390/foods12040870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pea protein has been extensively studied because of its high nutritional value, low allergenicity, environmental sustainability, and low cost. However, the use of pea protein in some food products is hindered due to the low functionality of pea protein, especially as an emulsifier. High-internal-phase emulsions (HIPEs) are attracting attention because of their potential application in the replacement of hydrogenated plastic fats in foods. In this study, the use of glycated pea protein isolate (PPI) as an emulsifier to prepare HIPEs is proposed. The functionalization of a commercial PPI in two ratios of maltodextrin (MD) (1:1 and 1:2) via glycosylation (15 and 30 min), to act as an emulsifier in HIPEs, is investigated. HIPE properties, such as oil loss and texture, were evaluated and related to microstructural properties. Glycated-PPI-stabilized HIPEs showed high consistency, firmness, viscosity, and cohesiveness values; a tight and homogeneous structure; and physical stability throughout storage. The results showed that emulsions were more stable when using a 1:2 ratio and 30 min of heat treatment. However, the reaction time was more determinant for improving the textural properties when a 1:1 ratio was used for glycosylation than when a 1:2 ratio was used. Glycosylation with MD via the Maillard reaction is a suitable method to enhance the emulsifying and stabilizing properties of PPI.
Collapse
|
76
|
Ke C, Li L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr Polym 2023; 302:120430. [PMID: 36604091 DOI: 10.1016/j.carbpol.2022.120430] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Plant proteins have high nutritional value, a wide range of sources and low cost. However, it is easily affected by the environmental factors of processing and lead the problem of poor functionality. These problems of plant proteins can be improved by the polysaccharides induced Maillard reaction. The interaction between proteins and polysaccharides through Maillard reaction can change the structure of proteins as well as improve the functional properties and biological activity. The products of Maillard reaction, such as reductone intermediates, heterocyclic compounds and melanoidins have certain antioxidant, antibacterial and other biological activities. However, heterocyclic amines, acrylamide, and products generated in the advanced stage of the Maillard reaction also have a negative impact, which may increase cytotoxicity and be associated with chronic diseases. Therefore, it is necessary to effectively control the process of Maillard reaction. This review focuses on the modification of plant proteins by polysaccharide-induced Maillard reaction and the effects of Maillard reaction on protein structure, functional properties and biological activity. It also points out how to accurately reflect the changes of protein structure in Maillard reaction. In addition, it also points out the application ways of plant protein-polysaccharide complexes in the food industry, for example, emulsifiers, delivery carriers of functional substances, and natural antioxidants due to their improved solubility, emulsifying, gelling and antioxidant properties. This review provides theoretical support for controlling Maillard reaction based on protein structure.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
77
|
Tirgarian B, Farmani J, Farahmandfar R, Milani JM, Van Bockstaele F. Switchable pH-responsive Biopolymeric Stabilizers Made by Sonothermal Glycation of Sodium Caseinate with κappa-carrageenan. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-023-09778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
78
|
Feng S, Guo Y, Liu F, Li Z, Chen K, Handa A, Zhang Y. The impacts of complexation and glycated conjugation on the performance of soy protein isolate-gum Arabic composites at the o/w interface for emulsion-based delivery systems. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
79
|
He J, Zhang J, Xu Y, Ma Y, Guo X. The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods 2022; 11:foods11243960. [PMID: 36553702 PMCID: PMC9777772 DOI: 10.3390/foods11243960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
In this paper, gelatin was extracted from the scales of Coregonus peled, Carp and Bighead carp by the acid method, and the structure and functional properties of the obtained scale gelatin and food-grade pigskin gelatin (FG) were compared. The results showed that all gelatins exhibited relatively high protein (86.81-93.61%), and low lipid (0.13-0.39%) and ash (0.37-1.99%) contents. FG had the highest gel strength, probably because of its high proline content (11.96%) and high average molecular weight distribution. Low β-antiparallel was beneficial to the stability of emulsion, which led FG to have the best emulsifying property. The high content of hydrophobic amino acids may be one of the reasons for the superior foaming property of Bighead carp scales gelatin (BCG). The gel strength of Carp scales gelatin (CG) and BCG, the ESI of Coregonus peled scales gelatin (CPG) and the foaming property of BCG indicate that fish gelatin has the potential to be used in food industry as a substitute for pig skin gelatin.
