51
|
Huang H, Song Y, Zhang Y, Li Y, Li J, Lu X, Wang C. Electrospun Nanofibers: Current Progress and Applications in Food Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1391-1409. [PMID: 35089013 DOI: 10.1021/acs.jafc.1c05352] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrospinning has the advantages of simple manufacturing equipment, a low spinning cost, wide range of spinnable materials, and a controllable mild process, which can continuously fabricate submicron or nanoscale ultrafine polymer fibers without high temperature or high pressure. The obtained nanofibrous films may have a large specific surface area, unique pore structure, and easy-to-modify surface characteristics. This review briefly introduces the types and fiber structures of electrospinning and summarizes the applications of electrospinning for food production (e.g., delivery systems for functional food, filtration of beverages), food packaging (e.g., intelligent packaging, antibacterial packaging, antioxidant packaging), and food analysis (e.g., pathogen detection, antibiotic detection, pesticide residue detection, food compositions analysis), focusing on the advantages of electrospinning applications in food systems. Furthermore, the limitations and future research directions of the technique are discussed.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yudong Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongxin Li
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Jiali Li
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
52
|
Ghasemi M, Miri MA, Najafi MA, Tavakoli M, Hadadi T. Encapsulation of Cumin essential oil in zein electrospun fibers: Characterization and antibacterial effect. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01268-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
53
|
Wang H, Shi W, Wang X. Effects of different thawing methods on microstructure and the biochemical properties of tilapia (
Oreochromis niloticus
) fillets during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongli Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| |
Collapse
|
54
|
Wang H, Wan T, Wang H, Wang S, Li Q, Cheng B. Novel colorimetric membranes based on polylactic acid-grafted-citrated methacrylated urethane (PLA-CMU) to monitor cod freshness. Int J Biol Macromol 2022; 194:452-460. [PMID: 34822833 DOI: 10.1016/j.ijbiomac.2021.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022]
Abstract
Halochromic agent is easy to fall off from the surface of colorimetric membranes during fish freshness monitoring, which would decay the test accuracy. In order to increase its anchoring, citrated methacrylated urethane (CMU) synthesized by using tributyl citrate, β-hydroxyethyl methacrylate and diphenyl-methane-diisocyanate as a halochromic agent was grafted on polylactic acid (PLA). The CMU grafted PLA (PLA-CMU) together with tetrabutylammonium chloride (TBAC) prepared colorimetric membranes via electrospinning. 1H NMR and FTIR analysis showed successful bonding between CMU and PLA, and PLA-CMU grafting efficiency reached to the maximum value of 11.15%. Moreover, DSC confirmed that PLA-CMU existed low cold-crystallization temperature due to the excellent compatibility of CMU with PLA, which enhanced the anchoring of CMU effectively. Nanofiber-based PLA-CMU/TBAC colorimetric membrane enhanced the probability of molecules being captured due to its porous structure and large specific surface area. In addition, the increase in hydrophilicity of the membrane can provide a microenvironment for liquid phase reaction, exhibiting obvious color-changing sensitivity during cod freshness monitoring, from white color to light orange or pink with the deterioration of cod at 25 °C and 4 °C respectively. The results demonstrate PLA-CMU/TBAC colorimetric membranes would provide a simple and promising strategy for monitoring fish freshness.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Tong Wan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Hao Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| | - Quanxiang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| |
Collapse
|
55
|
Ren QS, Fang K, Yang XT, Han JW. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
56
|
Chen D, Jones OG, Campanella OH. Plant protein-based fibers: Fabrication, characterization, and potential food applications. Crit Rev Food Sci Nutr 2021:1-25. [PMID: 34904477 DOI: 10.1080/10408398.2021.2004991] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proteins from plants have been considered as safer, healthier, and more sustainable resources than their animal counterparts. However, incomplete amino acid composition and relatively poor functionality limit their applications in foods. Structuring plant proteins to fibrous architectures enhances their physicochemical properties, which can favor various food applications. This review primarily focuses on fabrication of fibers from plant proteins via self-assembly, electrospinning, solution blow spinning, wet spinning, and high-temperature shear, as well as on several applications where such fibrous proteins assemble in quality foods. The changes of protein structure and protein-protein interactions during fiber production are discussed in detail, along with the effects of fabrication conditions and protein sources on the morphology and function of the fibers. Self-assembly requires proteolysis and subsequent peptide aggregation under specific conditions, which can be influenced by pH, salt and protein type. The spinning strategy is more scalable and produces uniformed fibers with larger length scales suitable for encapsulation, food packaging and sensor substrates. Significant progress has been made on high-temperature shear (including extrusion)-induced fibers responsible for desirable texture in meat analogues. Structuring plant proteins adds values for broadened food applications, but it remains challenging to keep processes cost-effective and environmentally friendly using food grade solvents.
