51
|
|
52
|
Biofortification of crops with nutrients: factors affecting utilization and storage. Curr Opin Biotechnol 2017; 44:115-123. [DOI: 10.1016/j.copbio.2016.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/07/2023]
|
53
|
De Steur H, Mehta S, Gellynck X, Finkelstein JL. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations. Curr Opin Biotechnol 2017; 44:181-188. [DOI: 10.1016/j.copbio.2017.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 12/16/2022]
|
54
|
D'Imperio M, Brunetti G, Gigante I, Serio F, Santamaria P, Cardinali A, Colucci S, Minervini F. Integrated in vitro approaches to assess the bioaccessibility and bioavailability of silicon-biofortified leafy vegetables and preliminary effects on bone. In Vitro Cell Dev Biol Anim 2017; 53:217-224. [PMID: 27699650 DOI: 10.1007/s11626-016-0100-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Food industries are increasingly oriented toward new foods to improve nutritional status and/or to combat nutritional deficiency diseases. In this context, silicon biofortification could be an innovative tool for obtaining new foods with possible positive effects on bone mineralization. In this paper, an alternative and quick in vitro approach was applied in order to evaluate the potential health-promoting effects of five silicon-biofortified leafy vegetables (tatsoi, mizuna, purslane, Swiss chard and chicory) on bone mineralization compared with a commercial silicon supplement. The silicon bioaccessibility and bioavailability of the five leafy vegetables (biofortified or not) and of the supplement were assessed by applying a protocol consisting of in vitro gastrointestinal digestion coupled with a Caco-2 cell model. Silicon bioaccessibility ranged from 0.89 to 8.18 mg/L and bioavailability ranged from 111 to 206 μg/L of Si for both vegetables and supplement. Furthermore, the bioavailable fractions were tested on a human osteoblast cell model following the expression of type 1 collagen and alkaline phosphatase. The results obtained highlighted that the bioavailable fraction of biofortified purslane and Swiss chard improved the expression of both osteoblast markers compared with the supplement and other vegetables. These results underline the potentially beneficial effect of biofortified leafy vegetables and also indicate the usefulness of in vitro approaches for selecting the best vegetable with positive bone effects for further in vivo research.
Collapse
Affiliation(s)
- Massimiliano D'Imperio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Human Anatomy and Histology Section, University of Bari "Aldo Moro", Bari, Italy
| | - Isabella Gigante
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Human Anatomy and Histology Section, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Bari, Italy
| | - Angela Cardinali
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Human Anatomy and Histology Section, University of Bari "Aldo Moro", Bari, Italy
| | - Fiorenza Minervini
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Bari, Italy.
| |
Collapse
|
55
|
Sharma D, Jamra G, Singh UM, Sood S, Kumar A. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet ( Eleusine coracana) for Devising Strategies of Enrichment of Food Crops. FRONTIERS IN PLANT SCIENCE 2017; 7:2028. [PMID: 28144246 PMCID: PMC5239788 DOI: 10.3389/fpls.2016.02028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca2+) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca2+) accumulation in its grains and could pave way for development of nutraceuticals or designer crops.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Gautam Jamra
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Uma M. Singh
- International Rice Research Institute Division, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Salej Sood
- Indian Council of Agricultural Research-Vivekananda Institute of Hill AgricultureAlmora, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| |
Collapse
|
56
|
Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, Spieldenner J. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev 2017; 75:49-60. [PMID: 27974599 PMCID: PMC5155616 DOI: 10.1093/nutrit/nuw055] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In light of evidence that high-dose iron supplements lead to a range of adverse events in low-income settings, the safety and efficacy of lower doses of iron provided through biological or industrial fortification of foodstuffs is reviewed. First, strategies for point-of-manufacture chemical fortification are compared with biofortification achieved through plant breeding. Recent insights into the mechanisms of human iron absorption and regulation, the mechanisms by which iron can promote malaria and bacterial infections, and the role of iron in modifying the gut microbiota are summarized. There is strong evidence that supplemental iron given in nonphysiological amounts can increase the risk of bacterial and protozoal infections (especially malaria), but the use of lower quantities of iron provided within a food matrix, ie, fortified food, should be safer in most cases and represents a more logical strategy for a sustained reduction of the risk of deficiency by providing the best balance of risk and benefits. Further research into iron compounds that would minimize the availability of unabsorbed iron to the gut microbiota is warranted.
