51
|
Kitichalermkiat A, Kurahachi M, Nonaka A, Nakayama M, Shimatani K, Shigemune N, Tsugukuni T, Hitomi J, Sato J, Sonoda T, Masuda Y, Honjoh KI, Miyamoto T. Effects of Epigallocatechin Gallate on Viability and Cellular Proteins of Staphylococcus aureus. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Apisada Kitichalermkiat
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Masahiro Kurahachi
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Ai Nonaka
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | | | | | | | | | - Jun Hitomi
- Safety Science Research, R&D, Kao Corporation
| | - Jun Sato
- Safety Science Research, R&D, Kao Corporation
| | | | - Yoshimitsu Masuda
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Ken-ichi Honjoh
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Takahisa Miyamoto
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| |
Collapse
|
52
|
Comparison of Biological Properties of Two Medicinal Extracts of the Tehuacan-Cuicatlan Valley. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4918090. [PMID: 30538760 PMCID: PMC6258104 DOI: 10.1155/2018/4918090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
In the Valley of Tehuacan-Cuicatlan, Cyrtocarpa procera and Bursera morelensis are located and are used in traditional medicine. In this research, several biological properties were evaluated. The methanol extracts of C. procera (MeCp) and B. morelensis (MeBm) were obtained by maceration. The antibacterial activities of the extracts were evaluated by the Kirby–Baüer disc-diffusion method. The wound healing activity was evaluated by histopathological analysis. Both extracts had a bacteriostatic effect in the Staphylococcus aureus (MeCp MIC = 0.25 mg/mL and MeBm MIC = 1 mg/mL) and the Vibrio cholerae (MeCp MIC = 1 mg/mL and MeBm MIC = 4 mg/mL). Both extracts demonstrated a wound healing efficacy similar to the reference standard (Recoveron). They also showed a high antioxidant capacity (MeCp SC50 = 5.75 μg/mL and MeBm SC50 = 4.27 μg/mL). These results are related to the concentration of phenols (MeCp = 166 and MeBm = 236.6 mg GAe/g) and flavonoids of MeCp = 16 and MeBm = 22 μg Qe/g. Both extracts, acting in a similar way in microorganisms that cause infection thanks to their antioxidant activity, favor the healing of wounds. This is the first study in which the biological properties of these two species are compared.
Collapse
|
53
|
Noor Mohammadi T, Maung A, Sato J, Sonoda T, Masuda Y, Honjoh K, Miyamoto T. Mechanism for antibacterial action of epigallocatechin gallate and theaflavin-3,3′-digallate on Clostridium perfringens. J Appl Microbiol 2018; 126:633-640. [DOI: 10.1111/jam.14134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Affiliation(s)
- T. Noor Mohammadi
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - A.T. Maung
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - J. Sato
- Safety Science Research; R&D; Kao Corporation; Ichikai-Machi Tochigi Japan
| | - T. Sonoda
- Safety Science Research; R&D; Kao Corporation; Ichikai-Machi Tochigi Japan
| | - Y. Masuda
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - K. Honjoh
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| | - T. Miyamoto
- Division of Food Science and Biotechnology; Department of Bioscience and Biotechnology; Faculty of Agriculture; Graduate School; Kyushu University; Fukuoka Japan
| |
Collapse
|
54
|
Bernal-Mercado AT, Vazquez-Armenta FJ, Tapia-Rodriguez MR, Islas-Osuna MA, Mata-Haro V, Gonzalez-Aguilar GA, Lopez-Zavala AA, Ayala-Zavala JF. Comparison of Single and Combined Use of Catechin, Protocatechuic, and Vanillic Acids as Antioxidant and Antibacterial Agents against Uropathogenic Escherichia Coli at Planktonic and Biofilm Levels. Molecules 2018; 23:molecules23112813. [PMID: 30380712 PMCID: PMC6278301 DOI: 10.3390/molecules23112813] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/01/2022] Open
Abstract
The objective of this study was to evaluate the effect of combining catechin, protocatechuic, and vanillic acids against planktonic growing, adhesion, and biofilm eradication of uropathogenic Escherichia coli (UPEC), as well as antioxidant agents. The minimum inhibitory concentrations (MIC) of protocatechuic, vanillic acids and catechin against the growth of planktonic bacteria were 12.98, 11.80, and 13.78 mM, respectively. Mixing 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin resulted in a synergistic effect acting as an MIC. Similarly, the minimum concentrations of phenolic compounds to prevent UPEC adhesion and biofilm formation (MBIC) were 11.03 and 7.13 mM of protocatechuic and vanillic acids, respectively, whereas no MBIC of catechin was found. However, combinations of 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin showed a synergistic effect acting as MBIC. On the other hand, the minimum concentrations to eradicate biofilms (MBEC) were 25.95 and 23.78 mM, respectively. The combination of 3.20 mM protocatechuic acid, 2.97 mM vanillic acid, and 1.72 mM catechin eradicated pre-formed biofilms. The antioxidant capacity of the combination of phenolics was higher than the expected theoretical values, indicating synergism by the DPPH•, ABTS, and FRAP assays. Effective concentrations of catechin, protocatechuic, and vanillic acids were reduced from 8 to 1378 times when combined. In contrast, the antibiotic nitrofurantoin was not effective in eradicating biofilms from silicone surfaces. In conclusion, the mixture of phenolic compounds was more effective in preventing cell adhesion and eradicating pre-formed biofilms of uropathogenic E. coli than single compounds and nitrofurantoin, and showed antioxidant synergy.