Collapse
Affiliation(s)
- Da Chen
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Owen Griffith Jones
- Whistler Centre for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA.,Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Osvaldo H Campanella
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA.,Whistler Centre for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
57
|
Electrohydrodynamic processing for the production of zein-based microstructures and nanostructures. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
58
|
A halochromic indicator based on polylactic acid and anthocyanins for visual freshness monitoring of minced meat, chicken fillet, shrimp, and fish roe. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
59
|
Wang XY, Xie J. Comparison of Physicochemical Changes and Water Migration of Acinetobacter johnsonii, Shewanella putrefaciens, and Cocultures From Spoiled Bigeye Tuna ( Thunnus obesus) During Cold Storage. Front Microbiol 2021; 12:727333. [PMID: 34777276 PMCID: PMC8586447 DOI: 10.3389/fmicb.2021.727333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
This study investigates the physicochemical changes and water migration of Acinetobacter johnsonii (A), Shewanella putrefaciens (S), and cocultured A. johnsonii and S. putrefaciens (AS) inoculated into bigeye tuna during cold storage. The physicochemical indexes [fluorescence ratio (FR), total volatile base nitrogen (TVB-N), thiobarbituric acid (TBA), trimethylamine (TMA), peroxide value (POV), and pH] of bigeye tuna increased cold storage. A significant decrease in trapped water was found in the AS samples, and direct monitoring of the water dynamics was provided by low-field nuclear magnetic resonance. Samples inoculated with A. johnsonii and S. putrefaciens also induced the degradation of myofibrillar proteins and weakness of some Z-lines and M-lines. Higher values of physicochemical indexes and water dynamics were shown in the coculture of S. putrefaciens and A. johnsonii than in the other groups. Therefore, this paper reveals that the coculture of A. johnsonii and S. putrefaciens resulted in a bigeye tuna that was more easily spoiled when compared to the single culture. This study provides insight into the spoilage potential of A. johnsonii and S. putrefaciens during cold storage, which further assists in the application of appropriate technologies to keep the freshness of aquatic foods.
Collapse
Affiliation(s)
- Xin-Yun Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
60
|
Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
61
|
Hosseini F, Miri MA, Najafi M, Soleimanifard S, Aran M. Encapsulation of rosemary essential oil in zein by electrospinning technique. J Food Sci 2021; 86:4070-4086. [PMID: 34392535 DOI: 10.1111/1750-3841.15876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
In this study, rosemary essential oil was encapsulated in zein-electrospun fibers at different concentrations of loading (0%, 2.5%, 5%, and 10% v/v). The chemical composition of rosemary essential oil was determined by GC-MS. The resultant zein-electrospun fibers were characterized by SEM, AFM, XRD, DSC, FTIR, and NMR. After being loaded with the essential oil, the fibers were evaluated for antimicrobial properties by the disc diffusion method against S. aureus (ATCC 1112) and E. coli (ATCC 1330). The release test was studied at pH values of 3 and 7.2 in phosphate buffer for 180 min. The GC-MS indicated that α-pinene occurred as a major compound in rosemary essential oil. Diameters of the zein-electrospun fibers increased in response to higher concentrations of rosemary essential oil. The AFM assay attributed a tubular morphology to the fibers. The physical status of rosemary essential oil in zein-electrospun fibers was determined by X-ray diffraction (XRD). DSC thermograms and FTIR spectra confirmed the existence of the rosemary essential oil in zein-electrospun fibers. FTIR spectra also indicated that adding rosemary essential oil to the fibers affected the secondary structure of zein protein. The NMR study showed that the electrospinning process did not change the secondary structure of zein. Disc diffusion indicated that zein-electrospun mats generated inhibition zones against S. aureus and E. coli. The release test revealed that pH values significantly affect the release of rosemary essential oil from fibers. The results demonstrated how loading zein-electrospun fibers with rosemary essential oil can benefit food packaging. PRACTICAL APPLICATION: In this study, electrospun fibers were produced from food-grade biopolymer to encapsulate rosemary essential oil. This product can be produced at industrial scale as an active food packaging/coating, controlled release, and delivery of the rosemary essential oil to food products and gastrointestinal. Also, it can be considered as a functional food to increase health.
