51
|
Chen J, Li L, Zhang X, Zhang Y, Zheng Q, Lan M, Li B. Structural characteristics and antioxidant and hypoglycemic activities of a heteropolysaccharide from Anemarrhena asphodeloides Bunge. Int J Biol Macromol 2023; 236:123843. [PMID: 36858093 DOI: 10.1016/j.ijbiomac.2023.123843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
In this study, an acid polysaccharide (AABP-1B) was extracted from the rhizome of Anemarrhena asphodeloides Bunge and purified using 60 % alcohol precipitation and DEAE-52 cellulose. The molecular weight of AABP-1B was 105 kDa, and it consisted of mannose (Man), rhamnose (Rha), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in a ratio of 6.3:1.3:1.1:0.2:0.4:0.7. Methylation and NMR analyses revealed that the backbone of AABP-1 consists of 4)-β-D-Manp-(1 and 4)-2-O-acetyl-β-D-Manp-(1. In addition, the biological activity assays showed that AABP-1B not only displays potential antioxidant activity but also exhibits the α-glucosidase and α-amylase inhibitory effect. Moreover, AABP-1B enhanced glucose consumption and glycogen synthesis in insulin-resistant (IR) HepG2 cells. These results suggest that AABP-1B has potential hypoglycemic activity.
Collapse
Affiliation(s)
- Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan 571199, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yuan Zhang
- Guangdong Provincial Institute of Sports Science, Guangzhou 510640, China
| | - Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Meijuan Lan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
52
|
Zhang JL, Du C, Poon CCW, He MC, Wong MS, Wang NN, Zhang Y. Structural characterization and protective effect against renal fibrosis of polysaccharide from Ligustrum lucidum Ait. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115898. [PMID: 36372193 DOI: 10.1016/j.jep.2022.115898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a traditional Chinese medicine that has been used for tonifying the kidney and liver for decades. AIM OF THE STUDY This study aimed to explore and identify polysaccharides from FLL and elucidate its protective effect against renal fibrosis. MATERIALS AND METHODS Polysaccharides were extracted and isolated from FLL. The purified fraction was identified by serial phytochemical work, such as gel-permeation chromatography, ion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance. Mice with unilateral ureteral obstruction (UUO) were applied as a renal fibrosis model. The male UUO mice were pretreated with heteropolysaccharide (Poly) 1 week prior to surgery and continuously treated for 7 days after the operation. Renal fibrosis was assessed by Periodic Acid-Schiff (PAS) staining and Masson's trichrome staining in paraffin-embedded slides. The murine mesangial cells SV40-MES13 upon angiotensin II (Ang II) treatment were developed as an in vitro fibrotic model. The cells were treated by Poly in the presence of Ang II. Molecular expression was detected by RT-PCR, immunoblotting, and immunofluorescence staining. RESULTS We identified a heteropolysaccharide composed of arabinose and galactose (molar ratio, 0.73:0.27) with a predicted chemical structure characterized by a backbone composed of 1,5-α-Araf, 1,3,5-α-Araf, 1,6-α-Galp, and 1,3,6-β-Galp and side chains comprised of T-α-Araf, T-α-Arap, and 1,3-α-Araf. Pretreatment of UUO mice with Poly effectively alleviated glomerulosclerosis and tubulointerstitial fibrosis. Moreover, Poly pretreatment down-regulated the expression of extracellular matrix (ECM) protein fibronectin (FN), profibrotic factor VEGF, proinflammatory cytokines MCP-1 and Rantes in the obstructed kidney. Similarly, the incubation of SV40-MES13 cells with Poly significantly inhibited Ang II-induced elevation in accumulation and expression level of FN and attenuated Ang II-evoked up-regulation in protein expression of MCP-1 and Rantes. CONCLUSIONS Our study isolated and identified a naturally occurring heteropolysaccharide in FLL and revealed its potential in protecting the kidneys from fibrosis.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Chen Du
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Na-Ni Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, China.
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
53
|
Liu S, Chen L, Duan W, Meng Z, Dong H, Wang X. Comparison of Physicochemical and Bioactive Properties of Polysaccharides from Massa Medicata Fermentata and Its Processed Products. ACS OMEGA 2022; 7:46833-46842. [PMID: 36570240 PMCID: PMC9773791 DOI: 10.1021/acsomega.2c05932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Two polysaccharides were separately extracted and purified from different types of medicinal slices of Massa Medicata Fermentata (Sheng Massa Medicata Fermentata and Chao Massa Medicata Fermentata). The physicochemical properties of these polysaccharides were studied, including the molecular weight, monosaccharide composition, and glycosidic linkage. Moreover, inhibition of trypsin, α-amylase, and α-glucosidase by the polysaccharides and their antioxidant activity were investigated. Compared with polysaccharides from Sheng Massa Medicata Fermentata, polysaccharides from Chao Massa Medicata Fermentata had a lower molecular weight, higher uronic acid content, and a lower proportion of side chains. Polysaccharides from Sheng Massa Medicata Fermentata displayed stronger trypsin, α-amylase, and α-glucosidase inhibition activity, whereas the antioxidant activity of the polysaccharides from Chao Massa Medicata Fermentata was higher. These results indicated that stir-frying changes the physicochemical properties of the polysaccharides significantly, leading to reduced enzyme inhibition activity and an increase in antioxidant activity. This research provides a guide for the selective application of Massa Medicata Fermentata.