Collapse
|
80
|
Strategy and Mechanism of Rice Bran Protein Emulsion Stability Based on Rancidity-Induced Protein Oxidation: An Ultrasonic Case Study. Foods 2022; 11:foods11233896. [PMID: 36496706 PMCID: PMC9736135 DOI: 10.3390/foods11233896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To provide a strategy for improving the stability of rice bran protein emulsion (RBPE), rice bran proteins (RBPs) with different oxidation extents were prepared from fresh rice bran (RB) stored for different times (0, 1, 3, 5, 10 d), and RBPE was prepared with ultrasonic treatment. The ultrasonic conditions were optimized according to the results of the RBPE’s stability (when RB stored for 0, 1, 3, 5, 10 d, the optimal ultrasonic treatment conditions of RBPE were 500 w and 50 min, 400 w and 30 min, 400 w and 30 min, 300 w and 20 min, 500 w and 50 min, respectively). Additionally, the structural characteristics and the flexibility of RBPE interface protein were characterized, and the results showed that compared with native protein and excessive oxidized protein, the unfolded structure content and flexibility of interface protein of RBPE prepared by moderate oxidized protein under optimal ultrasonic intensity was higher. Furthermore, the correlation analysis showed that the RBPE stability was significantly correlated with the structural characteristics and flexibility of the RBPE interface protein (p < 0.05). In summary, ultrasonic treatment affected the interface protein’s structural characteristics and flexibility, improving the stability of RBPE prepared from oxidized RBP.
Collapse
|
81
|
Zhang Z, Wang B, Adhikari B. Maillard reaction between pea protein isolate and maltodextrin via wet-heating route for emulsion stabilisation. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
82
|
Taha A, Casanova F, Šimonis P, Jonikaitė-Švėgždienė J, Jurkūnas M, Gomaa MA, Stirkė A. Pulsed electric field-assisted glycation of bovine serum albumin/starch conjugates improved their emulsifying properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
83
|
Structure and functional properties of whey protein conjugated with carboxymethyl cellulose through maillard reaction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
84
|
Zhang Q, Long X, Xie J, Xue B, Li X, Gan J, Bian X, Sun T. Effect of d-galactose on physicochemical and functional properties of soy protein isolate during Maillard reaction. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
85
|
Structural Characteristics and Emulsifying Properties of Soy Protein Isolate Glycated with Galacto-Oligosaccharides under High-Pressure Homogenization. Foods 2022; 11:foods11213505. [PMID: 36360117 PMCID: PMC9656766 DOI: 10.3390/foods11213505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
This study explored the Maillard reaction process during the glycation of soy protein isolate (SPI) with galacto-oligosaccharides (GOSs) under high-pressure homogenization (HPH) and its effects on the emulsifying properties of SPI. SPI-GOS glycation under moderate pressure (80 MPa) significantly inhibited the occurrence and extent of the Maillard reaction (p < 0.05), but homogenization pressures in the range of 80−140 MPa gradually promoted this reaction. HPH caused a decrease in the surface hydrophobicity of the glycated protein, an increase in the abundance of free sulfhydryl groups, unfolding of the protein molecular structure, and the formation of new covalent bonds (C=O, C=N). Additionally, the particle size of emulsions created with SPI-GOS conjugates was reduced under HPH, thus improving the emulsifying properties of SPI. A reduction in particle size (117 nm), enhanced zeta potential (−23 mV), and uniform droplet size were observed for the emulsion created with the SPI-GOS conjugate prepared at 120 MPa. The conformational changes in the glycated protein supported the improved emulsification function. All results were significantly different (p < 0.05). The study findings indicate that HPH provides a potential method for controlling glycation and improving the emulsifying properties of SPI.