Collapse
Affiliation(s)
- Ariadna Thalia Bernal-Mercado
- Centro de Investigacion en Alimentacion y Desarrollo, AC, Carretera a la Victoria km. 0.6, Hermosillo 83000, Mexico.
| | | | - Melvin R Tapia-Rodriguez
- Centro de Investigacion en Alimentacion y Desarrollo, AC, Carretera a la Victoria km. 0.6, Hermosillo 83000, Mexico.
| | - Maria A Islas-Osuna
- Centro de Investigacion en Alimentacion y Desarrollo, AC, Carretera a la Victoria km. 0.6, Hermosillo 83000, Mexico.
| | - Veronica Mata-Haro
- Centro de Investigacion en Alimentacion y Desarrollo, AC, Carretera a la Victoria km. 0.6, Hermosillo 83000, Mexico.
| | - Gustavo A Gonzalez-Aguilar
- Centro de Investigacion en Alimentacion y Desarrollo, AC, Carretera a la Victoria km. 0.6, Hermosillo 83000, Mexico.
| | - Alonso A Lopez-Zavala
- Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora 83000, Mexico.
| | - Jesus Fernando Ayala-Zavala
- Centro de Investigacion en Alimentacion y Desarrollo, AC, Carretera a la Victoria km. 0.6, Hermosillo 83000, Mexico.
| |
Collapse
|
55
|
Yang J, Tang CB, Xiao J, Du WF, Li R. Influences of epigallocatechin gallate and citric acid on Escherichia coli O157:H7 toxin gene expression and virulence-associated stress response. Lett Appl Microbiol 2018; 67:435-441. [PMID: 30066955 DOI: 10.1111/lam.13058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 01/22/2023]
Abstract
Citric acid and EGCG at their minimum inhibitory concentrations were tested in this study. Logarithmic phase cells of Escherichia coli O157:H7 (ATCC 43895) were exposed to EGCG and citric acid respectively. The results of RT-real time PCR showed that both EGCG and citric acid increased stx2 and oxyR expression and decreased stx1, recA and Q expression. The result of Western blotting for RecA protein further indicated that both EGCG and citric acid decreased RecA production. Both EGCG and citric acid increased the level of intracellular reactive oxygen species and H2 O2 production and decreased superoxide dismutase activity. Therefore, EGCG and citric acid might induce stx2 production by increasing oxidative stress response and inhibit stx1 production by suppressing SOS response. In our study, the differential effects of the two antimicrobials were observed. EGCG reduced ompC and rpoS expression. However, citric acid caused an increase in ompC and rpoS expression. Membrane permeability is associated with toxin release. Citric acid increased the outer membrane permeability of E. coli O157:H7. However, the outer membrane of E. coli O157:H7 remained unaffected by EGCG. SIGNIFICANCE AND IMPACT OF THE STUDY Shiga toxins are the major virulence factors of Escherichia coli O157:H7. The use of antimicrobials triggering Shiga toxin production is controversial. (-)-epigallocatechin-3-gallate (EGCG) citric acid are often used singly or in combination to prevent micro-organisms in some food products. This study evaluated toxin induction in E. coli O157:H7 in response to EGCG and citric acid and investigated the potential mechanism of action. The findings may contribute to the proper use of EGCG and citric acid as antimicrobials.