Collapse
Affiliation(s)
- Shuang Liu
- Shandong
analysis and test center, Qilu university
of technology (Shandong academy of science), Jinan, Shandong250014, P.R. China
- College
of pharmacy, Qilu University of technology
(Shandong academy of science), Jinan, Shandong250300, P.R. China
| | - Long Chen
- Shandong
analysis and test center, Qilu university
of technology (Shandong academy of science), Jinan, Shandong250014, P.R. China
- College
of pharmacy, Qilu University of technology
(Shandong academy of science), Jinan, Shandong250300, P.R. China
| | - Wenjuan Duan
- Shandong
analysis and test center, Qilu university
of technology (Shandong academy of science), Jinan, Shandong250014, P.R. China
- College
of pharmacy, Qilu University of technology
(Shandong academy of science), Jinan, Shandong250300, P.R. China
| | - Zhaoqing Meng
- Shandong
Hongjitang Pharmaceutical Group Co., LTD., Jinan, Shandong250100, P.R. China
| | - Hongjing Dong
- Shandong
analysis and test center, Qilu university
of technology (Shandong academy of science), Jinan, Shandong250014, P.R. China
- College
of pharmacy, Qilu University of technology
(Shandong academy of science), Jinan, Shandong250300, P.R. China
| | - Xiao Wang
- Shandong
analysis and test center, Qilu university
of technology (Shandong academy of science), Jinan, Shandong250014, P.R. China
- College
of pharmacy, Qilu University of technology
(Shandong academy of science), Jinan, Shandong250300, P.R. China
| |
Collapse
|
54
|
Lei HQ, Li DM, Woo MW, Zeng XA, Han Z, Wang RY. The antihyperglycemic effect of pulsed electric field-extracted polysaccharide of Kaempferia elegans officinale on streptozotocin induced diabetic mice. Front Nutr 2022; 9:1053811. [PMID: 36570142 PMCID: PMC9769402 DOI: 10.3389/fnut.2022.1053811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Kaempferia elegans polysaccharide (KEP) was extracted using a high-voltage pulsed electric field-assisted hot water method. Its physicochemical properties, in vitro activity and hypoglycemic effect was investigated. Experiments were undertaken with diabetic mice models and the potential mechanism of KEP to improve blood glucose levels was unveiled through measurements of relevant indicators in the serum and liver of the mice. Results showed that KEP is mainly composed of glucose, rhamnose, arabinose, and galactose. It has certain DPPH and ABTS free radical scavenging ability and good α-glucosidase inhibitory ability, indicating that KEP has the potential to improve blood glucose levels in diabetes patients. The experimental results of KEP treatment on mice showed that KEP could control the continuous increase of fasting blood glucose levels. The potential mechanisms behind this blood glucose level control composes of (1) increasing the glucokinase and C peptide levels and decreasing Glucose-6-phosphatase content for improving key enzyme activity in the glucose metabolism pathway. This promotes the consumption of blood glucose during glycolysis, thereby inhibiting the production of endogenous glucose in gluconeogenesis pathway; (2) reducing triglyceride, total cholesterol, low density lipoprotein cholesterol, and increasing high density lipoprotein cholesterol content, for regulating blood lipid indicators to normal levels; and (3) by improving the activities of catalase, glutathione peroxidase, and antioxidant enzymes superoxide dismutase for further improving the antioxidant defense system in the body to reduce blood glucose.
Collapse
Affiliation(s)
- Huan-Qing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Xin-An Zeng
- Department of Food Science, Foshan University, Foshan, Guangdong, China,Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang, China,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China,*Correspondence: Zhong Han,
| | - Ruo-Yong Wang
- Air Force Medical Center People’s Liberation Army, Beijing, China,Ruo-Yong Wang,
| |
Collapse
|
55
|
Shao Y, Zheng C, Liu K, Xiong J, Wang X, Han M, Li L, Shi Y, Lu J, Yi J. Extraction optimization, purification, and biological properties of polysaccharide from Chinese yam peel. J Food Biochem 2022; 46:e14490. [PMID: 36288503 DOI: 10.1111/jfbc.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 01/14/2023]
Abstract
In this study, the Chinese yam peel polysaccharide (CYPP) was obtained under the extraction conditions optimized by the Response Surface Methodology (RSM). Further biological properties of CYPP-1 purified from CYPP were also determined. The results indicated that the optimum extraction conditions were an extraction temperature of 90.5°C, a liquid-solid ratio of 28.0 ml/g, and an extraction time of 2.94 h, along with a yield of 8.81 ± 1.48%. CYPP-1 was identified as a kind of heteropolysaccharide mostly composed of glucose and galactose (59.4:1.0). The molecular weights were two main parts of 50.5 kDa (54.77%) and 4.4 kDa (21.02%), and the triple-helix conformation was not formed in CYPP-1. Besides, CYPP-1 showed good biological properties including in vitro antioxidant activity and immunomodulatory function on RAW264.7 cells, as well as favorable hypoglycemic effect. Overall, the high-value utilization of CYPP-1 reveals a broad application prospect in the industrial production of functional foods and pharmaceuticals. PRACTICAL APPLICATIONS: Yam peel, which is discarded in large quantities during postharvest processing, results in the production of tremendous by-products and is a great waste of resources. In this study, the yield of water-soluble polysaccharide from yam peel reached 8.81 ± 1.48%. Besides, the purified CYPP-1 exhibited excellent antioxidant activity, favorable immunomodulatory function, and hypoglycemic effect. The high productivity and bioactive effects are both great merits for Chinese yam peel polysaccharide as a promising candidate for foods and medicines industrial production.