Collapse
Affiliation(s)
- Andrew M Prentice
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | - Yery A Mendoza
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Dora Pereira
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Carla Cerami
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rita Wegmuller
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Constable
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jörg Spieldenner
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
57
|
Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S. Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 2016; 6:138. [PMID: 28330210 PMCID: PMC4919949 DOI: 10.1007/s13205-016-0458-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/10/2016] [Indexed: 11/12/2022] Open
Abstract
The present study was evaluated to test the potential of plant growth-promoting actinobacteria in increasing seed mineral density of chickpea under field conditions. Among the 19 isolates of actinobacteria tested, significant (p < 0.05) increase of minerals over the uninoculated control treatments was noticed on all the isolates for Fe (10–38 %), 17 for Zn (13–30 %), 16 for Ca (14–26 %), 9 for Cu (11–54 %) and 10 for Mn (18–35 %) and Mg (14–21 %). The increase might be due to the production of siderophore-producing capacity of the tested actinobacteria, which was confirmed in our previous studies by q-RT PCR on siderophore genes expressing up to 1.4- to 25-fold increased relative transcription levels. The chickpea seeds were subjected to processing to increase the mineral availability during consumption. The processed seeds were found to meet the recommended daily intake of FDA by 24–28 % for Fe, 25–28 % for Zn, 28–35 % for Cu, 12–14 % for Ca, 160–167 % for Mn and 34–37 % for Mg. It is suggested that the microbial inoculum can serve as a complementary sustainable tool for the existing biofortification strategies and substantially reduce the chemical fertilizer inputs.
Collapse
|
58
|
De Steur H, Wesana J, Blancquaert D, Van Der Straeten D, Gellynck X. Methods matter: a meta-regression on the determinants of willingness-to-pay studies on biofortified foods. Ann N Y Acad Sci 2016; 1390:34-46. [PMID: 28253442 DOI: 10.1111/nyas.13277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022]
Abstract
Following the growing evidence on biofortification as a cost-effective micronutrient strategy, various researchers have elicited consumers' willingness to pay (WTP) for biofortified crops in an effort to justify and determine their adoption. This review presents a meta-analysis of WTP studies on biofortified foods, either developed through conventional breeding or using genetic modification technology. On the basis of 122 estimates from 23 studies (9507 respondents), consumers are generally willing to pay 21.3% more for biofortified crops. Because WTP estimates are often determined through different valuation methods and procedures, a meta-regression was carried out to examine the role of potential determinants. Aside from contextual factors, such as type of food crop, target nutrient, and region (but not breeding technique), various methodological factors significantly influence premiums, including the type of respondent, nature of the study, study environment, participation fee, and provided information. The findings allow researchers to better anticipate potential methodological biases when examining WTP for (biofortified) foods, while it gives policy makers a broad understanding of the potential demand for different biofortified crops in various settings.
Collapse
Affiliation(s)
- Hans De Steur
- Faculty of Biosciences Engineering, Department of Agricultural Economics, Ghent University, Ghent, Belgium
| | - Joshua Wesana
- Faculty of Biosciences Engineering, Department of Agricultural Economics, Ghent University, Ghent, Belgium.,School of Agricultural and Environmental Sciences, Mountains of the Moon University, Fort Portal, Uganda
| | - Dieter Blancquaert
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, Ghent, Belgium
| | | | - Xavier Gellynck
- Faculty of Biosciences Engineering, Department of Agricultural Economics, Ghent University, Ghent, Belgium
| |
Collapse
|
59
|
Vasconcelos MW, Gruissem W, Bhullar NK. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr Opin Biotechnol 2016; 44:8-15. [PMID: 27780080 DOI: 10.1016/j.copbio.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Plant-based foods offer a wide range of nutrients that are essential for human and animal health. Among these nutrients, iron stands out as one of the most important micronutrients. Increasing the iron content in many staple and non-staple plant foods continues to be a goal of many scientists around the world. However, the success of such initiatives has sometimes fallen short of their expected targets. In this review we highlight the most recent and promising results that have contributed to increasing the iron content in different crops. We also discuss methods that to date have been used to reach iron biofortification goals and new strategies that we believe are most promising for crop biofortification in the future. Plant anatomical, physiological and metabolic hurdles still need to be tackled for making progress on further increasing currently reached levels of micronutrient improvements. New strategies need to take into account growing environmental challenges that may constrain biofortification efforts.