Collapse
Affiliation(s)
- J Yang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - C B Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J Xiao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - W F Du
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - R Li
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
56
|
He Q, Gong B, He J, Yang X, Xiao K, Zhu L. A novel superchilling storage - ice glazing (SS-IG) approach using biopolymer-based composite hydrogel to delay microbiological spoilage and organic oxidation of preserved tilapia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5045-5051. [PMID: 29603240 DOI: 10.1002/jsfa.9040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Most aquatic products are highly susceptible to deterioration and microbial spoilage during storage. Cold storage is a frequently used method to preserve them. However, products preserved by traditional frozen method are prone to suffer damage. This can significantly impair the quality of the products. To solve the problem, this work established a novel superchilling storage-ice glazing (SS-IG) approach using chitosan-catechin composite material. It can maximize the postmortem quality of preserved products during storage, avoiding damage. RESULTS During storage at -1.5 ± 0.2 °C for 25 days, the SS-IG approach using 5 g L-1 chitosan and 1∼3 g L-1 catechin as IG layers can effectively enhance the postmortem quality of preserved tilapia fillets. The sensory qualities of these fillets were effectively maintained. The microbial counts in these fillets were strongly suppressed. Oxidative rancidity in these fillets was observably inhibited. Less biogenic amine was produced in these fillets. CONCLUSION The results indicated that the SS-IG with chitosan-catechin composite-ice glazing layers can be effective in maintaining the postmortem quality of tilapia fillets. This will have a wide potential application. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi He
- Department of sugar engineering, College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bin Gong
- Department of sugar engineering, College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiapeng He
- Department of sugar engineering, College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaocui Yang
- Department of sugar engineering, College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Kaijun Xiao
- Department of sugar engineering, College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Liang Zhu
- Department of sugar engineering, College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
57
|
Jing Y, Huang J, Yu X. Preparation, characterization, and functional evaluation of proanthocyanidin-chitosan conjugate. Carbohydr Polym 2018; 194:139-145. [DOI: 10.1016/j.carbpol.2018.04.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
|
58
|
Abstract
With the advent of the global antimicrobial resistance (AMR) crisis, our arsenal of effective antibiotics is diminishing. The widespread use and misuse of antibiotics in human and veterinary medicine, compounded by the lack of novel classes of antibiotic in the pharmaceutical pipeline, has left a hole in our antibiotic armamentarium. Thus, alternatives to traditional antibiotics are being investigated, including two major groups of antibacterial agents, which have been extensively studied, phytochemicals and metals. Within these groups, there are several subclasses of compound/elements, including polyphenols and metal nanoparticles, which could be used to complement traditional antibiotics, either to increase their potency or extend their spectrum of activity. Alone or in combination, these antibacterial agents have been shown to be effective against a vast array of human and animal bacterial pathogens, including those resistant to licensed antibacterials. These alternative antibacterial agents could be a key element in our fight against AMR and provide desperately needed options, to veterinary and medical clinicians alike.
Collapse
|
59
|
Li Z, Xie J, Tian X, Li K, Hou A, Wang Y. Proteomic changes in EHEC O157:H7 under catechin intervention. Microb Pathog 2018; 123:9-17. [PMID: 29936094 DOI: 10.1016/j.micpath.2018.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
Abstract
Catechin exhibits antimicrobial activity against various microorganisms, such as EHEC O157:H7. This study reports the bactericidal effect of catechin on EHEC O157:H7 in simulated human gastrointestinal environment and the underlying antibacterial mechanism. Bacteriostasis test results showed that the minimum bactericidal concentration of catechin for EHEC O157:H7 was 5 g/L. The bactericidal effect of catechin in the gastrointestinal juice became more significant with increased culture time, and catechin exhibited a synergistic effect with bile salt in inhibiting EHEC O157:H7. Changes in the profile of protein expression in EHEC O157:H7 in response to catechin intervention were investigated. Two-dimensional electrophoresis identified 34 proteins with significantly altered expression. A total of 2 and 12 proteins were upregulated and downregulated, respectively. However, 20 proteins disappeared. No new protein was expressed compared with the control. Hence, catechin intervention resulted in diverse changes in the expression of proteins associated with cell structure and genetic information processing. Catechin could cause the disappearance of certain proteins or the destruction of certain peptides. These processes lead to the inhibition of EHEC O157: H7 cells.
