51
|
Liu J, Cheng D, Zhang D, Han L, Gan Y, Zhang T, Yu Y. Incorporating ε-Polylysine Hydrochloride, Tea Polyphenols, Nisin, and Ascorbic Acid into Edible Coating Solutions: Effect on Quality and Shelf Life of Marinated Eggs. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
52
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
53
|
Teng X, Zhang M, Mujumdar AS, Wang H. Garlic essential oil microcapsules prepared using gallic acid grafted chitosan: Effect on nitrite control of prepared vegetable dishes during storage. Food Chem 2022; 388:132945. [PMID: 35472626 DOI: 10.1016/j.foodchem.2022.132945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Abstract
In order to lower the nitrite content in prepared vegetable dishes (PVDs) within a week, microcapsules loaded with garlic essential oils (GEO) were prepared using modified chitosan (CS) with different mass ratios of gallic acid (GA) to CS, and their physicochemical properties were determined. The effects of GEO alone and of microcapsules made using native CS and GA-CS (GA-grafted CS) with the highest conjugation degree on the nitrite content in PVDS were measured quantitatively. Also, the reasons for the differences were identified. The results showed that the microcapsules prepared using GA-CS (at a mass ratio of 0.5:1) presented the best physicochemical properties, including antioxidant activity, encapsulation efficiency, sustained release, etc. GA-CS microcapsules enhanced growth inhibition of bacteria producing nitrites, thus showing its excellent ability to inhibit nitrites, compared to GEO alone and microcapsules made using native CS. GA-CS encapsulation is a new option to lower the nitrite content in PVDs.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Hongqiang Wang
- Tianwei Food Group Incorporated Company, Chengdu, Sichuan 610000, China
| |
Collapse
|
54
|
Cui F, Ning Y, Wang D, Li J, Li X, Li T. Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation. Crit Rev Food Sci Nutr 2022; 64:203-219. [PMID: 35912471 DOI: 10.1080/10408398.2022.2105801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-resistant bacteria are caused by antibiotic abuse and/or biofilm formation and have become a threat to the food industry. Carbon dot (CD)-based nanomaterials are a very promising tools for combating pathogenic and spoilage bacteria, and they possess exceptional and adjustable photoelectric and chemical properties. In view of the rapid development of CD-based nanomaterials and their increasing popularity in the food industry, a comprehensive and updated review is needed to summarize their antimicrobial mechanisms and applications in foods. This review discusses the synthesis of CDs, antimicrobial mechanisms, and their applications for extending the shelf life of food. It includes the synthesis of CDs using small molecules, polymers, and biomass. It also discusses the different antimicrobial mechanisms of CDs and their use as antibacterial agents and carriers/ligands. CD-based materials have proven effective against pathogenic and spoilage bacteria in food by inhibiting planktonic bacteria and biofilms. Optimization of the production parameters of CDs can help them achieve a full-spectral response, but degradability still requires further research.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Yuanyuan Ning
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
- College of Food Science and Technology, Jiangnan University, Wuxi Jiangsu, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian Liaoning, China
| |
Collapse
|
55
|
Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, Hosseini H, Hosseinzadeh N, Sabahi S, Noori SMA, Sepordeh S, Khodadadi E, Lahouty M, Kafil HS. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s ( Allium sativum L.) Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sama Sepordeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas—Fayetteville, Fayetteville, AR, USA
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
56
|
Li YX, Erhunmwunsee F, Liu M, Yang K, Zheng W, Tian J. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chem 2022; 382:132312. [PMID: 35158267 DOI: 10.1016/j.foodchem.2022.132312] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Spice essential oils (SEOs) are commonly used in food flavoring and are considered an effective food preservative. It has a broad range of applications and promising development prospects. As a natural food additive, SEOs' antimicrobial effects have been widely studied and utilized towards food preservation. Many SEOs have exhibited significant antimicrobial activities against food-borne pathogenic and food spoilage microorganisms. We reviewed the antibacterial and antifungal properties of SEOs, the active components, their corresponding mechanisms of actions, as well as their application in the food industry, providing a theoretical basis for SEOs' further development and application as natural preservatives.