Collapse
Affiliation(s)
- Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Navreet K Bhullar
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
60
|
Santos CS, Carvalho SMP, Leite A, Moniz T, Roriz M, Rangel AOSS, Rangel M, Vasconcelos MW. Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:91-100. [PMID: 27156133 DOI: 10.1016/j.plaphy.2016.04.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 05/25/2023]
Abstract
Iron deficiency chlorosis (IDC) is a serious environmental problem affecting the growth of several crops in the world. The application of synthetic Fe(III) chelates is still one of the most common measures to correct IDC and the search for more effective Fe chelates remains an important issue. Herein, we propose a tris(3-hydroxy-4-pyridinonate) iron(III) complex, Fe(mpp)3, as an IDC corrector. Different morphological, biochemical and molecular parameters were assessed as a first step towards understanding its mode of action, compared with that of the commercial fertilizer FeEDDHA. Plants treated with the pyridinone iron(III) complexes were significantly greener and had increased biomass. The total Fe content was measured using ICP-OES and plants treated with pyridinone complexes accumulated about 50% more Fe than those treated with the commercial chelate. In particular, plants supplied with compound Fe(mpp)3 were able to translocate iron from the roots to the shoots and did not elicit the expression of the Fe-stress related genes FRO2 and IRT1. These results suggest that 3,4-HPO iron(III) chelates could be a potential new class of plant fertilizing agents.
Collapse
Affiliation(s)
- Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Susana M P Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; GreenUP/CITAB-UP & DGAOT, Faculty of Sciences, University of Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7, 4485-661 Vairão, Portugal
| | - Andreia Leite
- REQUIMTE-UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Tânia Moniz
- REQUIMTE-UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Mariana Roriz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - António O S S Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Maria Rangel
- REQUIMTE-UCIBIO, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
61
|
Garcia-Casal MN, Peña-Rosas JP, Pachón H, De-Regil LM, Centeno Tablante E, Flores-Urrutia MC. Staple crops biofortified with increased micronutrient content: effects on vitamin and mineral status, as well as health and cognitive function in the general population. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2016. [DOI: 10.1002/14651858.cd012311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria N Garcia-Casal
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; Avenue Appia 20 Geneva Geneva Switzerland 1211
| | - Juan Pablo Peña-Rosas
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; Avenue Appia 20 Geneva Geneva Switzerland 1211
| | - Helena Pachón
- Emory University; Hubert Department of Global Health; 1599 Clifton Rd NE, Room 6406 Atlanta Georgia USA
| | - Luz Maria De-Regil
- Micronutrient Initiative; Research and Evaluation; 180 Elgin Street, Suite 1000 Ottawa ON Canada K2P 2K3
| | | | - Monica C Flores-Urrutia
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; Avenue Appia 20 Geneva Geneva Switzerland 1211
| |
Collapse
|
62
|
D'Imperio M, Renna M, Cardinali A, Buttaro D, Serio F, Santamaria P. Calcium biofortification and bioaccessibility in soilless "baby leaf" vegetable production. Food Chem 2016; 213:149-156. [PMID: 27451166 DOI: 10.1016/j.foodchem.2016.06.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/30/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022]
Abstract
Calcium is an essential nutrient for human health, because it is a structural component and takes part in a variety of biological processes. The aim of this study was to increase Ca content of baby leaf vegetables (BLV: basil, mizuna, tatsoi and endive), as fresh-cut products. For the production of biofortified BLV, a floating system with two level of Ca (100 and 200mgL(-1)) in the nutrient solution was used. In addition, the assessment of bioaccessibility of Ca, by in vitro digestion process, was performed. In all vegetables, the Ca biofortification (200mgL(-1)) caused a significant Ca enrichment (9.5% on average) without affecting vegetables growth, oxalate contents and marketable quality. Calcium bioaccessibility ranged from 25% (basil) to 40% (endive) but the biofortified vegetables showed more bioaccessible Ca. These results underline the possibility to obtain Ca biofortified BLV by using agronomic approaches.