Collapse
Affiliation(s)
- Zongjun Li
- College of Food Science and Technology, Hunan Agriculture University, Changsha, 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha, 410128, China
| | - Jiaqi Xie
- College of Food Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Xing Tian
- College of Food Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agriculture University, Changsha, 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha, 410128, China.
| |
Collapse
|
60
|
Nikoo M, Regenstein JM, Ahmadi Gavlighi H. Antioxidant and Antimicrobial Activities of (-)-Epigallocatechin-3-gallate (EGCG) and its Potential to Preserve the Quality and Safety of Foods. Compr Rev Food Sci Food Saf 2018; 17:732-753. [PMID: 33350134 DOI: 10.1111/1541-4337.12346] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Quality deterioration of fresh or processed foods is a major challenge for the food industry not only due to economic losses but also due to the risks associated with spoiled foods resulting, for example, from toxic compounds. On the other hand, there are increasing limitations on the application of synthetic preservatives such as antioxidants in foods because of their potential links to human health risks. With the new concept of functional ingredients and the development of the functional foods market, and the desire for a "clean" label, recent research has focused on finding safe additives with multifunctional effects to ensure food safety and quality. (-)-Epigallocatechin-3-gallate (EGCG), a biologically active compound in green tea, has received considerable attention in recent years and is considered a potential alternative to synthetic food additives. EGCG has been shown to prevent the growth of different Gram-positive and Gram-negative bacteria responsible for food spoilage while showing antioxidant activity in food systems. This review focuses on recent findings related to EGCG separation techniques, modification of its structure, mechanisms of antioxidant and antimicrobial activities, and applications in preserving the quality and safety of foods.
Collapse
Affiliation(s)
- Mehdi Nikoo
- the Dept. of Pathobiology and Quality Control, Artemia and Aquaculture Research Inst., Urmia Univ., Urmia, West Azerbaijan, 57561-51818, Iran
| | - Joe M Regenstein
- Dept. of Food Science, Cornell Univ., Ithaca, N.Y., 14853-7201, U.S.A
| | - Hassan Ahmadi Gavlighi
- Dept. of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares Univ., Tehran, 14115-336, Iran
| |
Collapse
|
61
|
Du W, Zhou M, Liu Z, Chen Y, Li R. Inhibition effects of low concentrations of epigallocatechin gallate on the biofilm formation and hemolytic activity of Listeria monocytogenes. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
62
|
Nie T, Zhang C, Huang A, Li P. Epigallocatechin Gallate-Mediated Cell Death Is Triggered by Accumulation of Reactive Oxygen Species Induced via the Cpx Two-Component System in Escherichia coli. Front Microbiol 2018; 9:246. [PMID: 29497416 PMCID: PMC5819313 DOI: 10.3389/fmicb.2018.00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
The high antimicrobial activity of epigallocatechin gallate (EGCG), the most bioactive component of tea polyphenol with a number of health benefits, is well-known. However, little is known about the mechanism involved. Here, we discovered the relationship between reactive oxygen species (ROS), the Cpx system, and EGCG-mediated cell death. We first found an increase in ampicillin resistance as well as the transcription level of a LD-transpeptidase (LD-TPase) involved in cell wall synthesis; ycbB transcription was upregulated whereas that of another LD-TPase, ynhG, appeared to be constant after a short exposure of Escherichia coli to sub-inhibitory doses of EGCG. Additionally, the transcription level of cpxP, a downstream gene belonging to the Cpx regulon, was positively correlated with the concentration of EGCG, and significant upregulation was detected when cells were treated with high doses of EGCG. Through analysis of a cpxR deletion strain (ΔcpxR), we identified a constant ROS level and a notable increase in the survival rate of ΔcpxR, while the ROS level increased and the survival rate decreased remarkably in the wild-type strain. Furthermore, thiourea, which is an antioxidant, reduced the ROS level and antimicrobial activity of EGCG. Taken together, these results suggest that EGCG induces ROS formation by activating the Cpx system and mediates cell death.
Collapse
Affiliation(s)
- Tao Nie
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenlu Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Antian Huang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
63
|
Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol (Praha) 2018; 63:413-432. [PMID: 29352409 DOI: 10.1007/s12223-018-0585-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa, a Gram-negative, rod-shaped bacterium causes widespread diseases in humans. This bacterium is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteriaemia especially in immunocompromised patients. The current review focuses on the recent perspectives on biofilms formation by these bacteria. Biofilms are communities of microorganisms in which cells stick to each other and often adhere to a surface. These adherent cells are usually embedded within a self-produced matrix of extracellular polymeric substance (EPS). Pel, psl and alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell surface interactions during biofilm formation. Recent studies suggested that cAMP signalling pathway, quorum-sensing pathway, Gac/Rsm pathway and c-di-GMP signalling pathway are the main mechanism that leads to the biofilm formation. Understanding the bacterial virulence depends on a number of cell-associated and extracellular factors and is very essential for the development of potential drug targets. Thus, the review focuses on the major genes involved in the biofilm formation, the state of art update on the biofilm treatment and the dispersal approaches such as targeting adhesion and maturation, targeting virulence factors and other strategies such as small molecule-based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides and natural therapies and vaccines to curtail the biofilm formation by P. aeruginosa.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India.