Collapse
Affiliation(s)
- Yong-Xin Li
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| | - Famous Erhunmwunsee
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Man Liu
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Kunlong Yang
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Weifa Zheng
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Jun Tian
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
57
|
Novel assistive technologies for efficient freezing of pork based on high voltage electric field and static magnetic field: A comparative study. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Hu R, Zhang M, Mujumdar AS. Application of infrared and microwave heating prior to freezing of pork: Effect on frozen meat quality. Meat Sci 2022; 189:108811. [PMID: 35398771 DOI: 10.1016/j.meatsci.2022.108811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The effect of thermal treatment using infrared and microwave fields on freezing of pork loin was investigated. Several infrared and microwave treatment protocols were designed and tested to determine the thawing losses is each case to identify the most suitable one which yielded the best quality. In addition, the state of moisture in the meat, cooking loss, texture, color, pH, Thiobarbituric acid-reactive substances (TBARS), and other indicators were also evaluated. The results show that both microwave and infrared pre-dehydration can reduce the thawing loss of pork loin; the minimum loss is only about 1.7% using microwave 50 W intensity of 1.92 W/g of wet pork. Pre-dehydration also reduced the hardness of all samples and increased springiness, cohesiveness, and resilience. It is noteworthy that pretreatment did not damage the color. Based on the results of this study it is concluded that thermal pretreatment using microwave or infrared fields of appropriate strength prior to freezing can yield good quality frozen pork meat.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne decBellevue, Quebec, Canada
| |
Collapse
|
59
|
Du J, Zhang M, Zhang L, Law CL, Liu K. Shelf-Life Prediction and Critical Value of Quality Index of Sichuan Sauerkraut Based on Kinetic Model and Principal Component Analysis. Foods 2022; 11:foods11121762. [PMID: 35741958 PMCID: PMC9222660 DOI: 10.3390/foods11121762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
Kinetic models and accelerated shelf-life testing were employed to estimate the shelf-life of Sichuan sauerkraut. The texture, color, total acid, microbe, near-infrared analysis, volatile components, taste, and sensory evaluation of Sichuan sauerkraut stored at 25, 35, and 45 °C were determined. Principal component analysis (PCA) and Fisher discriminant analysis (FDA) were used to analyze the e-tongue data. According to the above analysis, Sichuan sauerkraut with different storage times can be divided into three types: completely acceptable period, acceptable period, and unacceptable period. The model was found to be useful to determine the critical values of various quality indicators. Furthermore, the zero-order kinetic reaction model (R2, 0.8699-0.9895) was fitted better than the first-order kinetic reaction model. The Arrhenius model (Ea value was 47.23-72.09 kJ/mol, kref value was 1.076 × 106-9.220 × 1010 d-1) exhibited a higher fitting degree than the Eyring model. Based on the analysis of physical properties, the shelf-life of Sichuan sauerkraut was more accurately predicted by the combination of the zero-order kinetic reaction model and the Arrhenius model, while the error back propagation artificial neural network (BP-ANN) model could better predict the chemical properties. It is a better choice for dealers and consumers to judge the shelf life and edibility of food by shelf-life model.
Collapse
Affiliation(s)
- Jie Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.D.); (L.Z.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.D.); (L.Z.)
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85877225
| | - Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.D.); (L.Z.)
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, Malaysia Campus, University of Nottingham, Semenyih 43500, Selangor, Malaysia;
| | - Kun Liu
- Sichuan Tianwei Food Group Co., Ltd., Chengdu 610207, China;
| |
Collapse
|
60
|
Zhang M, Luo W, Yang K, Li C. Effects of Sodium Alginate Edible Coating with Cinnamon Essential Oil Nanocapsules and Nisin on Quality and Shelf Life of Beef Slices during Refrigeration. J Food Prot 2022; 85:896-905. [PMID: 34979546 DOI: 10.4315/jfp-21-380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The effects of a new edible sodium alginate (SA) coating incorporating cinnamon essential oil nanocapsules (CEO-NPs) and nisin were investigated with beef slices in refrigerated storage for 15 days. All beef samples were analyzed for physicochemical properties (pH, weight loss, and total volatile base nitrogen) and antimicrobial activity against total bacteria. Changes in color parameters and sensory attributes of all beef samples also were evaluated. Incorporation of the complex of CEO-NPs and nisin into the SA coating retarded the growth of microorganisms and reduced lipid oxidation, as determined by pH, total volatile base nitrogen, and total bacteria counts. This treatment also extended the shelf life of beef slices to 15 days. The SA coating with CEO-NPs and nisin significantly reduced weight loss and improved color, odor, texture, and purge quality of the beef samples. These results suggest that treatment with the SA coating enriched with CEO-NPs and nisin can significantly retard the deterioration of beef slices, and the complex of CEO-NPs and nisin can improve antioxidant, antibacterial, and sensory properties of the SA coating. This new edible coating could be useful for preserving beef slices. HIGHLIGHTS
Collapse
Affiliation(s)
- Maoxi Zhang
- College of Food Science, Sichuan Agriculture University, Yaan 625000, People's Republic of China
| | - Wei Luo
- College of Food Science, Sichuan Agriculture University, Yaan 625000, People's Republic of China
| | - Kuan Yang
- College of Food Science, Sichuan Agriculture University, Yaan 625000, People's Republic of China
| | - Cheng Li
- College of Food Science, Sichuan Agriculture University, Yaan 625000, People's Republic of China
| |
Collapse
|
61
|
Ozogul Y, Karsli GT, Durmuş M, Yazgan H, Oztop HM, McClements DJ, Ozogul F. Recent developments in industrial applications of nanoemulsions. Adv Colloid Interface Sci 2022; 304:102685. [PMID: 35504214 DOI: 10.1016/j.cis.2022.102685] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology is being utilized in various industries to increase the quality, safety, shelf-life, and functional performance of commercial products. Nanoemulsions are thermodynamically unstable colloidal dispersions that consist of at least two immiscible liquids (typically oil and water), as well as various stabilizers (including emulsifiers, texture modifiers, ripening inhibitors, and weighting agents). They have unique properties that make them particularly suitable for some applications, including their small droplet size, high surface area, good physical stability, rapid digestibility, and high bioavailability. This article reviews recent developments in the formulation, fabrication, functional performance, and gastrointestinal fate of nanoemulsions suitable for use in the pharmaceutical, cosmetic, nutraceutical, and food industries, as well as providing an overview of regulatory and health concerns. Nanoemulsion-based delivery systems can enhance the water-dispersibility, stability, and bioavailability of hydrophobic bioactive compounds. Nevertheless, they must be carefully formulated to obtain the required functional attributes. In particular, the concentration, size, charge, and physical properties of the nano-droplets must be taken into consideration for each specific application. Before launching a nanoscale product onto the market, determination of physicochemical characteristics of nanoparticles and their potential health and environmental risks should be evaluated. In addition, legal, consumer, and economic factors must also be considered when creating these systems.