Collapse
|
86
|
Tirgarian B, Farmani J, Farahmandfar R, Milani JM, Van Bockstaele F. Ultra-stable high internal phase emulsions stabilized by protein-anionic polysaccharide Maillard conjugates. Food Chem 2022; 393:133427. [PMID: 35696957 DOI: 10.1016/j.foodchem.2022.133427] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
This paper reports the production of O/W high internal phase emulsions (HIPEs) using protein-anionic polysaccharide Maillard conjugates. First, Maillard conjugates were prepared from soy protein isolate (SPI) or sodium caseinate (SC) proteins and Alyssum homolocarpum seed gum (AHSG) or kappa-carrageenan (kC) polysaccharides. The conjugation process was confirmed and monitored by UV spectrophotometry, Fourier transform infrared, circular dichroism, fluorescence spectroscopies, and differential scanning calorimetry. Under the optimized reaction conditions, SC-AHSG conjugates exhibited the highest glycation degree and emulsifying properties. Next, HIPEs were made using the optimized conjugates, and their microstructure, droplet size, and physical stability were evaluated. The emulsion stabilized by SC-AHSG conjugate had the lowest mean droplet size (363.07 ± 34.56 nm), orderly-packed oil droplets with monomodal distribution, the highest zeta potential (-27.70 ± 0.70 mV), high storage stability (no creaming or oil-off) and was ultra-stable against environmental stresses. Results of this research are helpful for development of emulsion-based foods with novel functionality.
Collapse
Affiliation(s)
- Behraad Tirgarian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Reza Farahmandfar
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jafar M Milani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Vandemoortele Centre 'Lipid Science and Technology', Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
87
|
Hu Y, Zhang Y, Xu J, Zi Y, Peng J, Zheng Y, Wang X, Zhong J. Fish gelatin-polysaccharide Maillard products for fish oil-loaded emulsion stabilization: Effects of polysaccharide type, reaction time, and reaction pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Yan X, Gong X, Zeng Z, Ma M, Zhao J, Xia J, Li M, Yang Y, Yu P, Gong D, Wan D. Dextran Conjugation Improves the Structural and Functional Properties of Heat-Treated Protein Isolate from Cinnamomum camphora Seed Kernel. Foods 2022; 11:3066. [PMID: 36230141 PMCID: PMC9564210 DOI: 10.3390/foods11193066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The Cinnamomum camphora seed kernel (CCSK), with high contents of medium-chain oil (~59%) and protein (~19%), is an excellent source for a plant-based food ingredient. To broaden the application of the protein isolate (PI) from CCSK in the food industry, the Maillard reaction products (MRPs) were prepared by PI and dextran (DX) under mild wet-heating conditions (60 °C, 5 h), and the structural and functional properties of the PI-DX conjugates were investigated. The covalent bond between PI and DX was confirmed by the degree of grafting and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Compared with the heated PI, the PI-DX conjugates had more ordered structure, with the decreased random coil content. The changes in tertiary structure of PI-DX conjugates were reflected by the results of intrinsic fluorescence and surface hydrophobicity. Moreover, PI-DX conjugates showed better solubility, emulsifying properties, thermal stability and antioxidant activities. These results provided a theoretical basis for the development of PI-based MRPs with desirable characteristics.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Meina Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yujing Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| | - Dongman Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| |
Collapse
|
89
|
Boonlao N, Ruktanonchai UR, Anal AK. Glycation of soy protein isolate with maltodextrin through Maillard reaction via dry and wet treatments and compare their techno-functional properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
90
|
Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: A study on the structures, solubility and emulsifying properties. Food Chem 2022; 388:133035. [PMID: 35483289 DOI: 10.1016/j.foodchem.2022.133035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Myofibrillar protein (MP) is often modified by various strategies to obtain better functional properties, which are crucial to the quality of meat products. This study prepared MP-glucose conjugates with high degrees of grafting (DG) by continuous cyclic wet heating glycation, and explored the changes in the structural and functional properties. The determination of DG, amino acid contents and Fourier transform infrared spectroscopy (FT-IR) confirmed the occurrence of glycation. The conjugates lost α-helix structures, and their intrinsic fluorescence intensity decreased while their surface hydrophobicity increased, which reflected the conformational unfolding and stretching behaviour of the molecules. Glycation resulted in a smaller particle size and lower ζ-potential, delaying molecular cross-linking during heating, thereby significantly reducing the apparent viscosity of the solutions and improving the solubility and emulsifying properties of MP. The results can provide new ideas and approaches for understanding glycation, and enrich the theoretical basis of the structure-function relationship of MP.