Collapse
Affiliation(s)
- Faeghe Hosseini
- Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mohammad Amin Miri
- Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Electrospinning Research Laboratory, University of Zabol, Zabol, Iran
| | - Mohammadali Najafi
- Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Sediqeh Soleimanifard
- Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mehdi Aran
- Department of Horticulture and Landscape, Faculty of Agriculture, University of Zabol, Zabol, Iran
| |
Collapse
|
62
|
Luo Q, Hossen A, Sameen DE, Ahmed S, Dai J, Li S, Qin W, Liu Y. Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation. Crit Rev Food Sci Nutr 2021; 63:1102-1118. [PMID: 34382866 DOI: 10.1080/10408398.2021.1959296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over a few decades, anthocyanin (ACN)-based colorimetric indicators in intelligent packaging systems have been widely used to monitor the freshness or spoilage of perishable food products. Most of the perishable food products are highly susceptible to enzymatic/microbial spoilage and produce several volatile or nonvolatile organic acid and nitrogenous compounds. As a result, the natural pH of fresh foods significantly changes. Fabrication of CAN-based colorimetric indicators in intelligent packaging systems is an advanced technique that monitors the freshness or spoilage of perishable foods based on the display of color variations at varying pH values. This study focuses on the advancement of pH-sensitive indicators and extraction of colorimetric indicators from commercially available natural sources. Moreover, the fabrication techniques and widespread industrial applications of such indicators have also been discussed. In addition, readers will get information about the color-changing and antioxidant mechanisms of ACN-based indicator films in food packaging.
Collapse
Affiliation(s)
- Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
63
|
Ezati P, Priyadarshi R, Bang YJ, Rhim JW. CMC and CNF-based intelligent pH-responsive color indicator films integrated with shikonin to monitor fish freshness. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
64
|
Liu W, Wang Q, Mei J, Xie J. Shelf-Life Extension of Refrigerated Turbot ( Scophthalmus maximus) by Using Weakly Acidic Electrolyzed Water and Active Coatings Containing Daphnetin Emulsions. Front Nutr 2021; 8:696212. [PMID: 34336910 PMCID: PMC8319538 DOI: 10.3389/fnut.2021.696212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
This research was to investigate the effect of weakly acidic electrolytic water (WAEW) treatments combining with the locust bean gum (LBG) and sodium alginate (SA) active coatings, containing daphnetin emulsions on microbiological, physicochemical, and sensory changes of turbot (Scophthalmus maximus) during refrigerated storage at 4°C for 24 days. Results showed that WAEW, together with LBG-SA coatings containing daphnetin emulsions treatments, could significantly lower the total viable count (TVC), H2S-producing bacteria, pseudomonas spp., and psychrotrophic bacteria counts, and inhibit the productions of off-flavor compounds, including the total volatile basic nitrogen (TVB-N), inosine (HxR), and hypoxanthine (Hx). Furthermore, the treatments also prevented textural deterioration, delayed water migration, and had higher organoleptic evaluation results. Therefore, WAEW, together with LBG-SA coatings, containing daphnetin emulsions treatments, had the potential to improve the quality of turbot during refrigerated storage.
Collapse
Affiliation(s)
- Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Qi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Center for Food Science and Engineering, National Experimental Teaching Demonstration, Shanghai Ocean University, Shanghai, China.,Center of Aquatic Product Processing and Preservation, Shanghai Engineering Research, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
65
|
Design and characterization of bio-amine responsive films enriched with colored potato (Black King Kong) anthocyanin for visual detecting pork freshness in cold storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
66
|
Portable functional hydrogels based on silver metallization for visual monitoring of fish freshness. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
67
|
Theerasilp M, Crespy D. Halochromic Polymer Nanosensors for Simple Visual Detection of Local pH in Coatings. NANO LETTERS 2021; 21:3604-3610. [PMID: 33818088 DOI: 10.1021/acs.nanolett.1c00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Replacing metallic structures before critical damage is beneficial for safety and for saving energy and resources. One simple approach consists in visually monitoring the early stage of corrosion, and related change of pH, of coated metals. We prepare smart nanoparticle additives for coatings which act as a pH sensor. The nanoparticles are formed with a terpolymer containing two dyes as side chains, acting as donor and acceptor for a FRET process. Real time monitoring of the extent of localized corrosion on metallic structures is then carried out with a smartphone camera. Colored pH mapping can be then manually retrieved by an operator or automatically recorded by a surveillance camera.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
68
|
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
Collapse
Affiliation(s)
- Hazal Turasan
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jozef Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| |
Collapse
|
69
|
Homocianu M. Optical properties of solute molecules: Environmental effects, challenges, and their practical implications. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
70
|
COSTA LAD, DIÓGENES ICN, OLIVEIRA MDA, RIBEIRO SF, FURTADO RF, BASTOS MDSR, SILVA MAS, BENEVIDES SD. Smart film of jackfruit seed starch as a potential indicator of fish freshness. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.06420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv Colloid Interface Sci 2020; 286:102297. [PMID: 33142210 DOI: 10.1016/j.cis.2020.102297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Food industry is always looking for more innovative and accurate ways to monitor the food safety and quality control of final products. Current detection techniques of analytes are costly and time-consuming, and occasionally require professional experts and specialized tools. The usage of nanomaterials in sensory systems has eliminated not only these drawbacks but also has advantages such as higher sensitivity and selectivity. This article first presents a general overview of the current studies conducted on the detection of spoilage and adulteration in foods from 2015 to 2020. Then, the sensory properties of nanomaterials including metal and magnetic nanoparticles, carbon nanostructures (nanotubes, graphene and its derivatives, and nanofibers), nanowires, and electrospun nanofibers are presented. The latest investigations and advancements in the application of nanomaterial-based sensors in detecting spoilage (food spoilage pathogens, toxins, pH changes, and gases) and adulterants (food additives, glucose, melamine, and urea) have also been discussed in the following sections. To conclude, these sensors can be applied in the smart packaging of food products to meet the demand of consumers in the new era.