Collapse
Affiliation(s)
- Yesim Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey.
| | | | - Mustafa Durmuş
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| | - Hatice Yazgan
- Cukurova University, Faculty of Ceyhan Veterinary Medicine, Department of Food Hygiene and Technology of Veterinary Medicine, Adana, Turkey
| | - Halil Mecit Oztop
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey
| | | | - Fatih Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| |
Collapse
|
62
|
Jafarizadeh-Malmiri H, Anarjan N, Berenjian A. Developing three-component ginger-cinnamon-cardamom composite essential oil nanoemulsion as natural food preservatives. ENVIRONMENTAL RESEARCH 2022; 204:112133. [PMID: 34599898 DOI: 10.1016/j.envres.2021.112133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Plant-based functional lipid ingredients, such as essential oils, with antioxidant and antibacterial activities, have gained substantial attention in food, cosmetic, and pharmaceutical formulations due to the increasing disquiet about the risks of artificial preservatives. However, similar to other lipid-based bioactives, their application in water-based products is challenging owing to their low water solubility and high chemical instability, especially during exposure to light, heat, moisture, and oxygen. Hence, the incorporation of essential oils into water-dispersible nanoemulsion systems can effectively address these issues. Moreover, combining various essential oils can synergistically enhance their chemical and biological properties. Consequently, the objective of this study was to develop different composite nanoemulsion systems using ginger, cinnamon, and cardamom essential oils, which were considered individually and in binary and ternary combinations. Empirical models to predict the response characteristics based on the proportions of oil phase components were also derived. The numerical multi-goal optimisation analysis suggested that 10 % ginger, 68 % cinnamon, and 22 % cardamom essential oil is the ideal oil phase combination to achieve nanoemulsions with the smallest average particle size and size distribution and the highest zeta potential and antioxidant and antibacterial activity.
Collapse
Affiliation(s)
- Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran; Department of Food Science and Technology, Applied Scientific Training Center of Shirin Asal Food Industries Group, Tabriz, Iran
| | - Navideh Anarjan
- Department of Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Aydin Berenjian
- School of Engineering, University of Waikato, Hamilton, 3240, New Zealand; Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
63
|
Encapsulation of Tunisian thyme essential oil in O/W nanoemulsions: Application for meat preservation. Meat Sci 2022; 188:108785. [DOI: 10.1016/j.meatsci.2022.108785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
64
|
Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
65
|
Feng T, Zhang M, Sun Q, Mujumdar AS, Yu D. Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7108-7125. [PMID: 35187995 DOI: 10.1080/10408398.2022.2040418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Berry fruits have attracted increasing more attention of the food processing industry as well as consumers due to their widely acclaimed advantages as highly effective anti-oxidant properties which may provide protection against some cancers as well as aging. However, the conventional extraction methods are inefficient and wasteful of solvent utilization. This paper presents a critical overview of some novel extraction methods applicable to berries, including pressurized-liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction as well as some combined extraction methods. When combined with conventional methods, the new technologies can be more efficient and environmentally friendly. Additionally, high quality processing of the functional extracts from berry fruits, such as refined processing technology, is introduced in this review. Finally, progress of applications of berry functional extracts in the food industry is described in detail; this should encourage further scientific research and industrial utilization.
Collapse
Affiliation(s)
- Tianlin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd, Qingdao, Shandong, China
| |
Collapse
|
66
|
Zhao L, Zhang M, Mujumdar AS, Wang H. Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives. Crit Rev Food Sci Nutr 2022; 63:6738-6756. [PMID: 35174744 DOI: 10.1080/10408398.2022.2039896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) have two unique advantages: one is ease of synthesis at low price, the other is desirable physical and chemical properties, such as ultra-small size, abundant surface functional groups, nontoxic/low-toxicity, good biocompatibility, excellent antibacterial and antioxidant activities etc. These advantages provide opportunities for the development of new food packaging enhancers and food preservatives. This paper systematically reviews the studies of CDs used to strengthen the physical properties of food packaging, including strengthen mechanical strength, ultraviolet (UV) barrier properties and water barrier properties. It also reviews the researches of CDs used to fabricate active packaging with antioxidant and/or antibacterial properties and intelligent packaging with the capacity of sensing the freshness of food. In addition, it analyzes the antioxidant and antibacterial properties of CDs as preservatives, and discusses the effect of CDs applied as coating agents and nano-level food additives for extension the shelf life of food samples. It also provides a brief review on the security and the release behavior of CDs.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
67
|
Ameur A, Bensid A, Ozogul F, Ucar Y, Durmus M, Kulawik P, Boudjenah-Haroun S. Application of oil-in-water nanoemulsions based on grape and cinnamon essential oils for shelf-life extension of chilled flathead mullet fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:105-112. [PMID: 34048077 DOI: 10.1002/jsfa.11336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The effect of nanoemulsions prepared with grape seed and cinnamon essential oils on the shelf-life of flathead mullet (Mugil cephalus) fillets was evaluated by determining physicochemical (pH, free fatty acids, peroxide value, total volatile base nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARs)), sensory and microbiological (mesophilic aerobic bacteria, total psychrophilic bacteria, and Enterobacteriaceae counts) properties during 14 day storage at 2 °C. RESULTS The nanoemulsions showed good stability and low average droplet size. The results indicated that nanoemulsion treatments significantly prolonged the shelf-life of the fillets. Treatment inhibited increases in pH and TVB-N, and retarded lipid oxidation and hydrolysis. Sensory assessment revealed that treatment induced shelf-life extension from 10 to 14 days, compared with controls. Microbiological analyses showed nanoemulsion treatment caused shelf-life extension from 10 to 12 days with reduction of microbiological contamination by up to 1 log cfu g-1 in mesophilic and 1.5 log cfu g-1 in psychrotrophic bacteria. CONCLUSION Considering the results, grape seed and cinnamon essential oil nanoemulsions could be considered as novel antimicrobial and antioxidant materials for shelf-life extension of flathead mullet fillets during cold storage. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abderrahmane Ameur