Collapse
Affiliation(s)
- Yiwen Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chaoqiang Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Keke Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaolong Wang
- Henan Yinfeng Biological Engineering Technology Co., LTD, Zhengzhou, China
| | - Mingyue Han
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
56
|
Fan S, Guo D, Zhang J, Yang Y, Xue H, Xue T, Bai B. Structure, physicochemical properties, antioxidant, and hypoglycemic activities of water‐soluble polysaccharides from millet bran. J Food Sci 2022; 87:5263-5275. [PMID: 36321649 DOI: 10.1111/1750-3841.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sanhong Fan
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Dingyi Guo
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Jinhua Zhang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Hugui Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Tengda Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Baoqing Bai
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| |
Collapse
|
57
|
Chen Z, Liu Y, Wang D, Wu N, Wang K, Zhang Y. Preparation, chemical structure and α-glucosidase inhibitory activity of sulfated polysaccharide from Grifola frondosa. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
58
|
Gu F, Tao L, Chen R, Zhang J, Wu X, Yang M, Sheng J, Tian Y. Ultrasonic-Cellulase Synergistic Extraction of Crude Polysaccharides from Moringa oleifera Leaves and Alleviation of Insulin Resistance in HepG2 Cells. Int J Mol Sci 2022; 23:12405. [PMID: 36293262 PMCID: PMC9604441 DOI: 10.3390/ijms232012405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
Moringa oleifera leaves (MOL) are a new food resource, rich in functional factors. MOL polysaccharides are important active macromolecules within MOL. However, there are problems, such as low extraction rates and lack of evidence for functional activity. Therefore, in this experiment, single-factor experiments were carried out using MOL powder as the raw material, and the Plackett-Burman test was used to screen the significantly influential test factors. The extraction process of MOL polysaccharide was optimized by response surface methodology. The insulin resistance alleviating activity of MOLP polysaccharides was initially explored. The results showed that the extraction of Moringa oleifera leaves crude polysaccharides (MOLP) by ultrasonic assisted cellulase enzymatic digestion was (17.03 ± 1.03)%, and the obtained MOLP was a crude polysaccharide with an average molecular weight (Mw) of 279.48 kDa, consisting of fucose, rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid. MOLP had an IC50 value of 8.02 mg/mL for α-glucosidase and scavenging activity against free radicals such as ABTS, DPPH, hydroxyl radicals, and superoxide anion with an IC50 value of 0.21 mg/mL 0.31 mg/mL 0.97 mg/mL 0.49 mg/mL. At the same time, MOLP significantly enhanced the glucose consumption, glycogen synthesis, CAT, SOD, GSH-Px activity, and reduced the MDA and ROS content in high glucose-induced insulin-resistant HepG2 (IR-HepG2) cells. This experiment improved the extraction rate of MOLP and demonstrated that MOLP has antioxidant activity and α-glucosidase inhibitory activity, which can alleviate the insulin resistance of high glucose-induced HepG2 cells. It provides partial data support for the possible hypoglycemic effect of MOLP by alleviating oxidative stress, and also provides new ideas for the in-depth study of basic research and industrial application of MOLP.
Collapse
Affiliation(s)
- Fan Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Runling Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingzhong Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
59
|
Kashtoh H, Baek KH. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202722. [PMID: 36297746 PMCID: PMC9612090 DOI: 10.3390/plants11202722] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Diabetes is a common metabolic disorder marked by unusually high plasma glucose levels, which can lead to serious consequences such as retinopathy, diabetic neuropathy and cardiovascular disease. One of the most efficient ways to reduce postprandial hyperglycemia (PPHG) in diabetes mellitus, especially insulin-independent diabetes mellitus, is to lower the amount of glucose that is absorbed by inhibiting carbohydrate hydrolyzing enzymes in the digestive system, such as α-glucosidase and α-amylase. α-Glucosidase is a crucial enzyme that catalyzes the final stage of carbohydrate digestion. As a result, α-glucosidase inhibitors can slow D-glucose release from complex carbohydrates and delay glucose absorption, resulting in lower postprandial plasma glucose levels and control of PPHG. Many attempts have been made in recent years to uncover efficient α-glucosidase inhibitors from natural sources to build a physiologic functional diet or lead compound for diabetes treatment. Many phytoconstituent α-glucosidase inhibitors have been identified from plants, including alkaloids, flavonoids, anthocyanins, terpenoids, phenolic compounds, glycosides and others. The current review focuses on the most recent updates on different traditional/medicinal plant extracts and isolated compounds' biological activity that can help in the development of potent therapeutic medications with greater efficacy and safety for the treatment of type 2 diabetes or to avoid PPHG. For this purpose, we provide a summary of the latest scientific literature findings on plant extracts as well as plant-derived bioactive compounds as potential α-glucosidase inhibitors with hypoglycemic effects. Moreover, the review elucidates structural insights of the key drug target, α-glucosidase enzymes, and its interaction with different inhibitors.
Collapse
|
60
|
Gu Q, Liu Y, Zhen L, Zhao T, Luo L, Zhang J, Deng T, Wu M, Cheng G, Hu J. The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway. Carbohydr Polym 2022; 292:119694. [PMID: 35725182 DOI: 10.1016/j.carbpol.2022.119694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
Bletilla formosana is a traditional Chinese herbal medicine and is widely consumed as foods and medicines in China. However, the chemical structure and bioactivity of its polysaccharides remain unknown. Herein, two new polysaccharides, BFP60 and BFP80, with molecular weights of 3.99 kDa and 10.07 kDa, respectively, were isolated and purified from dried tuber of B. formosana. Structural analysis suggested that BFP60 and BFP80 may have backbone consisted of →4)-β-d-Man-(1→,→4)-β-d-Glc-(1→,→4)-2-O-acetyl-β-d-Man-(1→, and →4)-3-O-acetyl-β-d-Man-(1→. Inflammation assay in LPS-induced RAW264.7 cells showed that the productions of NO and pro-inflammatory cytokines including IL-6, IL-1β, TNF-α, and IFN-γ were significantly reduced, and the expression of iNOS, COX-2, and target proteins in the NF-κB pathway were suppressed after BFP60 and BFP80 pretreatment. These findings indicated that this novel polysaccharide had significant inflammatory protective effects in vitro.