Collapse
Affiliation(s)
- Massimiliano D'Imperio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy(CNR), Bari, Italy; Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Massimiliano Renna
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy(CNR), Bari, Italy; Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Angela Cardinali
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy(CNR), Bari, Italy
| | - Donato Buttaro
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy(CNR), Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy(CNR), Bari, Italy.
| | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
63
|
Gabaza M, Muchuweti M, Vandamme P, Raes K. Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1196491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Molly Gabaza
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Maud Muchuweti
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
64
|
Vaz-Tostes MDG, Verediano TA, de Mejia EG, Brunoro Costa NM. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1326-1332. [PMID: 25899136 DOI: 10.1002/jsfa.7226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. RESULTS In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). CONCLUSION Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification.
Collapse
Affiliation(s)
- Maria das Graças Vaz-Tostes
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, PH Holfs, 36570-000, Viçosa, MG, Brazil
| | - Thaisa Agrizzi Verediano
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, PH Holfs, 36570-000, Viçosa, MG, Brazil
| |
Collapse
|
65
|
D'Imperio M, Renna M, Cardinali A, Buttaro D, Santamaria P, Serio F. Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:751-6. [PMID: 25690676 DOI: 10.1002/jsfa.7142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/03/2015] [Accepted: 02/13/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The mineral silicon (Si) is an essential element for humans and a general component of the diet found mainly in plant-based foods. The aim of this study was to obtain Si biofortificated leafy vegetables (tatsoi, mizuna, purslane, basil, Swiss chard, and chicory) to use for the fresh-cut products (ready to use). For the production of biofortified plants, a floating system with 0, 50 and 100 mg L(-1) of Si in nutrient solution, was used. In addition, the assessment of bioaccessibility of biofortified plants, by in vitro gastro-digestion process, was performed. RESULTS The added silicon in nutrient solution did not influence yield and colour of vegetables but a species-related accumulation of Si (expressed as SiO2) was found: from 18 to 69 mg kg(-1) fresh weight (FW) in tatsoi, from 19 to 106 mg kg(-1) FW in mizuna, from 15 to 93 mg kg(-1) FW in purslane, from 41 to 294 mg kg(-1) FW in basil, from 17 to 76 mg kg(-1) FW in Swiss chard, and from 23 to 76 mg kg(-1) FW in chicory. The Si became bioaccessible in all species considered in a range from 23% (basil) to 64% (chicory). CONCLUSION The application of Si to the nutrient solution in the range of 50-100 mg L(-1) allows biofortification of leafy vegetables. In addition, the biofortified vegetables showed, on average, more bioaccessible Si, with respect to unbiofortified vegetables.
Collapse
Affiliation(s)
- Massimiliano D'Imperio
- Institute of Sciences of Food Production, CNR, National Research Council of Italy, Via G. Amendola, 122/O, 70126 Bari, Italy
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Massimiliano Renna
- Institute of Sciences of Food Production, CNR, National Research Council of Italy, Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Angela Cardinali
- Institute of Sciences of Food Production, CNR, National Research Council of Italy, Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Donato Buttaro
- Institute of Sciences of Food Production, CNR, National Research Council of Italy, Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Pietro Santamaria
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, CNR, National Research Council of Italy, Via G. Amendola, 122/O, 70126 Bari, Italy
| |
Collapse
|
66
|
Povero G, Mejia JF, Di Tommaso D, Piaggesi A, Warrior P. A Systematic Approach to Discover and Characterize Natural Plant Biostimulants. FRONTIERS IN PLANT SCIENCE 2016; 7:435. [PMID: 27092156 PMCID: PMC4820456 DOI: 10.3389/fpls.2016.00435] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/21/2016] [Indexed: 05/02/2023]
Abstract
The use of natural plant biostimulants is proposed as an innovative solution to address the challenges to sustainable agriculture, to ensure optimal nutrient uptake, crop yield, quality, and tolerance to abiotic stress. However, the process of selection and characterization of plant biostimulant matrices is complex and involves a series of rigorous evaluations customized to the needs of the plant. Here, we propose a highly differentiated plant biostimulant development and production platform, which involves a combination of technology, processes, and know-how. Chemistry, biology and omic concepts are combined/integrated to investigate and understand the specific mode(s) of action of bioactive ingredients. The proposed approach allows to predict and characterize the function of natural compounds as biostimulants. By managing and analyzing massive amounts of complex data, it is therefore possible to discover, evaluate and validate new product candidates, thus expanding the uses of existing products to meet the emerging needs of agriculture.