- Université Kasdi Merbah Ouargla. Faculté des Sciences de la Nature et de la Vie. Laboratoire de Recherche sur la Phœniciculture, Ouargla, Algeria
| | - Abdelkader Bensid
- Department of Agronomy, Faculty of Natural Sciences and Life, Ziane Achour University, Djelfa, Algeria
| | - Fatih Ozogul
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Yilmaz Ucar
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Mustafa Durmus
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Saliha Boudjenah-Haroun
- Université Kasdi Merbah Ouargla. Faculté des Sciences de la Nature et de la Vie. Laboratoire de Recherche sur la Phœniciculture, Ouargla, Algeria
| |
Collapse
|
68
|
Hien LTM, Khoa TD, Dao DTA. Characterization of black pepper essential oil nanoemulsion fabricated by emulsion phase inversion method. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ly Thi Minh Hien
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
- Faculty of Biotechnology Ho Chi Minh City Open University Ho Chi Minh City Vietnam
| | - Ta Dang Khoa
- Faculty of Biotechnology Ho Chi Minh City Open University Ho Chi Minh City Vietnam
| | - Dong Thi Anh Dao
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
69
|
Khezerlou A, Tavassoli M, Alizadeh Sani M, Mohammadi K, Ehsani A, McClements DJ. Application of Nanotechnology to Improve the Performance of Biodegradable Biopolymer-Based Packaging Materials. Polymers (Basel) 2021; 13:polym13244399. [PMID: 34960949 PMCID: PMC8707388 DOI: 10.3390/polym13244399] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/25/2022] Open
Abstract
There is great interest in developing biodegradable biopolymer-based packaging materials whose functional performance is enhanced by incorporating active compounds into them, such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble, matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly incorporate into the packaging materials. These challenges can often be overcome by encapsulating the active compounds within food-grade nanoparticles, which are then introduced into the packaging materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings or films can greatly improve their functional performance. For example, anthocyanins can be used as light-blockers to retard oxidation reactions, or they can be used as pH/gas/temperature sensors to produce smart indicators to monitor the freshness of packaged foods. Encapsulated botanical extracts (like essential oils) can be used to increase the shelf life of foods due to their antimicrobial and antioxidant activities. The resistance of packaging materials to external factors can be improved by incorporating plasticizers (glycerol, sorbitol), crosslinkers (glutaraldehyde, tannic acid), and fillers (nanoparticles or nanofibers). Nanoenabled delivery systems can also be designed to control the release of active ingredients (such as antimicrobials or antioxidants) into the packaged food over time, which may extend their efficacy. This article reviews the different kinds of nanocarriers available for loading active compounds into these types of packaging materials and then discusses their impact on the optical, mechanical, thermal, barrier, antioxidant, and antimicrobial properties of the packaging materials. Furthermore, it highlights the different kinds of bioactive compounds that can be incorporated into biopolymer-based packaging.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (A.K.); (M.T.)
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (A.K.); (M.T.)
| | - Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (A.K.); (M.T.)
- Correspondence: (A.E.); (D.J.M.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence: (A.E.); (D.J.M.)
| |
Collapse
|
70
|
Do XT, Nguyen TT, Nguyen VX, Tran KT, Vu TA, Phung HL. Experimentation and dynamic modeling of batch packed distillation for star anise essential oil purification. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xuan Truong Do
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Thao Thi Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Van Xa Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Kien Trung Tran
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Tuan Anh Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Huong Lan Phung
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
71
|
Polyvinyl alcohol -nanocomposite films incorporated with clay nanoparticles and lipopeptides as active food wraps against food spoilage microbes. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
72
|
Zhang H, Li X, Kang H, Peng X. Antimicrobial and antioxidant effects of edible nanoemulsion coating based on chitosan and
Schizonepeta tenuifolia
essential oil in fresh pork. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Xinling Li
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Huaibin Kang
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Xinyan Peng
- College of Life Science Yantai University Yantai China
| |
Collapse
|
73
|
|
74
|
Abstract
In 2018, the worldwide consumption of meat was 346.14 million tonnes, and this is expected to increase in the future. As meat consumption increases, the use of packaging materials is expected to increase along with it. Petrochemical packaging materials which are widely used in the meat processing industry, take a long time to regenerate and biodegrade, thus they adversely affect the environment. Therefore, the necessity for the development of eco-friendly packaging materials for meat processing, which are easily degradable and recyclable, came to the fore. The objective of this review is to describe the application of natural compound-derived edible films with their antioxidant and antibacterial activities in meat and meat products. For several decades, polysaccharides (cellulose, starch, pectin, gum, alginate, carrageenan and chitosan), proteins (milk, collagen and isolated soy protein) and lipids (essential oil, waxes, emulsifiers, plasticizers and resins) were studied as basic materials for edible films to reduce plastic packaging. There are still high consumer demands for eco-friendly alternatives to petrochemical-based plastic packaging, and edible films can be used in a variety of ways in meat processing. More efforts to enhance the physiological and functional properties of edible films are needed for commercial application to meat and meat products.