Collapse
Affiliation(s)
- Qinghui Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Li Zhen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junyin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tuo Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jiangmiao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
61
|
Ullah O, Shah M, Rehman NU, Ullah S, Al-Sabahi JN, Alam T, Khan A, Khan NA, Rafiq N, Bilal S, Al-Harrasi A. Aroma Profile and Biological Effects of Ochradenus arabicus Essential Oils: A Comparative Study of Stem, Flowers, and Leaves. Molecules 2022; 27:molecules27165197. [PMID: 36014440 PMCID: PMC9414473 DOI: 10.3390/molecules27165197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022] Open
Abstract
The present analysis explores the chemical constituents and determines the in vitro antimicrobial, antidiabetic, and antioxidant significance of the essential oils (EOs) of the stem, leaves, and flowers of Ochradenus arabicus for the first time. The EOs of the flowers presented seventy-four constituents contributing to 81.46% of the total EOs, with the major compounds being 24-norursa-3,12-diene (13.06%), 24-norursa-3,12-dien-11-one (6.61%), and 24-noroleana-3,12-diene (6.25%). The stem EOs with sixty-one compounds contributed 95.95% of the total oil, whose main bioactive compounds were (+)-camphene (21.50%), eremophilene (5.87%), and δ-selinene (5.03%), while a minimum of fifty-one compounds in the leaves’ EOs (98.75%) were found, with the main constituents being n-hexadecanoic acid (12.32%), octacosane (8.62%), tetradecanoic acid (8.54%), and prehydro fersenyl acetone (7.27%). The antimicrobial activity of the EOs of O. arabicus stem, leaves, and flowers was assessed against two bacterial strains (Escherichia coli and Streptococcus aureus) and two fungal strains (Penicillium simplicissimum and Rhizoctonia solani) via the disc diffusion assay. However, the EOs extracted from the stem were found effective against one bacterial strain, E. coli, and one fungal strain, R. Solani, among the examined microbes in comparison to the standard and negative control. The tested EOs samples of the O. arabicus stem displayed a maximum potential to cure diabetes with an IC50 = 0.40 ± 0.10 µg/mL, followed by leaves and flowers with an IC50 = 0.71 ± 0.11 µg/mL and IC50 = 10.57 ± 0.18 µg/mL, respectively, as compared to the standard acarbose (IC50 = 377.26 ± 1.20 µg/mL). In addition, the EOs of O. arabicus flowers had the highest antioxidant activity (IC50 = 106.40 ± 0.19 µg/mL) as compared to the standard ascorbic acid (IC50 = 73.20 ± 0.17 µg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In the ABTS assay, the EOs of the same sample (flower) depicted the utmost potential to scavenge the free radicals with an IC50 = 178.0 ± 0.14 µg/mL as compared with the ascorbic acid, having an IC50 of 87.34 ± 0.10 µg/mL the using 2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic acid (ABTS) assay. The EOs of all parts of O. arabicus have useful bioactive components due to which they present antidiabetic and antioxidant significance. Furthermore, additional investigations are considered necessary to expose the responsible components of the examined biological capabilities, which would be effective in the production of innovative drugs.
Collapse
Affiliation(s)
- Obaid Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Chemistry, University of Malakand, Chakdara Dir Lower 18800, Pakistan
| | - Muddaser Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Jamal Nasser Al-Sabahi
- Central Instrumentation Laboratory, Medical Research Center, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| |
Collapse
|
62
|
Wu H, Shu L, Liang T, Li Y, Liu Y, Zhong X, Xing L, Zeng W, Zhao R, Wang X. Extraction optimization, physicochemical property, antioxidant activity, and α-glucosidase inhibitory effect of polysaccharides from lotus seedpods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4065-4078. [PMID: 34997594 DOI: 10.1002/jsfa.11755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lotus seedpods are an agricultural by-product of lotus (Nelumbo nucifera Gaertn.), which is widely cultivated in Southeast Asia and Australia. Most lotus seedpods are considered waste and are abandoned or incinerated, resulting in significant waste of resources and heavy environmental pollution. For recycling lotus seedpods, the extraction optimization, physicochemical properties, antioxidant activity, and α-glucosidase inhibitory effect of the polysaccharides contained therein were investigated in this study. RESULTS Hot water extraction of lotus seedpod polysaccharides was optimized by using a response surface methodology combined with a Box-Behnken design, with the optimum conditions being as follows: a liquid/solid ratio of 25.0 mL g-1 , an extraction temperature of 98.0 °C, and an extraction time of 138.0 min. Under these conditions, an experimental yield of 5.88 ± 0.06% was obtained. Physicochemical analyses suggested that lotus seedpod polysaccharides belong to acidic heteropolysaccharides and are principally composed of rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid. The polysaccharides content has a broad molecular weight distribution (2.15 × 105 to 1.77 × 107 Da), an α-configuration, and mainly possesses smooth and sheet-like structures. Biological evaluations showed that the polysaccharides possessed good scavenging activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 1,1-diphenyl-2-picryl-hydrozyl, and hydroxyl radicals, and exerted an obvious inhibitory effect on α-glucosidase activity. Moreover, the polysaccharides content was determined to be a mixed-type noncompetitive inhibitor of α-glucosidase. CONCLUSION The results indicate that lotus seedpod polysaccharides have potential as natural antioxidants and hypoglycaemic substitutes. This study provides the theoretical bases for the exploitation and application of polysaccharides from lotus seedpod by-product resources. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huwei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Linping Shu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yuanxiang Liu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiuli Zhong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Lingyu Xing
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Wei Zeng
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Rui Zhao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
63
|
Pei F, Cao X, Wang X, Ren Y, Ge J. Structural characteristics and bioactivities of polysaccharides from blue honeysuckle after probiotic fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
64
|