| | - Vaishnavi Sneha Sridhar
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Swathi Packirisamy
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Supreetha Toplar Kumargowda
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| | - Sneha Basavaraj Challapilli
- Department of Biotechnology, R & D Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, 560 078, India
| |
Collapse
|
64
|
Tang C, Xie B, Sun Z. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
65
|
Zhang Y, Wu YT, Zheng W, Han XX, Jiang YH, Hu PL, Tang ZX, Shi LE. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
66
|
Miyamoto T, Zhang X, Ueyama Y, Apisada K, Nakayama M, Suzuki Y, Ozawa T, Mitani A, Shigemune N, Shimatani K, Yui K, Honjoh KI. Development of novel monoclonal antibodies directed against catechins for investigation of antibacterial mechanism of catechins. J Microbiol Methods 2017; 137:6-13. [PMID: 28347725 DOI: 10.1016/j.mimet.2017.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 11/15/2022]
Abstract
Catechins are major polyphenolic compounds of green tea. To investigate mechanism for antibacterial action of catechins, 11 monoclonal antibodies (MAbs) were raised against a 3-succinyl-epicatechin (EC)-keyhole limpet hemocyanin (KLH) conjugate. Amino acid sequences of variable regions determined for MAbs b-1058, b-1565, and b-2106 confirmed their innovative character. MAb b-1058 strongly interacted with its target substances in the following order of magnitude: theaflavin-3,3'-di-O-gallate (TFDG)>theaflavin-3-O-gallate (TF3G)≥theaflavin-3'-O-gallate (TF3'G)>gallocatechin gallate (GCg)>penta-O-galloyl-β-d-glucose (PGG)>epigallocatechin gallate (EGCg), as determined using surface plasmon resonance (SPR) on MAb-immobilized sensor chips. The affinity profiles of MAbs b-1058 and b-2106 to the various polyphenols tested suggested that flavan skeletons with both carbonyl oxygen and hydroxyl groups are important for this interaction to take place. S. aureus cells treated with EGCg showed green fluorescence around the cells after incubation with FITC-labeled MAb b-1058. The fluorescence intensity increased with increasing concentrations of EGCg. These MAbs are effective to investigate antibacterial mechanism of catechins and theaflavins.
Collapse
Affiliation(s)
- Takahisa Miyamoto
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Xiaoguang Zhang
- College of Food Science and Engineering, Jilin University, No. 5988 Renmin Street, Nanguan District, Changchun 130022, PR China
| | - Yuuki Ueyama
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kitichalermkiat Apisada
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Motokazu Nakayama
- R&D Core Technology Safety Science Research, Kao Corporation, Akabane 2606, Haga-Gun, Ichikai-Machi, Tochigi 321-3497, Japan
| | - Yasuto Suzuki
- Product Quality Management, Chemicals Regulation, Global, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Tadahiro Ozawa
- Bioscience Research, Kao Corporation, Akabane 2606, Haga-Gun, Ichikai-Machi, Tochigi 321-3497, Japan
| | - Asako Mitani
- R&D Core Technology Safety Science Research, Kao Corporation, Akabane 2606, Haga-Gun, Ichikai-Machi, Tochigi 321-3497, Japan
| | - Naofumi Shigemune
- R&D Core Technology Safety Science Research, Kao Corporation, Akabane 2606, Haga-Gun, Ichikai-Machi, Tochigi 321-3497, Japan
| | - Kanami Shimatani
- R&D Core Technology Safety Science Research, Kao Corporation, Akabane 2606, Haga-Gun, Ichikai-Machi, Tochigi 321-3497, Japan
| | - Koji Yui
- R&D Core Technology Safety Science Research, Kao Corporation, Akabane 2606, Haga-Gun, Ichikai-Machi, Tochigi 321-3497, Japan
| | - Ken-Ichi Honjoh
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
67
|
Lee S, Razqan GSA, Kwon DH. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 24:49-55. [PMID: 28160861 DOI: 10.1016/j.phymed.2016.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Infections caused by Acinetobacter baumannii were responsive to conventional antibiotic therapy. However, recently, carbapenem-associated multidrug resistant isolates have been reported worldwide and present a major therapeutic challenge. Epigallocatechin-3-Gallate (EGCG) extracted from green tea exhibits antibacterial activity. PURPOSE We evaluated the antibacterial activity of EGCG and possible synergism with antibiotics in carbapenem-associated multidrug resistant A. baumannii. A potential mechanism for synergism was also explored. MATERIALS AND METHODS Seventy clinical isolates of A. baumannii collected from geographically different areas were analyzed by minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EGCG. Checkerboard and time-killing assays were performed to exam the synergism between EGCG and antibiotics. The effects of EGCG on a multidrug efflux pump inhibitor (1-[1-naphthylmethyl] piperazine; NMP) and β-lactamase production were also examined in A. baumannii. RESULTS Sixty-three of 70 clinical isolates of A. baumannii carried carbapenemase-encoding genes with carbapenem-associated multidrug resistance. Levels of MIC and MBC of EGCG ranged from 64 to 512µg/ml and from 128 to ≥1024µg/ml, respectively among the clinical isolates. MIC90 and MBC86 levels were 256µg/ml and 512µg/ml of EGCG, respectively. Subinhibitory concentration of EGCG in combination with all antibiotics tested, including carbapenem, sensitized (MICs fall≤1.0µg/ml) all carbapenem-associated multidrug resistant isolates. Checkerboard and time-killing assays showed synergism between EGCG and meropenem (or carbenicillin) counted as fractional inhibitory concentration of < 0.5 and cell numbers' decrease per ml of >2log10 within 12h, respectively. EGCG significantly increased the effect of NMP but was unrelated to β-lactamase production in A. baumannii, suggesting EGCG may be associated with inhibition of efflux pumps. CONCLUSION Overall we suggest that EGCG-antibiotic combinations might provide an alternative approach to treat infections with A. baumannii regardless of antibiotic resistance.
Collapse
Affiliation(s)
- Spencer Lee
- Jericho Senior High School, Jericho, New York 11753, United States
| | | | - Dong H Kwon
- Department of Biology, Long Island University, Brooklyn, New York, 11201, United States ; Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, 77030, United States.
| |
Collapse
|
68
|
Wang LH, Wang MS, Zeng XA, Xu XM, Brennan CS. Membrane and genomic DNA dual-targeting of citrus flavonoid naringenin against Staphylococcus aureus. Integr Biol (Camb) 2017; 9:820-829. [DOI: 10.1039/c7ib00095b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naringenin exerts its antibacterial action by disruption of the cytoplasmic membrane and DNA targeting effects inStaphylococcus aureus.
Collapse
Affiliation(s)
- Lang-Hong Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Man-Sheng Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Institute of Bast Fiber Crops
| | - Xin-An Zeng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xi-Ming Xu
- Institute of Bioinformatics and Medical Engineering
- School of Electrical and Information Engineering
- Jiangsu University of Technology
- Changzhou 213000
- China
| | - Charles S. Brennan
- Department of Wine
- Food and Molecular Biosciences
- Lincoln University
- Canterbury
- New Zealand
| |
Collapse
|
69
|
Stenvang M, Dueholm MS, Vad BS, Seviour T, Zeng G, Geifman-Shochat S, Søndergaard MT, Christiansen G, Meyer RL, Kjelleberg S, Nielsen PH, Otzen DE. Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment. J Biol Chem 2016; 291:26540-26553. [PMID: 27784787 DOI: 10.1074/jbc.m116.739953] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/07/2016] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea. It has antimicrobial properties and disrupts the ordered structure of amyloid fibrils involved in human disease. The antimicrobial effect of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disruption of quorum sensing (QS). Functional amyloid fibrils in P. aeruginosa (Fap) are able to bind and retain quorum-sensing molecules, suggesting that EGCG interferes with QS through structural remodeling of amyloid fibrils. Here we show that EGCG inhibits the ability of Fap to form fibrils; instead, EGCG stabilizes protein oligomers. Existing fibrils are remodeled by EGCG into non-amyloid aggregates. This fibril remodeling increases the binding of pyocyanin, demonstrating a mechanism by which EGCG can affect the QS function of functional amyloid. EGCG reduced the amyloid-specific fluorescent thioflavin T signal in P. aeruginosa biofilms at concentrations known to exert an antimicrobial effect. Nanoindentation studies showed that EGCG reduced the stiffness of biofilm containing Fap fibrils but not in biofilm with little Fap. In a combination treatment with EGCG and tobramycin, EGCG had a moderate effect on the minimum bactericidal eradication concentration against wild-type P. aeruginosa biofilms, whereas EGCG had a more pronounced effect when Fap was overexpressed. Our results provide a direct molecular explanation for the ability of EGCG to disrupt P. aeruginosa QS and modify its biofilm and strengthens the case for EGCG as a candidate in multidrug treatment of persistent biofilm infections.