Collapse
|
75
|
Ahmadabadi LR, Hosseini SE, Seyedein Ardebili SM, Mousavi Khaneghah A. Application of clove essential oil-loaded nanoemulsions in coating of chicken fillets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
Morphological and metabolomics impact of sublethal doses of natural compounds and its nanoemulsions in Bacillus cereus. Food Res Int 2021; 149:110658. [PMID: 34600660 DOI: 10.1016/j.foodres.2021.110658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Microbiological safety in food industry are always a concern regarding sublethal tolerance in bacteria for common and natural sanitizers. Natural bacteriocins, such as nisin (NIS), may negatively interfere in the efficiency of major compounds of essential oils against foodborne pathogenic bacteria. However, nanoemulsioned forms increase the bactericidal potential of natural compounds acting synergistically. In this study, cinnamaldehyde (CIN), citral (CIT), and linalool (LIN) were evaluated independently, associated with NIS, and in nanoemulsions (NEs) against Bacillus cereus using untargeted-metabolomics. Results revealed morphological changes in the structure of B. cereus treated with NEs of CIN and CIT, both NIS-associated. In addition, sensibility tests and UHPLC-QTOF-MS analyses indicated that NIS might react together with CIT reducing the bactericidal efficiency, while the nanoemulsion of CIT effect was enhanced by NIS in nanoemulsioned forms. This study highlights the importance of prudent administration of natural compounds as antimicrobial agents to prevent sublethal tolerance in pathogenic bacteria.
Collapse
|
77
|
Sarvinehbaghi MB, Ahmadi M, Shiran M, Azizkhani M. Antioxidant and antimicrobial activity of red onion (Allium cepa, L.) extract nanoencapsulated in native seed gums coating and its effect on shelf-life extension of beef fillet. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00985-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
78
|
Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
79
|
Jamali SN, Assadpour E, Feng J, Jafari SM. Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Adv Colloid Interface Sci 2021; 295:102504. [PMID: 34384999 DOI: 10.1016/j.cis.2021.102504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Both consumers and producers of food products are looking for natural ingredients and efficient formulation strategies to improve the shelf life of final products. Natural antimicrobial ingredients such as essential oils can be applied as alternatives to synthetic preservatives, but their main challenge is low stability, adverse effects on sensory properties, low solubility, high needed doses, etc. Formulation of these bioactive compounds into nanoemulsions can be an efficient strategy to improve their properties and practical applications in food products. In this review, after an overview on nanoemulsion formulation, ingredients and fabrication methods, different types of natural antimicrobial agents have been discussed briefly. In addition, properties and action mechanisms of antimicrobial-loaded nanoemulsions, along with their application in preservation and shelf life improvement of different food products have been explained. Finally, safety and regulatory issues of antimicrobial delivery via nanoemulsions have been examined. As a conclusion antimicrobial-loaded nanoemulsions can be promising candidates and alternatives for common synthetic preservatives in real food systems.
Collapse
|
80
|
Ren B, Wu W, Soladoye OP, Bak KH, Fu Y, Zhang Y. Application of biopreservatives in meat preservation: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Baojing Ren
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
- Westa College Southwest University Chongqing 400715 China
| | - Wei Wu
- College of Animal Science and Technology Southwest University Chongqing 400715 China
| | - Olugbenga P. Soladoye
- Agriculture and Agri‐Food Canada Government of Canada Lacombe Research and Development Centre 6000 C&E Trail Lacombe AB T4L 1W1 Canada
| | - Kathrine H. Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health University of Veterinary Medicine, Vienna Veterinärplatz 1 Vienna 1210 Austria
| | - Yu Fu
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| |
Collapse
|
81
|
Antimicrobial Activity of Thymol and Thymol-Nanoemulsion Against Three Food-Borne Pathogens Inoculated in a Sausage Model. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02689-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
82
|
Zixiang W, Jingjing Z, Huachen Z, Ning Z, Ruiyan Z, Lanjie L, Guiqin L. Effect of nanoemulsion loading a mixture of clove essential oil and carboxymethyl chitosan‐coated ε‐polylysine on the preservation of donkey meat during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zixiang
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Jingjing
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Huachen
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Ning
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Ruiyan
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Li Lanjie
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Liu Guiqin
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| |
Collapse
|
83
|
Li Y, Cui L, Du F, Han X, Li J. Impacts of ε‐polylysine hydrochloride with thymol on biogenic amines formation and biochemical changes of squid (
Illex
argentinus
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yingchang Li
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Lei Cui
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Fengxia Du
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Xiao Han
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Jianrong Li
- College of Food Science and Technology Bohai University Jinzhou China
- Food Safety Key Lab of Liaoning Province Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| |
Collapse
|
84
|
Zhang Y, Zhao C, Zhao X, He Y. Application of ε-polylysine in extending the storage period of pork jerky. Food Sci Nutr 2021; 9:3250-3257. [PMID: 34136189 PMCID: PMC8194761 DOI: 10.1002/fsn3.2289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
In this experiment, natural nontoxic preservative ε-polylysine (ε-PL) was used as a natural preservative in pork jerky. The pork jerky samples with ε-PL (experimental group) and without ε-PL (blank group) were stored at the 27 and 37℃. Then, the number of microorganisms, total volatile basic nitrogen (TVB-N), pH, and water activity (Aw) of each group were tested to test the antiseptic effect of ε-PL. The results showed that due to the Staphylococcus aureus was detected, the storage period of the blank group at 27 and 37°C was 15 and 9 days, respectively. However, Coliforms, Staphylococcus aureus, Salmonella, and Shigella were not detected in the experimental group on the 60th day. The experimental group all accord with the national standard for the quantity of microorganisms in meat jerky. The TVB-N content of the blank group reached 14.00 mg/100 g (15th day, 27°C) and 14.93 mg/100 g (9th day, 37°C) at the end of the storage period, while the TVB-N content of the experimental group was 11.20 mg/100 g (60th day, 27℃) and 15.86 mg/100 g (60th day, 37℃), and the increase rate of TVB-N in the blank group was greater than the experimental group, indicating that ε-PL can play a better microbial stabilization effect in pork jerky. The test of pH and Aw showed that ε-PL can stabilize the quality of pork jerky. Finally, the antiseptic effect of ε-PL was comparable to many chemical preservatives. This experiment confirms that ε-PL played an important role in extending the storage period of pork jerky.