He P, Zhang M, Zhao M, Zhang M, Ma B, Lv H, Han Y, Wu D, Zhong Z, Zhao W. A Novel Polysaccharide From Chuanminshen violaceum and Its Protective Effect Against Myocardial Injury. Front Nutr 2022; 9:961182. [PMID: 35911096 PMCID: PMC9330552 DOI: 10.3389/fnut.2022.961182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
We isolated and purified a novel polysaccharide from the root of Chuanminshen violaceum, namely, Chuanminshen violaceumis polysaccharide (CVP) and confirmed its structure and molecular weight. Furthermore, in vivo experiment, CVP’s protective effect against myocardial ischemia-reperfusion (I/R) injury in mice was evidenced by significantly reducing I/R-induced myocardial infarction (MI) size, decreasing the secretion of heart damage biomarkers, and improving cardiac function. Then, the myocardial anoxia/reoxygenation (A/R) injury model was established to mimic reperfusion injury. Noticeably, ferroptosis was the major death manner for A/R-damaged H9c2 cells. Meanwhile, CVP significantly inhibited ferroptosis by decreasing intracellular Fe2+ level, enhancing GPX4 expression, and suppressing lipid peroxidation to confront A/R injury. In conclusion, CVP, with a clear structure, ameliorated I/R injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Peng He
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Mi Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Meng Zhao
- School of Nursing, Qingdao University, Qingdao, China
| | - Mengyao Zhang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Benxu Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Hongyu Lv
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macao SAR, China
- Zhangfeng Zhong,
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macao SAR, China
- *Correspondence: Wenwen Zhao,
| |
Collapse
|
65
|
Pang X, Jing Y, Li P, Qiu X, Zheng Y, Wang Q, Wu L. Structural characterization and antioxidant activities of polysaccharides from Angelica dahurica as extracted by optimized ultrasonic-assisted method. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xinyue Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Pengyue Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China
| | - Qian Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
66
|
Tang Z, Lin W, Chen Y, Feng S, Qin Y, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Cai Y, Yao H, Ding C. Extraction, Purification, Physicochemical Properties, and Activity of a New Polysaccharide From Cordyceps cicadae. Front Nutr 2022; 9:911310. [PMID: 35757258 PMCID: PMC9218675 DOI: 10.3389/fnut.2022.911310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The polysaccharides from C. cicadae were extracted by ultrasonically-assisted enzymatic extraction (UAEE). Response surface analysis was used to determine the optimum parameters as follows: addition of enzymes, 0.71%; extraction temperature, 60°C; extraction time, 18 min; liquid-solid ratio, 46:1 (mL/g). The extraction yield of polysaccharide was 3.66 ± 0.87%. A novel polysaccharide fraction (JCH-a1) from C. cicadae was extracted and then purified by cellulose DEAE-32 and Sephadex G-100 anion exchange chromatography. The analysis results showed that the molar ratio of galactose, glucose, and mannose in JCH-a1 cells (60.7 kDa) was 0.89:1:0.39. JCH-a1 with a triple helix contains more α-glycosides and has strong thermal stability. Moreover, JCH-a1 showed strong antioxidant activity and acted as a strong inhibitor of α-glucosidase in vitro. In addition, JCH-a1 can prolong the lifespan of C. elegans. The present study might provide a basis for further study of JCH-a1 as an antioxidant and hypoglycemic food or drug.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yusheng Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Shiling Feng
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Qinfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Chunbang Ding
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
67
|
Liang T, Hu J, Song H, Xiong L, Li Y, Zhou Y, Mao L, Tian J, Yan H, Gong E, Fei J, Sun Y, Zhang H, Wang X. Comparative study on physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins from normal and Huanglongbing-infected navel orange peels. J Food Biochem 2022; 46:e14280. [PMID: 35746862 DOI: 10.1111/jfbc.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
This study aimed at comparing the physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges. Results indicated the pectins were high methoxy pectins mainly composed of homogalacturonan and rhamnogalacturonan-I. The pectins exhibited similar functional groups, surface morphology, and particle size, and had no triple-helical conformation in solution. They exerted fat and glucose absorption capacities and were mixed-type noncompetitive α-glucosidase inhibitors with IC50 values of 1.182 and 2.524 mg/ml, respectively. Both N-NOP and H-NOP showed hypoglycemic activity in alloxan-induced diabetic mice. Administration of them could promote the synthesis of hepatic glycogen and/or serum insulin to lower blood glucose levels and enhance antioxidant status to alleviate oxidative stress injury in diabetic mice. Moreover, N-NOP had higher yield, molecular weight, ζ-potential, oil holding capacity, α-glucosidase inhibitory effect and in vivo hypoglycemic activity, whereas H-NOP possessed higher uronic acid, degree of esterification, thermal stability, water holding capacity, swelling capacity, and fat absorption capacity. It could be concluded that some similarities and differences existed between N-NOP and H-NOP in physicochemical characteristics, functional properties, α-glucosidase inhibitory effects, and hypoglycemic activity. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges. PRACTICAL APPLICATIONS: Pectin has been widely used in the food and pharmaceutical industries for several decades due to its health benefit, gelling, thickening, and emulsification performances. Diabetes mellitus is a worldwide concern in recent years. Pectins (N-NOP and H-NOP) from peels of normal and Huanglongbing (HLB)-infected Navel oranges possessed in vitro and in vivo hypoglycemic activities, indicating they were potential anti-antidiabetic substitutes of chemical drugs. Moreover, comparative understanding on the physicochemical characteristic, α-glucosidase inhibitory effect and hypoglycemic activity of pectins from peels of normal and Huanglongbing-infected Navel oranges was conducive to the recycling and utilization of Navel orange peels. Recently, the biological activity of pectin from peels of normal Navel oranges has been rarely reported, and the information on pectin from peels of Huanglongbing-infected Navel orange is rare. This study provides references for the basic research and application of pectins from peels of normal and HLB-infected Navel oranges.