Collapse
|
67
|
Bartos A, Majak I, Leszczyńska J. Fluctuations in Foodborne Nickel as an Outcome of Industrial Processing. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adrian Bartos
- Faculty of Biotechnology and Food Science; Institute of General Food Chemistry; Lodz University of Technology; Stefanowskiego 4/10 90-324 Lodz Poland
| | - Iwona Majak
- Faculty of Biotechnology and Food Science; Institute of General Food Chemistry; Lodz University of Technology; Stefanowskiego 4/10 90-324 Lodz Poland
| | - Joanna Leszczyńska
- Faculty of Biotechnology and Food Science; Institute of General Food Chemistry; Lodz University of Technology; Stefanowskiego 4/10 90-324 Lodz Poland
| |
Collapse
|
68
|
Tomasi N, Pinton R, Dalla Costa L, Cortella G, Terzano R, Mimmo T, Scampicchio M, Cesco S. New ‘solutions’ for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
69
|
Santos CS, Roriz M, Carvalho SMP, Vasconcelos MW. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:325. [PMID: 26029227 PMCID: PMC4428275 DOI: 10.3389/fpls.2015.00325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/24/2015] [Indexed: 05/20/2023]
Abstract
Iron (Fe) deficiency chlorosis (IDC) leads to leaf yellowing, stunted growth and drastic yield losses. Plants have been differentiated into 'Fe-efficient' (EF) if they resist to IDC and 'Fe-inefficient' (IN) if they do not, but the reasons for this contrasting efficiency remain elusive. We grew EF and IN soybean plants under Fe deficient and Fe sufficient conditions and evaluated if gene expression and the ability to partition Fe could be related to IDC efficiency. At an early growth stage, Fe-efficiency was associated with higher chlorophyll content, but Fe reductase activity was low under Fe-deficiency for EF and IN plants. The removal of the unifoliate leaves alleviated IDC symptoms, increased shoot:root ratio, and trifoliate leaf area. EF plants were able to translocate Fe to the aboveground plant organs, whereas the IN plants accumulated more Fe in the roots. FRO2-like gene expression was low in the roots; IRT1-like expression was higher in the shoots; and ferritin was highly expressed in the roots of the IN plants. The efficiency trait is linked to Fe partitioning and the up-regulation of Fe-storage related genes could interfere with this key process. This work provides new insights into the importance of mineral partitioning among different plant organs at an early growth stage.