Collapse
Affiliation(s)
- Yizhuo Zhang
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| | - Changqing Zhao
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| | - Xingxiu Zhao
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| | - Yiguo He
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| |
Collapse
|
85
|
Li H, Wu X, Li X, Cao X, Li Y, Cao H, Men Y. Multistage Extraction of Star Anise and Black Pepper Derivatives for Antibacterial, Antioxidant, and Anticancer Activity. Front Chem 2021; 9:660138. [PMID: 34055736 PMCID: PMC8160366 DOI: 10.3389/fchem.2021.660138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, natural resources have attracted considerable interest for their applications in food security and human health problems. Traditional natural spices, such as star anise and black pepper, played important roles in the pharmaceutical and food industries due to their strong pharmacological activity, antioxidant potential and rare complications. In order to achieve biomasses from the natural product with multiple bioactivities, we developed the multistage extraction method to extract and separate various bioactive compounds from these natural plants. Our work demonstrated that various bioactive-rich extractives were achieved using steam distilled- or oxidative-extraction methods with high extraction yields and purity. Furthermore, the extractives in each step can be used not only as bioactive compounds, but also as a resource to further prepare different derivatives during the next extractive step, providing biomass-saving to a great extent. The extractives obtained with high yields and purities (>82%) were identified by 1H NMR, 13C NMR, FTIR, UV-vis, fluorescence spectroscopy, and high-performance liquid chromatography (HPLC). Moreover, these biomasses display potent antibacterial activities against some types of microorganisms such as S.aureus, S.pyogenes, E.coli, and S.typhi with a lowest MIC of 400 μg/ml for the development of antibacterial agents, significant antioxidant activity as the natural antioxidant for enhancing food shelf-life, and excellent anticancer activity that induces significant cancer cell apoptosis. This work showed the different multistage extracts from natural products, which enable them to be applied in the fields of the pharmaceutical industry and the food industry.
Collapse
Affiliation(s)
- Helin Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Hangzhou, China.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Xiaoyu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Li
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Xiaobing Cao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yanjun Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Huaru Cao
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Hangzhou, China
| | - Yongzhi Men
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
86
|
Antimicrobial Polyamide-Alginate Casing Incorporated with Nisin and ε-Polylysine Nanoparticles Combined with Plant Extract for Inactivation of Selected Bacteria in Nitrite-Free Frankfurter-Type Sausage. Foods 2021; 10:foods10051003. [PMID: 34064386 PMCID: PMC8147807 DOI: 10.3390/foods10051003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/22/2023] Open
Abstract
The effects of combining a polyamide-alginate casing incorporated with nisin (100 ppm and 200 ppm) and ε-polylysine (500 ppm and 1000 ppm) nanoparticles and a mixed plant extract as ingredient in sausage formulation (500 ppm; composed of olive leaves (OLE), green tea (GTE) and stinging nettle extracts (SNE) in equal rates) were studied to improve the shelf life and safety of frankfurter-type sausage. The film characteristics and microbiological properties of sausage samples were evaluated. Sausage samples were packaged in polyethylene bags (vacuum condition) and analysed during 45 days of storage at 4 °C. Control sausages were also treated with 120 ppm sodium nitrite. Polyamide-alginate films containing 100 ppm nisin and 500 ε-PL nanoparticles had the highest ultimate tensile strength compared to other films. However, 100 ppm nisin and 500 ε-PL nanoparticles decreased water vapour permeability of films. The results also revealed that nisin nanoparticles had significantly (p < 0.05) low inhibitory effects against Escherichia coli, Staphylococcus aureus, molds and yeasts and total viable counts compared to control and ε-PL nanoparticles. Furthermore, 1000 ppm ε-PL nanoparticles displayed the highest antimicrobial activity. Based on the obtained results, the films containing ε-PL nanoparticle could be considered as a promising packaging for frankfurter-type sausages.
Collapse
|
87
|
Zhou X, Zong X, Zhang M, Ge Q, Qi J, Liang J, Xu X, Xiong G. Effect of konjac glucomannan/carrageenan-based edible emulsion coatings with camellia oil on quality and shelf-life of chicken meat. Int J Biol Macromol 2021; 183:331-339. [PMID: 33930444 DOI: 10.1016/j.ijbiomac.2021.04.165] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/29/2022]
Abstract
The quality and safety of chicken meat are prone to deteriorate due to bacteria reproduction and oxidation reaction. In this study, the antimicrobial and antioxidant effects of KGM-KC coatings incorporated camellia oil were evaluated to extend the shelf-life of chicken meat. The result showed that the KGM/KC-CO coating significantly (P < 0.05) decreased weight loss, pH, thiobarbituric acid reactive substance (TBARS), total volatile nitrogen (TVN) and microbial counts when compared to uncoated samples. The obtained results revealed that KGM/KC-based coating incorporated with CO significantly extended the shelf-life of chicken meat by restraining the oxidation of lipid and protein, and retarding the microbial growth. The sensory evaluation showed that the addition of CO did not affect the odor of chicken meat, maintained the overall acceptability of coated samples. The shelf-life of chicken meat was extended up to 10 days using KGM/KC-based coating containing 3.5% CO at refrigeration (4 °C) compared to control samples. These results indicated CO could be used as an active agent to be dispersed in KGM/KC matrix by emulsification method, and the prepared emulsion coating had positive effects on extending the shelf-life of chicken meat.