Collapse
Affiliation(s)
- Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawei Hu
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - He Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lili Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Yang Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Lifang Mao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiamin Tian
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Huan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiawen Fei
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuan Sun
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Hanyue Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
68
|
Zhong Y, Xu J, Liu X, Ding L, Svensson B, Herburger K, Guo K, Pang C, Blennow A. Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
69
|
Wang X, Xiu W, Han Y, Xie J, Zhang K, Zhou K, Ma Y. Structural characterization of a novel polysaccharide from sweet corncob that inhibits glycosylase in STZ-induced diabetic rats : Structural characterization of a novel polysaccharide. Glycoconj J 2022; 39:413-427. [PMID: 35386020 DOI: 10.1007/s10719-022-10059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
In the current study, we extracted a polysaccharide from sweet corncob and evaluated its hypoglycemic function. After collection in water, alcohol precipitation, and purification by DEAE-52 and Sephadex G-100 columns, we obtained a polysaccharide (SCP50) that was composed primarily of mannose and glucose (9.73:190.27), with a molecular weight of 9280.33 Da. We demonstrated that SCP50 exhibited significant inhibition of α-glucosidase activity, with an IC50 of 4.866 mg/mL, Km of 1.297 × 10-3, and Vmax of 0.076 mol/L·min-1 in vitro. We also observed that SCP50 markedly attenuated disaccharidase (maltase, sucrase, and lactase) activity in a rat model of T2DM. We conclude that SCP50 exerts a hypoglycemic effect via inhibition of intestinal glycosylase. These results thus provide new insight into the hypoglycemic action underlying sweet corncob polysaccharide's effects.
Collapse
Affiliation(s)
- Xin Wang
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Weiye Xiu
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ye Han
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Jingnan Xie
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Kechi Zhou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, 161000, China
| | - Yongqiang Ma
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
70
|
Bai C, Chen R, Tan L, Bai H, Tian L, Lu J, Gao M, Sun H, Chi Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int J Biol Macromol 2022; 206:896-910. [PMID: 35318082 DOI: 10.1016/j.ijbiomac.2022.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The effect of multi-frequency ultrasonic extraction (MUE) on the yields, physicochemical properties, antioxidant and α-glucosidase inhibitory activities of polysaccharides (GPs) from different parts of ginseng were compared. Results demonstrated that yields of polysaccharides from different parts were found to vary significantly differences, in the order of roots (M-GRPs) > flowers (M-GFPs) > leaves (M-GLPs). Compared with heat reflux extraction, MUE not only increased the yield of GPs by up to 9.14%-210.87%, with higher uronic acid content (UAC: increased by 4.99%-53.48%), total phenolics content (TPC: increased by 7.60% to 42.61%), total flavonoids content (TFC: increased by 2.52%-5.45%), and lower molecular weight (Mw: reduced by 6.51%- 33.08%) and protein content (PC: reduced by 5.15%-8.95%), but also improved their functional properties and bioactivities. All six purified polysaccharides extracted by MUE were acidic pyran polysaccharide with different monosaccharide composition, possessed remarkable antioxidant and α-glucosidase inhibitory activities. Especially, M-GFP-1 exhibited the highest bioactivities, illustrated that the activities were highly correlated with UAC and TPC, Mw, and triple helical structure. These results indicate that MUE was an efficient technique for improving yields, physicochemical and functional properties and enhancing biological activities of polysaccharide.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Li Tan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ming Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
71
|
Li L, Fan Q, Zhao W. High effective proteinaceous α-amylase inhibitors from grains and control release. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
72
|
Zhang Y, Chen Y, Chen J. The starch hydrolysis and aroma retention caused by salivary α-amylase during oral processing of food. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
73
|
Zheng Q, Jia RB, Ou ZR, Li ZR, Zhao M, Luo D, Lin L. Comparative study on the structural characterization and α-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions. Int J Biol Macromol 2022; 194:602-610. [PMID: 34808147 DOI: 10.1016/j.ijbiomac.2021.11.103] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022]
Abstract
Sargassum fusiforme polysaccharides (SFPs), including SFP-3-40, SFP-3-60, SFP-3-80, SFP-7-40, SFP-7-60, SFP-7-80, SFP-10-40, SFP-10-60, and SFP-10-80, were extracted at different pH (3, 7, and 10), and then precipitated with graded precipitation of 40%, 60% and 80% (v/v) ethanol solution, respectively. Their physicochemical properties and α-glucosidase inhibitory activity were determined. Results showed that SFPs significantly differed in the contents of total sugar, protein, uronic acid, sulfate, the zeta potential, and molecular weight distribution. SFPs, including SFP-10-40, SFP-10-60, and SFP-10-80, had bigger absolute zeta potential value and higher respective average molecular weight in the same ethanol concentration precipitate. All samples were mainly composed of fucose, glucuronic acid, and mannose with different molar ratios. The extraction pH and precipitation ethanol solution concentration caused little changes in functional groups, but significantly altered surface morphology of SFPs. Congo red test revealed that all polysaccharides were not helical polysaccharides. Rheological measurements indicated that SFPs were pseudoplastic fluids and showed elastic behavior of the gel. Except SFP-3-40 and SFP-3-60, all other samples had a stronger α-glucosidase inhibitory activity than that of acarbose. The inhibition type of SFPs against α-glucosidase varied owing to different extraction pH and precipitation ethyl concentration. This study shows that extraction pH can significantly affect the structure and hypoglycemic activity of SFPs and provide a data support for the scientific use of Sargassum fusiforme in industrial production.