Collapse
|
91
|
Han G, Li Y, Liu Q, Chen Q, Liu H, Kong B. Improved water solubility of myofibrillar proteins by ultrasound combined with glycation: A study of myosin molecular behavior. ULTRASONICS SONOCHEMISTRY 2022; 89:106140. [PMID: 36041374 PMCID: PMC9440060 DOI: 10.1016/j.ultsonch.2022.106140] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/07/2023]
Abstract
The poor water solubility of myofibrillar proteins (MPs) limits their application in food industry, and is directly related to the molecular behavior associated with myosin assembly into filaments. This study aims to explore the effect of high-intensity ultrasound (HIU) combined with nonenzymatic glycation on the solubility, structural characteristics, and filament-forming behavior of MPs in low ionic strength media. The results showed that the HIU (200-400 W) application could promote the subsequent glycation reaction between MPs and dextran (DX) and interfere with the electrostatic balance between myosin rods, suppressing the formation of filamentous myosin polymers. Glycated MPs pretreated by 400 W HIU had the highest solubility, which corresponded to the smallest particle size, highest zeta potential, and optimum storage stability (P < 0.05). Structure analysis and microscopic morphology observations suggested that the loss of the MP superhelix and the depolymerization of filamentous polymers were the main mechanisms for MP solubilization. In conclusion, HIU combined with glycation can effectively improve the water solubility of MPs by destroying or suppressing the assembly of myosin molecules.
Collapse
Affiliation(s)
- Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
92
|
Ultrasound: A reliable method for regulating food component interactions in protein-based food matrices. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
93
|
Jiang Y, Zang Data analysis K, Xu L, Zeng XA, Li H, Brennan C, Zhao D, Sun J. Co-delivery of riboflavin and rhein based on properties improved Jiuzao glutelin: binding mechanism, stability, and antioxidant activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
94
|
Effect of ultrasonication on the protein–polysaccharide complexes: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
95
|
Ghani A, Tabibiazar M, Mahmoudzadeh M, Golchinfar Z, Homayouni Rad A. Evaluation of the effect of sage seed gum (
Salvia macrosiphon
) conjugation on physicochemical and antimicrobial properties of egg white protein. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Ghani
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Golchinfar
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Aziz Homayouni Rad
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
96
|
Modification of Jiuzao glutelin with pullulan through Maillard reaction: stability effect in nano-emulsion, in vitro antioxidant properties, and interaction with curcumin. Food Res Int 2022; 161:111785. [DOI: 10.1016/j.foodres.2022.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
97
|
Jiang Y, Zang K, Sun J, Zeng XA, Li H, Brennan C, Huang M, Xu L. Preparation of modified Jiuzao glutelin isolate with carboxymethyl chitosan by ultrasound-stirring assisted Maillard reaction and its protective effect of loading resveratrol/quercetin in nano-emulsion. ULTRASONICS SONOCHEMISTRY 2022; 88:106094. [PMID: 35868209 PMCID: PMC9305625 DOI: 10.1016/j.ultsonch.2022.106094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 05/21/2023]
Abstract
Jiuzao glutelin isolate (JGI) was reported to possess interface and functional properties. To enhance the stability and properties of JGI, conjugation between JGI and carboxymethyl chitosan (CTS) through ultrasound-stirring assisted Maillard reaction (UTSA-MR) was investigated and optimized. The changes of molecular distribution, secondary structure, morphology, and amino acid composition of JGI were detected after conjugation with CTS. The solubility, foaming property and stability, viscosity, and thermal stability of four conjugates (CTS-JGI, with weight ratios of 0.5:1, 1:1, 2:1, and 4:1) were significantly increased compared to native JGI. Under the optimal glycation, the conjugate (CTS/JGI, 2:1, w/w; CTS-JGI-2) exhibited the best emulsifying ability and stability against NaCl solution, in vitro antioxidant activity, and cholesterol-lowering ability. CTS-JGI-2 stabilized oil-in-water nano-emulsion improved resveratrol (RES) and quercetin (QUE) encapsulation efficiency (80.96% for RES and 93.13% for QUE) and stability during the simulated digestion process (73.23% for RES and 77.94% for QUE) due to the connection through hydrogen bonds, pi-anion, pi-sigma, and donors between CTS-JGI and RES/QUE. Taken together, the modification of JGI by conjugating with CTS through UTSA-MR could be an excellent method to improve the functional properties of JGI. CTS-JGI-2 is a potential conjugate with functions that can be used to encapsulate functional substances in the stabilized nano-emulsion.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Kai Zang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | | | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Ling Xu