Collapse
Affiliation(s)
- Xi Zhou
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinxiang Zong
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Min Zhang
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingfeng Ge
- School of Food Science and Technology, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou, Jiangsu 225127, China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyuan Xiong
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
88
|
Alirezalu K, Yaghoubi M, Nemati Z, Farmani B, Mousavi Khaneghah A. Efficacy of stinging nettle extract in combination with ε-polylysine on the quality, safety, and shelf life of rainbow trout fillets. Food Sci Nutr 2021; 9:1542-1550. [PMID: 33747468 PMCID: PMC7958555 DOI: 10.1002/fsn3.2129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/19/2022] Open
Abstract
The effects of incorporation of stinging nettle extract (3% and 6%) and ɛ-polylysine (0.1% and 0.2%) on chemical, microbial properties, and stability of rainbow trout fish fillets wrapped in polyethylene bags (in atmosphere condition) and refrigerated for 12 days at 4°C were evaluated. No remarkable differences regarding the chemical composition of rainbow trout fish (protein, moisture, fat, and ash content) resulting from the treatments were noted. The lowest TBARS (thiobarbituric acid reactive substance) and the highest phenolic compounds were noted in samples treated with 6% SNE + 0.2% ɛ-PL on day 12, while the highest inhibitory effects against the growth of TVC, psychrotrophic bacteria, coliform, yeast, and molds corresponded to samples treated with 6% SNE (T4 and T5) at day 12. During the storage, the samples' TVB-N (total volatile base nitrogen) increased, whereas the total phenolic content of the rainbow trout samples declined. The rainbow trout samples treated with 6% SNE + 0.2% ɛ-PL had the highest amount of redness and the lowest TVB-N values. Therefore, these natural ingredients could be used to maintain rainbow trout meat quality and shelf life.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and TechnologyAhar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | - Milad Yaghoubi
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Zabihollah Nemati
- Department of Animal ScienceAhar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | - Boukaga Farmani
- Department of Food Science and TechnologyAhar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | - Amin Mousavi Khaneghah
- Department of Food and Nutrition and TechnologyFaculty of Food EngineeringUniversity of CampinasCampinasBrazil
| |
Collapse
|
89
|
ɛ-polylysine coating with stinging nettle extract for fresh beef preservation. Meat Sci 2021; 176:108474. [PMID: 33640645 DOI: 10.1016/j.meatsci.2021.108474] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
Combination effects of ɛ-polylysine coating (0.5 and 1%) and stinging nettle extract (3, 6 and 9%) on quality properties and shelf life of beef meat (2 × 2 × 2 cm) was evaluated at 4 °C for 12 days. The results indicated that ɛ-polylysine (ε-PL) coating with stinging nettle extract (SNE) had no significant effects on ash, fat, protein and moisture content among packaged beef samples in polyethylene bags (in atmosphere condition). At the end of storage, beef samples coated with 1% ε-PL and 9% SNE had significantly lower TBARS and TVB-N values compared to those found in control. Furthermore, 1% ε-PL coating with SNE 9% showed the highest inhibitory effects against molds and yeast, total viable counts (TVC) and coliforms during storage. However, sensory evaluation showed that samples coated with 1% ε-PL and 6% SNE had the highest scores for overall acceptability compared to the other groups. Based on the obtained results, ε-PL coating with SNE could be effectively used for extending the beef meat shelf life without negative effects on sensory attributes.
Collapse
|
90
|
McClements DJ, Das AK, Dhar P, Nanda PK, Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing interest in the use of natural preservatives (rather than synthetic ones) for maintaining the quality and safety of foods due to their perceived environmental and health benefits. In particular, plant-based antimicrobials are being employed to protect against microbial spoilage, thereby improving food safety, quality, and shelf-life. However, many natural antimicrobials cannot be utilized in their free form due to their chemical instability, poor dispersibility in food matrices, or unacceptable flavor profiles. For these reasons, encapsulation technologies, such as nanoemulsions, are being developed to overcome these hurdles. Indeed, encapsulation of plant-based preservatives can improve their handling and ease of use, as well as enhance their potency. This review highlights the various kinds of plant-based preservatives that are available for use in food applications. It then describes the methods available for forming nanoemulsions and shows how they can be used to encapsulate and deliver plant-based preservatives. Finally, potential applications of nano-emulsified plant-based preservatives for improving food quality and safety are demonstrated in the meat, fish, dairy, and fresh produce areas.
Collapse
|
91
|
da Silva BD, Bernardes PC, Pinheiro PF, Fantuzzi E, Roberto CD. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci 2021; 176:108463. [PMID: 33640647 DOI: 10.1016/j.meatsci.2021.108463] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
The antimicrobial activity of essential oils (EO) is associated with the presence of secondary metabolites synthesized by plants. Its mechanism of action involves the interaction of its hydrophobic components with the lipids present in the cell membrane of microorganism, resulting in metabolic damages and cell death. Spoilage and pathogenic microorganisms are contaminants in meat and meat products with considerable impacts on food quality and safety. Research shows the potential of applying essential oils in the preservation of meat food systems as compounds of low toxicity, extracted from a natural source, and as an alternative to consumer demand for healthy foods with a more natural appeal. In addition, there is a great diversity of plants from which essential oils can be extracted, whose antimicrobial activity in vitro and in meat and meat products has been proven.