Collapse
Affiliation(s)
- Qianwen Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Zhi-Rong Ou
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
74
|
Chemical structure characterization of polysaccharide from Osmunda japonica Thunb and its inhibitory activity on uterine fibroids. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
75
|
Optimized Degradation and Inhibition of α-glucosidase Activity by Gracilaria lemaneiformis Polysaccharide and Its Production In Vitro. Mar Drugs 2021; 20:md20010013. [PMID: 35049867 PMCID: PMC8777738 DOI: 10.3390/md20010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Gracilaria lemaneiformis polysaccharide (GLP) exhibits good physiological activities, and it is more beneficial as it is degraded. After its degradation by hydrogen peroxide combined with vitamin C (H2O2-Vc) and optimized by Box–Behnken Design (BBD), a new product of GLP-HV will be generated. While using GLP as control, two products of GLP-H (H2O2-treated) and GLP-V (Vc-treated) were also produced. These products chemical characteristics (total sugar content, molecular weight, monosaccharide composition, UV spectrum, morphological structure, and hypolipidemic activity in vitro) were assessed. The results showed that the optimal conditions for H2O2-Vc degradation were as follows: H2O2-Vc concentration was 18.7 mM, reaction time was 0.5 h, and reaction temperature was 56 °C. The total sugar content of GLP and its degradation products (GLP-HV, GLP-H and GLP-V) were more than 97%, and their monosaccharides are mainly glucose and galactose. The SEM analysis demonstrated that H2O2-Vc made the structure loose and broken. Moreover, GLP, GLP-HV, GLP-H, and GLP-V had significantly inhibition effect on α-glucosidase, and their IC50 value were 3.957, 0.265, 1.651, and 1.923 mg/mL, respectively. GLP-HV had the best inhibition effect on α-glucosidase in a dose-dependent manner, which was the mixed type of competitive and non-competitive. It had a certain quenching effect on fluorescence of α-glucosidase, which may be dynamic quenching.
Collapse
|
76
|
Wang N, Xu P, Yao W, Zhang J, Liu S, Wang Y, Zhang Y. Structural elucidation and anti-diabetic osteoporotic activity of an arabinogalactan from Phellodendron chinense Schneid. Carbohydr Polym 2021; 271:118438. [PMID: 34364577 DOI: 10.1016/j.carbpol.2021.118438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022]
Abstract
Phellodendron chinense Schneid. was widely used as a medicinal herb for the treatment of diabetic osteoporosis in China. In this study, an arabinogalactan, named as PPCP-1, was isolated from the bark of Phellodendron chinense Schneid., and purified by DEAE-cellulose DE52 and Sephacryl S-200 HR column chromatography. The structure of PPCP-1 was characterized as a repeating unit consisting of →3)-β-d-Galp-(1→, →3,6)-β-d-Galp-(1→, →5)-α-l-Araf-(1→, →4)-α-d-Glcp-(1→, →3)-α-d-Glcp-(1→, →4)-α-d-Manp-(1→ with branches of →5)-α-l-Araf-(1→, →3,5)-α-l-Araf-(1→ and terminal α-l-Araf. Pharmacologically, the oral administration of PPCP-1 preserved osteoporosis associated with hyperglycemia by inhibiting α-glucosidase activity, improving glucose tolerance, decreasing the accumulation of advanced glycation end products (AGEs), as well as down-regulating the expression of receptor for AGEs in tibias of streptozotocin-induced diabetic rats. Collectively, the present study suggested that the arabinogalactan PPCP-1 from Phellodendron chinense Schneid. might potentially be used as functional foods for bone health and/or developed for drug discovery for alleviating diabetic osteoporosis.
Collapse
Affiliation(s)
- Nani Wang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Weixuan Yao
- Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiali Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Shufen Liu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Yongjun Wang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China.
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
77
|
Jia Y, Li N, Wang Q, Zhou J, Liu J, Zhang M, He C, Chen H. Effect of Fe (III), Zn (II), and Cr (III) complexation on the physicochemical properties and bioactivities of corn silk polysaccharide. Int J Biol Macromol 2021; 189:847-856. [PMID: 34464643 DOI: 10.1016/j.ijbiomac.2021.08.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 01/18/2023]
Abstract
In this paper, Fe (III), Zn (II), and Cr (III) were used to complex with corn silk polysaccharide (CSP) by classical methods and CSP-Fe, CSP-Zn, and CSP-Cr were successfully synthesized, respectively. The physicochemical properties and structural features were characterized by chemical composition analysis, inductive coupled plasma-mass spectrometry (ICP-MS), ultraviolet-visible (UV-Vis) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), respectively. The antioxidant activities and inhibitory effects on α-glucosidase of CSP, CSP-Fe, CSP-Zn, and CSP-Cr were compared. The results showed that the Fe (III), Zn (II), and Cr (III) chelation could change the morphology, conformation, thermostability, and biological activities of CSP. CSP-Zn exhibited higher antioxidant activities and inhibition effects on α-glucosidase than CSP, which suggested that it could be considered as a potential candidate for developing an ingredient of functional foods for antidiabetics.
Collapse
Affiliation(s)
- Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
78
|
Deep Eutectic Solvent-Assisted Extraction, Partially Structural Characterization, and Bioactivities of Acidic Polysaccharides from Lotus Leaves. Foods 2021; 10:foods10102330. [PMID: 34681379 PMCID: PMC8534793 DOI: 10.3390/foods10102330] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Lotus leaves are often discarded as byproducts in the lotus industry. Polysaccharides are regarded as one of the essentially bioactive components in lotus leaves. Therefore, in order to promote the application of lotus leaves in the functional food industry, the deep eutectic solvent (DES) assisted extraction of polysaccharides from lotus leaves (LLPs) was optimized, and structural and biological properties of LLPs extracted by DES and hot water were further investigated. At the optimal extraction conditions (water content of 61.0% in DES, extraction temperature of 92 °C, liquid-solid ratio of 31.0 mL/g and extraction time of 126 min), the maximum extraction yield (5.38%) was obtained. Furthermore, LLP-D extracted by DES and LLP-W extracted by hot water possessed the same sugar residues, such as 1,4-α-D-GalAp, 1,4-α-D-GalAMep, 1,3,6-β-D-Galp, 1,4-β-D-Galp, 1,5-α-L-Araf, and 1,2-α-L-Rhap, suggesting the presence of homogalacturonan (HG), rhamnogalacturonan I and arabinogalactan in both LLP-W and LLP-D. Notably, LLP-D was much richer in HG fraction than that of LLP-W, suggesting that the DES could assist to specifically extract HG from lotus leaves. Additionally, the lower molecular weight and higher content of uronic acids were observed in LLP-D, which might contribute to its much stronger in vitro antioxidant, hypoglycemic, and immunomodulatory effects. These findings suggest that the optimized DES assisted extraction method can be a potential approach for specific extraction of acidic polysaccharides with good bioactivities from lotus leaves for applications in the functional food industry.