Collapse
|
72
|
Qiu L, Zhang M, Bhandari B, Yang C. Shelf life extension of aquatic products by applying nanotechnology: a review. Crit Rev Food Sci Nutr 2020; 62:1521-1535. [PMID: 33167694 DOI: 10.1080/10408398.2020.1844139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aquatic products are extremely perishable due to their biological composition. Conventional preservation methods such as freezing, chemical treatments, packaging, and so forth are unable to inhibit enzymatic and microbiological spoilage efficiently and/or energy intensive and/or potentially toxic. However, the demand of consumers for aquatic products with long shelf life and high quality has urged the food industries to pursuit highly effective preservation methods for shelf life extension of aquatic products. Nanotechnology-related shelf life prolongation process possess the ability to overcome the drawbacks of conventional preservation technologies due to its unique properties. In this article, the aquatic products spoilage mechanisms, recent application of nanotechnology-related preservation techniques for aquatic products as well as the risk and regulation of nanomaterials have been reviewed. It has been shown that nanotechnology-related preservation techniques can effectively extend the shelf life without impairing the quality of aquatic products. However, the safety of nanotechnology is still remained controversial, therefore, the application of nanotechnology should be considered cautiously.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Chaohui Yang
- Yangzhou Ye Chun Food Production and Distribution Company, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
73
|
Application of corn zein as an anchoring molecule in a carbon nanotube enhanced electrochemical sensor for the detection of gliadin. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
74
|
Ezati P, Bang YJ, Rhim JW. Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chem 2020; 337:127995. [PMID: 32919274 DOI: 10.1016/j.foodchem.2020.127995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
A novel intelligent pH-responsive color indicator was prepared by adsorbing a natural naphthoquinone pigment, shikonin, onto cellulose paper. FTIR results indicated that shikonin was crosslinked with the cellulose of the indicator paper. The addition of shikonin increased antioxidant activity, thermal stability, and water resistance properties of the paper. The indicator changed the color from red to dark blue, depending on the pH of buffer solutions. Also, the indicator showed high stability after 4 months of storage and maintained high sensitivity to pH changes. This indicator was used to monitor fish and pork freshness during storage at room temperature, and the results showed a high correlation between the color change of the indicator and the pH change of the sample. The shikonin-adsorbed indicator with stable and sensitive color change depending on pH can be used in the intelligent food packaging applications to monitor the quality of packaged food in real-time.
Collapse
Affiliation(s)
- Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yeong-Ju Bang
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
75
|
Aman Mohammadi M, Hosseini SM, Yousefi M. Application of electrospinning technique in development of intelligent food packaging: A short review of recent trends. Food Sci Nutr 2020; 8:4656-4665. [PMID: 32994928 PMCID: PMC7500774 DOI: 10.1002/fsn3.1781] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022] Open
Abstract
Intelligent food packaging refers to packages with the ability to sense foodstuff changes and to inform customers of the packaging content variations. They are often accompanied by smart detecting devices. Providing a suitable platform to include these devices into packaging polymers has always been discussing. Electrospun nanofibers produced through the electrospinning have been recently utilized as an outstanding and novel platforms for this purpose. Thus, the main aim of this study is to investigate recent trends in producing intelligent food packaging using electrospinning technique. In this regard, this paper was categorized into two chief sections, including (a) the principal of electrospinning technique to fabricate fine nanofibers and the parameters affecting the quality of electrospun fibers, and (b) the role of nanofibers as a platform to cover pH indicators in intelligent food packaging.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyede Marzieh Hosseini
- Student Research Committee Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|