Collapse
Affiliation(s)
- Marcel Stenvang
- From the Interdisciplinary Nanoscience Center (iNANO).,Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN).,the Sino-Danish Centre for Education and Research (SDC), 8000 Aarhus C, Denmark
| | - Morten S Dueholm
- the Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark
| | - Brian S Vad
- From the Interdisciplinary Nanoscience Center (iNANO).,Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN)
| | - Thomas Seviour
- the Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore 637551, Singapore
| | | | - Susana Geifman-Shochat
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, and
| | - Mads T Søndergaard
- the Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark
| | | | - Rikke Louise Meyer
- From the Interdisciplinary Nanoscience Center (iNANO).,the Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Staffan Kjelleberg
- the Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore 637551, Singapore.,the Centre for Marine Bio-innovation and School of Biotechnology and Biomolecular Science, University of New South Wales, Mosman, New South Wales 2088, Australia
| | - Per Halkjær Nielsen
- the Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark.,the Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore 637551, Singapore
| | - Daniel E Otzen
- From the Interdisciplinary Nanoscience Center (iNANO), .,Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures (inSPIN)
| |
Collapse
|
70
|
Moreno-Vásquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodríguez-Félix F, Sánchez-Valdes S, Rosas-Burgos EC, Ocaño-Higuera VM, Graciano-Verdugo AZ. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydr Polym 2016; 155:117-127. [PMID: 27702495 DOI: 10.1016/j.carbpol.2016.08.056] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023]
Abstract
Chitosan was functionalized with epigallocatechin gallate (EGCG) by a free radical-induced grafting procedure, which was carried out by a redox pair (ascorbic acid/hydrogen peroxide) as the radical initiator. The successful preparation of EGCG grafted-chitosan was verified by spectroscopic (UV, FTIR and XPS) and thermal (DSC and TGA) analyses. The degree of grafting of phenolic compounds onto the chitosan was determined by the Folin-Ciocalteu procedure. Additionally, the biological activities (antioxidant and antibacterial) of pure EGCG, blank chitosan and EGCG grafted-chitosan were evaluated. The spectroscopic and thermal results indicate chitosan functionalization with EGCG; the EGCG content was 25.8mg/g of EGCG grafted-chitosan. The antibacterial activity of the EGCG grafted-chitosan was increased compared to pure EGCG or blank chitosan against S. aureus and Pseudomonas sp. (p<0.05). Additionally, EGCG grafted-chitosan showed higher antioxidant activity than blank chitosan. These results indicate that EGCG grafted-chitosan might be useful in active food packaging.
Collapse
Affiliation(s)
- María Jesús Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | - Emma Lucía Valenzuela-Buitimea
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, México
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | | |
Collapse
|
71
|
Cota-Arriola O, Plascencia-Jatomea M, Lizardi-Mendoza J, Robles-Sánchez RM, Ezquerra-Brauer JM, Ruíz-García J, Vega-Acosta JR, Cortez-Rocha MO. Preparation of chitosan matrices with ferulic acid: physicochemical characterization and relationship on the growth ofAspergillus parasiticus. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1213317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
72
|
Serra DO, Mika F, Richter AM, Hengge R. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σ(E) -dependent sRNA RybB. Mol Microbiol 2016; 101:136-51. [PMID: 26992034 DOI: 10.1111/mmi.13379] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 01/17/2023]
Abstract
In bacterial biofilms, which are often involved in chronic infections, cells are surrounded by a self-produced extracellular matrix that contains amyloid fibres, exopolysaccharides and other biopolymers. The matrix contributes to the pronounced resistance of biofilms against antibiotics and host immune systems. Being highly inflammatory, matrix amyloids such as curli fibres of Escherichia coli can also play a role in pathogenicity. Using macrocolony biofilms of commensal and pathogenic E. coli as a model system, we demonstrate here that the green tea polyphenol epigallocatachin gallate (EGCG) is a potent antibiofilm agent. EGCG virtually eliminates the biofilm matrix by directly interfering with the assembly of curli subunits into amyloid fibres, and by triggering the σ(E) cell envelope stress response and thereby reducing the expression of CsgD - a crucial activator of curli and cellulose biosynthesis - due to csgD mRNA targeting by the σ(E) -dependent sRNA RybB. These findings highlight EGCG as a potential adjuvant for antibiotic therapy of biofilm-associated infections. Moreover, EGCG may support therapies against pathogenic E. coli that produce inflammatory curli fibres along with Shigatoxin.