Collapse
|
79
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Liu CY, Sun YY, Jia YQ, Geng XQ, Pan LC, Jiang W, Xie BY, Zhu ZY. Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. Int J Biol Macromol 2021; 185:194-205. [PMID: 34166690 DOI: 10.1016/j.ijbiomac.2021.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
Steam explosion (SE) was a friendly environmentally pretreatment method. In this study, the effect of steam explosion (SE) pretreatment on structure and α-glucosidase inhibitory activity of Ampelopsis grossedentata polysaccharides was evaluated. Two novel polysaccharides (AGP and AGP-SE) were extracted, isolated, purified and analyzed by NMR, FT-IR and methylation. The results indicated that AGP mainly consisted of Rha, Xyl, Glc, and Ara with a molecular weight of 2.74 × 103 kDa and AGP-SE mainly consisted of Man, Ara, and Gal with a molecular weight of 2.14 × 103 kDa. Furthermore, the backbone of AGP and AGP-SE were mainly composed of 5)-Araf-(1→, -Glcp-(1→, 6)-Glcp-(1→, 6)-Galp-(1→, 3,6)-Manp-(1→, and 2,3,6)-Glcp-(1→. Finally, we demonstrated that all polysaccharides exhibited obviously α-glucosidase inhibition activity and mixed type inhibition. AGP-SE had better α-glucosidase inhibition activity and the binding affinity KD on α-glucosidase by using Surface Plasmon Resonance (SPR) than AGP. Overall, SE pretreatment is an effective method for extracting polysaccharide and provides a new idea into the improvement of biological activity.
Collapse
Affiliation(s)
- Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang-Yang Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yun-Qin Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue-Qing Geng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Chao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bei-Yu Xie
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
81
|
Shang XL, Liu CY, Dong HY, Peng HH, Zhu ZY. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from Wheat Bran. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
82
|
Polysaccharide Derived from Nelumbo nucifera Lotus Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers (Basel) 2021; 13:polym13111780. [PMID: 34071638 PMCID: PMC8199337 DOI: 10.3390/polym13111780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are key bioactive compounds in lotus plumule tea, but their anti-diabetes activities remain unclear. The purpose of this study was to investigate the prebiotic activities of a novel polysaccharide fraction from the Nelumbo nucifera lotus plumule, and to examine its regulation of glucose metabolism in insulin-resistant HepG2 cells. The N. nucifera polysaccharide (NNP) was purified after discoloration, hot water extraction, ethanol precipitation, and DEAE-cellulose chromatography to obtain purified polysaccharide fractions (NNP-2). Fourier transform infrared spectroscopy was used to analyze the main structural characteristics and functional group of NNP-2. Physicochemical characterization indicated that NNP-2 had a molecular weight of 110.47 kDa and consisted of xylose, glucose, fructose, galactose, and fucose in a molar ratio of 33.4:25.7:22.0:10.5:8.1. The prebiotic activity of NNP-2 was demonstrated in vitro using Lactobacillus and Bifidobacterium. Furthermore, NNP-2 showed bioactivity against α-glucosidase (IC50 = 97.32 µg/mL). High glucose-induced insulin-resistant HepG2 cells were used to study the effect of NNP-2 on glucose consumption, and the molecular mechanism of the insulin transduction pathway was studied using RT-qPCR. NNP-2 could improve insulin resistance by modulating the IRS1/PI3K/Akt pathway in insulin-resistant HepG2 cells. Our data demonstrated that the Nelumbo nucifera polysaccharides are potential sources for nutraceuticals, and we propose functional food developments from the bioactive polysaccharides of N. nucifera for the management of diabetes.
Collapse
|
83
|
Ultrasonic-Assisted Aqueous Two-Phase Extraction and Properties of Water-Soluble Polysaccharides from Malus hupehensis. Molecules 2021; 26:molecules26082213. [PMID: 33921423 PMCID: PMC8068786 DOI: 10.3390/molecules26082213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/02/2022] Open
Abstract
Malus hupehensis (M. hupehensis), an edible and medicinal plant with significant antioxidant and hypoglycemic activity, has been applied to new resource foods. However, the structural characterization and biological effects of its polysaccharides (MHP) are less known. The optimum extraction parameters to achieve the highest extraction efficiency (47.63%), the yield (1.68%) and purity of MHP (89.6%) by ultrasonic-assisted aqueous two-phase system (ATPS) were obtained under the liquid-to-solid ratio of 23 g/mL, ultrasonic power of 65 W, and ultrasonic time of 33 min. According to the analysis results, MHP was composed of Man, GlcA, Rha, GalA, Glc, Gal, Xyl, Ara, and Fuc, in which Ara and Gal were the main components, and the content of GlcA was the lowest. In in vitro activity analysis, MHP showed a significant antioxidant capacity, and an inhibition activity of α-glucosidase and the advanced glycation end products (AGEs) formation in the BSA/Glc reaction model. MHP interacted with α-glucosidase and changed the internal microenvironment of the enzyme, and inhibited the AGEs formation, which provides more evidence for the antihyperglycemic mechanism of MHP. The results suggest that ATPS is an efficient and environmentally friendly solvent system, and M. hupehensis has broad application prospects in functional foods, healthcare products, and pharmaceuticals.
Collapse
|