- Technology Center of Bandaojing Co. Ltd., Zibo, Shandong 256300, People's Republic of China
| |
Collapse
|
98
|
Yang W, Wang Q, Chen Y, Lei L, Lei X, Zhao J, Zhang Y, Ming J. Changes in the structural and physicochemical properties of wheat gliadin and maize amylopectin conjugates induced by dry-heating. J Food Sci 2022; 87:3459-3471. [PMID: 35838074 DOI: 10.1111/1750-3841.16252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
The Maillard reaction (MR) has been known to modify proteins and optimize their physicochemical properties by conjugating with reducing sugars. The structure and physicochemical properties of wheat gliadin and maize amylopectin conjugates induced by MR were investigated under different gliadin-amylopectin ratios (2:1, 1:1, 1:2, 1:4, and 1:8). The formation of conjugates was indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, degree of conjugation, and browning development analyses. The Fourier transform infrared and fluorescence spectroscopy analyses suggested changes in the structures of conjugates and the microenvironment of amino acids. A remarkable decrease in the β-turn structure content and an increase in the free sulfhydryl group content were observed at a ratio of 1:8, leading to decreased allergenicity. The reaction process was commendably controlled at a ratio of 1:1 with a 59.7% degree of conjugation in this group, contributing to the amelioration of solubility and foaming properties. Meanwhile, improvements in the oil holding capacity, surface hydrophobicity, and emulsifying properties were observed at a ratio of 1:4. PRACTICAL APPLICATION: The study revealed that the conjugates produced by MR might have various degrees of improved functional properties and reduced allergenicity at different ratios of substrates. Our study might be helpful for conjugates to assist in improving the texture of products and its potential in expanding the industrial application of products with gliadin.
Collapse
Affiliation(s)
- Wenqing Yang
- College of Food Science, Southwest University, Chongqing, China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| |
Collapse
|
99
|
Wang K, Li Y, Zhang Y, Huang M, Xu X, Ho H, Huang H, Sun J. Improving physicochemical properties of myofibrillar proteins from wooden breast of broiler by diverse glycation strategies. Food Chem 2022; 382:132328. [PMID: 35149469 DOI: 10.1016/j.foodchem.2022.132328] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
The effect of diverse glycation strategies on the physicochemical and structural properties of wooden breast myofibrillar protein (WBMP) were studied. The WBMP was mixed with D-ribose (RI), sodium alginate (SA), and glucosamine (GH) respectively in a weight ratio of 1:2 (w/w) at 70 °C, and was heated for 6 h. Atomic force microscopy and particle size results showed that the glycation reaction in the presence of RI made WBMP to be more evenly dispersed in the solution and had a significantly smaller particle size (78-955 nm, average 361.06 nm) (P < 0.05). There was an increase in WBMP-RI solubility (76.23 ± 0.56%) and α-helix content (51.23 ± 1.1%) than other groups. Compared with WBMP-RI, WBMP-SA and WBMP-GH have poor performance in particle distribution, solubility and emulsification. This study clarified the aldehyde group in aldose was more suitable for the glycation modification of WBMP than the ketone group in ketose.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yimin Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Ming Huang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - He Huang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
100
|
Zhao Q, Hong X, Fan L, Liu Y, Li J. Solubility and emulsifying properties of perilla protein isolate: Improvement by phosphorylation in the presence of sodium tripolyphosphate and sodium trimetaphosphate. Food Chem 2022; 382:132252. [DOI: 10.1016/j.foodchem.2022.132252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
|