Collapse
Affiliation(s)
- Diego O Serra
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Franziska Mika
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Anja M Richter
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| |
Collapse
|
73
|
Mingo E, Silván JM, Martinez-Rodriguez AJ. Selective antibacterial effect on Campylobacter of a winemaking waste extract (WWE) as a source of active phenolic compounds. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
74
|
Gaudreau H, Champagne CP, Remondetto GE, Alvarez PA, Gomaa A, Subirade M. Tea extract render probiotic Lactobacillus helveticus more resistant to oxygen exposure through lipid modification mechanism. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
75
|
Li YQ, Sun XX, Feng JL, Mo HZ. Antibacterial activities and membrane permeability actions of glycinin basic peptide against Escherichia coli. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
76
|
Troć A, Zimnicka M, Danikiewicz W. Separation of catechin epimers by complexation using ion mobility mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:542-548. [PMID: 25800190 DOI: 10.1002/jms.3560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/29/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
Ion mobility coupled with mass spectrometry provides a fast and repeatable method to separate catechin epimers by previous complexation with selected chiral modifiers and transition metals. Several combinations with chiral ligands such as D- and L-amino acids and/or additional metal cations, chiral crown ethers, tartaric acid and heptakis(2,6-di-O-methyl)-β-cyclodextrin were screened for their ability to affect the separation efficiency. The clusters having the form of [2M + D-amino acid + Cu(2+) - 3H](-) (M stands for (-)-epicatechin or (+)-catechin) showed improvement in stereodifferentiation between two epimeric catechins in comparison to the analysis of pure epimers, where no separation was observed or the separation was hampered by the formation of mixed dimer complexes. Among various examined D-amino acids only those possessing hydrophobic side chains induced the improvement of separation efficiency. The best peak-to-peak resolution (Rp-p) was determined to be 0.71 for [2M + D-Leucine + Cu(2+) - 3H](-) clusters.
Collapse
Affiliation(s)
- Anna Troć
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | | | | |
Collapse
|
77
|
Nakayama M, Shimatani K, Ozawa T, Shigemune N, Tomiyama D, Yui K, Katsuki M, Ikeda K, Nonaka A, Miyamoto T. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci Biotechnol Biochem 2015; 79:845-54. [PMID: 25559894 DOI: 10.1080/09168451.2014.993356] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Catechins are a class of polyphenols and have high anti-bacterial activity against various microorganisms. Here, we report the mechanism for antibacterial activity of epigallocatechin gallate (EGCg) against Gram-positive bacteria Bacillus subtilis, which is highly sensitive to EGCg. Transmission electron microscope analysis revealed that deposits containing EGCg were found throughout the cell envelope from the outermost surface to the outer surface of cytoplasmic membrane. Aggregating forms of proteins and EGCg were identified as spots that disappeared or showed markedly decreased intensity after the treatment with EGCg compared to the control by two-dimensional electrophoresis. Among the identified proteins included 4 cell surface proteins, such as oligopeptide ABC transporter binding lipoprotein, glucose phosphotransferase system transporter protein, phosphate ABC transporter substrate-binding protein, and penicillin-binding protein 5. Observations of glucose uptake of cells and cell shape B. subtilis after the treatment with EGCg suggested that EGCg inhibits the major functions of these proteins, leading to growth inhibition of B. subtilis.
Collapse
|
78
|
Nakayama M, Tomiyama D, Shigemune N, Mitani A, Xu W, Miyamoto T. Cell surface Hydrophobicity Contributes to Lactobacillus Tolerance to Antibacterial Actions of Catechins. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Asako Mitani
- R&D-Health Care Food Research Laboratories, Kao Corporation
| | - Wenjie Xu
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Takahisa Miyamoto
- Division of Food Science and Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| |
Collapse
|