Collapse
Affiliation(s)
- Bruno Dutra da Silva
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Patrícia Campos Bernardes
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Patrícia Fontes Pinheiro
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Elisabete Fantuzzi
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Consuelo Domenici Roberto
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil.
| |
Collapse
|
92
|
Chen K, Zhang M, Bhandari B, Mujumdar AS. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res Int 2021; 139:109809. [PMID: 33509452 DOI: 10.1016/j.foodres.2020.109809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
In the context of consumers' growing concerns and boycotts of artificial and harmful chemicals, satisfying the demands for good-quality food products possessing clean and safe images is a challenge for food industry. Due to natural and avirulent images, various bioactivities as well as potentials to be used as safer substitutes for chemical preservatives, flower essential oils (EOs) have aroused increasing interests in the recent past. Many literatures have verified the biological activities of flower EOs, and have given high value to the preservative potentials of flower EOs in food systems. In this work, a review is done on the most recent publications associating the chemical constituents, bioactivities (antibacterial, antifungal, antioxidant and anti-pest abilities) and safety of flower EOs. The effects of flower EOs on food flavor are also discussed. Finally, the current combined preservation applications of flower EOs and other technologies are summarized.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Shandong Huamei Biology Science & Technology Co., Ltd., 250400 Pingyin, Shandong, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Quebec H9×3V9, Canada
| |
Collapse
|
93
|
Sun Y, Zhang M, Bhandari B, Bai B. Fennel essential oil loaded porous starch-based microencapsulation as an efficient delivery system for the quality improvement of ground pork. Int J Biol Macromol 2021; 172:464-474. [PMID: 33465361 DOI: 10.1016/j.ijbiomac.2021.01.090] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023]
Abstract
Porous starch (PS) was used as the core material carrier to adsorb fennel essential oil (FEO). Using sodium alginate (SA)-chitosan (CS) as the wall material and glutaraldehyde as the curing cross-linking agent, CS/SA/PS-FEO microcapsules were successfully prepared by polyelectrolyte complex coagulation method. The formation process, structural properties and release behavior of CS/SA/PS-FEO microcapsules were analyzed. The results showed that the essential oil was encapsulated in the form of micro-capsules according to infrared spectroscopy and X-ray diffraction analysis. In open and closed systems, the 16-day cumulative release rate of FEO obtained was 70.62% and 43.87%, respectively indicating that the prepared CS/SA/PS-FEO microcapsules had a good sustained-release ability. The fennel essential oil micro-capsules exhibited good antibacterial and antioxidant activities, delayed the oxidation of fat and protein, reduced the total viable counts, total volatile-base nitrogen and methemoglobin. The textural property and status of water (analyzed by NMR) suggested that the quality of the meat can be maintained for an extended period by incorporating the CS/SA/PS-FEO microcapsules in the minced pork meat.
Collapse
Affiliation(s)
- Yanan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Baosong Bai
- Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
94
|
Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs to maintain the storage quality of raw meat. Food Chem 2020; 332:127375. [DOI: 10.1016/j.foodchem.2020.127375] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
|
95
|
Yu C, Zhang J, Wang T. Star anise essential oil:chemical compounds, antifungal and antioxidant activities: a review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1813213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- CaiYun Yu
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| | - JingFei Zhang
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| | - Tian Wang
- College of Animal Sciences & Technology, Nanjing Agricultural University , Nanjing, People’s Republic of China
| |
Collapse
|
96
|
Zhang Y, Xin C, Cheng C, Wang Z. Antitumor activity of nanoemulsion based on essential oil of Pinus koraiensis pinecones in MGC-803 tumor-bearing nude mice. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
97
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
98
|
Chen X, Zhao J, Zhu L, Luo X, Mao Y, Hopkins DL, Zhang Y, Dong P. Effect of modified atmosphere packaging on shelf life and bacterial community of roast duck meat. Food Res Int 2020; 137:109645. [DOI: 10.1016/j.foodres.2020.109645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/23/2020] [Accepted: 08/23/2020] [Indexed: 01/13/2023]
|
99
|
Alirezalu K, Hesari J, Yaghoubi M, Khaneghah AM, Alirezalu A, Pateiro M, Lorenzo JM. Combined effects of ε-polylysine and ε-polylysine nanoparticles with plant extracts on the shelf life and quality characteristics of nitrite-free frankfurter-type sausages. Meat Sci 2020; 172:108318. [PMID: 32980722 DOI: 10.1016/j.meatsci.2020.108318] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
In this study, ɛ-polylysine (ɛ-PL) or ɛ-polylysine nanoparticle (ɛ-PLN) combined with plants extracts (including green tea, olive leaves and stinging nettle extracts) were used as nitrite replacers in frankfurter-type sausages. The sausage samples were wrapped in polyethylene bags (in vacuum conditions) and their physicochemical, microbiological and sensory properties were evaluated during 45 days of refrigerated storage. The results showed that the incorporation of ɛ-polylysine had no significant effects on proximate composition of sausages. However, ɛ-PL and ɛ-PLN sausages had significantly (P < 0.05) lower lightness, redness and higher yellowness compared to control samples. At the end of storage, sausages formulated with ɛ-PLN had significantly (P < 0.05) higher contents of phenolic compounds and lowest TBARS values. Microbiological counts also indicated that ɛ-PLN displayed significantly higher inhibitory effects. Higher sensory indices were obtained in ɛ-PLN sausages. Based on the obtained results, ɛ-PLN was effective to improve frankfurter-type sausages shelf life. Therefore, these ingredients could be useful for frankfurter-type sausages production as nitrite replacers.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran.
| | - Javad Hesari
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Technology, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
100
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|