Collapse
Affiliation(s)
- Carla S. Santos
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| | - Mariana Roriz
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| | - Susana M. P. Carvalho
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Horticultural and Product Physiology Group, Department of Plant Sciences, Wageningen UniversityWageningen, Netherlands
- Faculty of Sciences, University of PortoPorto, Portugal
| | - Marta W. Vasconcelos
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| |
Collapse
|
70
|
Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP. Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 2015; 56:151-61. [PMID: 25592547 DOI: 10.1007/s13353-014-0268-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Abstract
Meeting the food demands and ensuring nutritional security of the ever increasing global population in the face of degrading natural resource base and impending climate change is the biggest challenge of the twenty first century. The consequences of mineral/micronutrient deficiencies or the hidden hunger in the developing world are indeed alarming and need urgent attention. In addressing the problems associated with mineral/micronutrient deficiency, grain legumes as an integral component of the farming systems in the developing world have to play a crucial role. For resource-poor populations, a strategy based on selecting and/or developing grain legume cultivars with grains denser in micronutrients, by biofortification, seems the most appropriate and attractive approach to address the problem. This is evident from the on-going global research efforts on biofortification to provide nutrient-dense grains for use by the poorest of the poor in the developing countries. Towards this end, rapidly growing genomics technologies hold promise to hasten the progress of breeding nutritious legume crops. In conjunction with the myriad of expansions in genomics, advances in other 'omics' technologies particularly plant ionomics or ionome profiling open up novel opportunities to comprehensively examine the elemental composition and mineral networks of an organism in a rapid and cost-effective manner. These emerging technologies would effectively guide the scientific community to enrich the edible parts of grain legumes with bio-available minerals and enhancers/promoters. We believe that the application of these new-generation tools in turn would provide crop-based solutions to hidden hunger worldwide for achieving global nutritional security.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India,
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
72
|
Vasconcelos MW, Clemente TE, Grusak MA. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L). FRONTIERS IN PLANT SCIENCE 2014; 5:112. [PMID: 24765096 PMCID: PMC3982063 DOI: 10.3389/fpls.2014.00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene's expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and distribution.
Collapse
Affiliation(s)
- Marta W. Vasconcelos
- Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Centro Regional do Porto da Universidade Católica PortuguesaPorto, Portugal
- Department of Pediatrics, USDA-ARS Children’s Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
| | - Thomas E. Clemente
- Center for Biotechnology – Plant Science Initiative, University of Nebraska-LincolnLincoln, NE, USA
| | - Michael A. Grusak
- Department of Pediatrics, USDA-ARS Children’s Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
73
|
Cheajesadagul P, Bianga J, Arnaudguilhem C, Lobinski R, Szpunar J. Large-scale speciation of selenium in rice proteins using ICP-MS assisted electrospray MS/MS proteomics. Metallomics 2014; 6:646-53. [DOI: 10.1039/c3mt00299c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
74
|
Ricachenevsky FK, Menguer PK, Sperotto RA. kNACking on heaven's door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds? FRONTIERS IN PLANT SCIENCE 2013; 4:226. [PMID: 23847632 PMCID: PMC3696727 DOI: 10.3389/fpls.2013.00226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/10/2013] [Indexed: 05/18/2023]
Abstract
Senescence is a coordinated process where a plant, or a part of it, engages in programmed cell death to salvage nutrients by remobilizing them to younger tissues or to developing seeds. As Fe and Zn deficiency are the two major nutritional disorders in humans, increased concentration of these nutrients through biofortification in cereal grains is a long-sought goal. Recent evidences point to a link between the onset of leaf senescence and increased Fe and Zn remobilization. In wheat, one member of the NAC (NAM, ATAF, and CUC) transcription factor (TF) family (NAM-B1) has a major role in the process, probably regulating key genes for the early onset of senescence, which results in higher Fe and Zn concentrations in grains. In rice, the most important staple food for nearly half of the world population, the NAM-B1 ortholog does not have the same function. However, other NAC proteins are related to senescence, and could be playing roles on the same remobilization pathway. Thus, these genes are potential tools for biofortification strategies in rice. Here we review the current knowledge on the relationship between senescence, Fe and Zn remobilization and the role of NAC TFs, with special attention to rice. We also propose a working model for OsNAC5, which would act on the regulation of nicotianamine (NA) synthesis and metal-NA remobilization.
Collapse
Affiliation(s)
- Felipe Klein Ricachenevsky
- Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Rio Grande do Sul, Brazil
| | - Paloma Koprovski Menguer
- Departamento de Botânica, Universidade Federal do Rio Grande do SulPorto Alegre, Rio Grande do Sul, Brazil
| | - Raul Antonio Sperotto
- Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Rio Grande do Sul, Brazil
- *Correspondence: Raul Antonio Sperotto, Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATES, Rua Avelino Tallini 171, Lajeado, Rio Grande do Sul 95.900-000, Brazil e-mail:
| |
Collapse
|