51
|
Lu S, Zhang G. Recent advances on inactivation of waterborne pathogenic microorganisms by (photo) electrochemical oxidation processes: Design and application strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128619. [PMID: 35359104 DOI: 10.1016/j.jhazmat.2022.128619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Compared with other conventional water disinfection processes, (photo) electrochemical oxidation (P/ECO) processes have the characteristics of environmental friendliness, convenient installation and operation, easy control and high efficiency of inactivating waterborne pathogenic microorganisms (PMs), so that more and more research work has been focused on this topic, but there is still a huge gap between the research and practical application. Here, the research network of inactivating PMs by P/ECO processes has been comprehensively summarized, and the electrode/reactor/process design strategies based on strengthening direct and indirect oxidation, enhancing mass transfer efficiency and electron transfer efficiency, and improving the effective dose of electrogenerated oxidants are discussed. Furthermore, the factors affecting the inactivation of PMs and the issues regarding to stability and lifetime of the electrode are discussed respectively. Finally, the important research priorities and possible research challenges of P/ECO processes are put forward to make significant progress of this technology.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China.
| |
Collapse
|
52
|
Ahmed S, Akther S, Alam SMS, Ahiduzzaman M, Islam MN, Azam MS. Individual and combined effects of electrolyzed water and ultrasound treatment on microbial decontamination and shelf life extension of fruits and vegetables: A review of potential mechanisms. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shafi Ahmed
- Department of Agro Product Processing Technology Jashore University of Science and Technology Jasho re Bangladesh
| | - Sharmin Akther
- Department of Agro Product Processing Technology Jashore University of Science and Technology Jasho re Bangladesh
| | - S. M. Shamiul Alam
- Department of Agro Product Processing Technology Jashore University of Science and Technology Jasho re Bangladesh
| | - Md Ahiduzzaman
- Department of Agro‐Processing Bangabandhu Sheikh Mujibur Rahman Agricultural University Gazipur Bangladesh
| | - Md. Nahidul Islam
- Department of Agro‐Processing Bangabandhu Sheikh Mujibur Rahman Agricultural University Gazipur Bangladesh
| | - Md. Shofiul Azam
- Department of Chemical and Food Engineering Dhaka University of Engineering & Technology Gazipur Bangladesh
| |
Collapse
|
53
|
Surface Decontamination and Shelf-Life Extension of Gilthead Sea Bream by Alternative Washing Treatments. SUSTAINABILITY 2022. [DOI: 10.3390/su14105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficacy of washing and the investigation of alternative sanitizing treatments for the reduction of microbial population are major issues for fresh fish and seafood. Limited work on the effect of alternative washing media on fish, particularly gilthead sea bream, one of the important popular fish species, has been published and no industrial scaling-up has been reported. The objective of this study was to systematically evaluate the effect of surface decontamination treatments on the microbial load of fish and the quality and shelf life during subsequent chilled storage. Citric acid (200 ppm for 0–10 min), lactic acid (200 ppm for 0–10 min), and peracetic acid (0–200 ppm for 0–4 min) were tested as alternative washing media by immersion of gutted gilthead sea bream by evaluating their effect on microbial growth and physicochemical and organoleptic degradation of fish. The results of the study indicated that washing with citric (200 ppm, 10 min) and peracetic acid (200 ppm, 4 min) significantly delayed the growth of spoilage microorganisms (total viable count, Pseudomonas spp., Enterobacteriaceae spp., and H2S-producting bacteria) in gutted fish and extended the shelf life to 18 days at 0 °C, compared to 11 days without washing treatment. Appropriate handling and processing of fish and shelf-life extension may enable longer transportation and thus open new distant markets, as well as contribute to reduce food waste during transportation and storage.
Collapse
|
54
|
Barnett-Neefs C, Sullivan G, Zoellner C, Wiedmann M, Ivanek R. Using agent-based modeling to compare corrective actions for Listeria contamination in produce packinghouses. PLoS One 2022; 17:e0265251. [PMID: 35320292 PMCID: PMC8942247 DOI: 10.1371/journal.pone.0265251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
The complex environment of a produce packinghouse can facilitate the spread of pathogens such as Listeria monocytogenes in unexpected ways. This can lead to finished product contamination and potential foodborne disease cases. There is a need for simulation-based decision support tools that can test different corrective actions and are able to account for a facility’s interior cross-contamination dynamics. Thus, we developed agent-based models of Listeria contamination dynamics for two produce packinghouse facilities; agents in the models represented equipment surfaces and employees, and models were parameterized using observations, values from published literature and expert opinion. Once validated with historical data from Listeria environmental sampling, each model’s baseline conditions were investigated and used to determine the effectiveness of corrective actions in reducing prevalence of agents contaminated with Listeria and concentration of Listeria on contaminated agents. Evaluated corrective actions included reducing incoming Listeria, modifying cleaning and sanitation strategies, and reducing transmission pathways, and combinations thereof. Analysis of Listeria contamination predictions revealed differences between the facilities despite their functional similarities, highlighting that one-size-fits-all approaches may not always be the most effective means for selection of corrective actions in fresh produce packinghouses. Corrective actions targeting Listeria introduced in the facility on raw materials, implementing risk-based cleaning and sanitation, and modifying equipment connectivity were shown to be most effective in reducing Listeria contamination prevalence. Overall, our results suggest that a well-designed cleaning and sanitation schedule, coupled with good manufacturing practices can be effective in controlling contamination, even if incoming Listeria spp. on raw materials cannot be reduced. The presence of water within specific areas was also shown to influence corrective action performance. Our findings support that agent-based models can serve as effective decision support tools in identifying Listeria-specific vulnerabilities within individual packinghouses and hence may help reduce risks of food contamination and potential human exposure.
Collapse
Affiliation(s)
- Cecil Barnett-Neefs
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Genevieve Sullivan
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America.,Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Claire Zoellner
- iFoodDecisionSciences, Seattle, Washington, United States of America
| | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
55
|
Omac B, Moreira RG, Castell‐Perez EM. Integrated electron beam irradiation treatment with hydrogen peroxide aqueous solution to inactivate
Salmonella
on grape tomatoes. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Basri Omac
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
- Department of Food Processing Munzur University Tunceli Turkey
| | - Rosana G. Moreira
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| | - Elena M. Castell‐Perez
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| |
Collapse
|
56
|
Wang J, Wu Z, Wang H. Combination of ultrasound-peracetic acid washing and ultrasound-assisted aerosolized ascorbic acid: A novel rinsing-free disinfection method that improves the antibacterial and antioxidant activities in cherry tomato. ULTRASONICS SONOCHEMISTRY 2022; 86:106001. [PMID: 35405541 PMCID: PMC9011114 DOI: 10.1016/j.ultsonch.2022.106001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 05/15/2023]
Abstract
Traditional ultrasound (US)-assisted disinfection is only effective during washing. Coating is an effective method to control microbial growth after washing; however, cross-contamination can occur during immersion in the coating aqueous solution. Tap water (TW) rinsing is generally used to remove sanitizer residues after US-assisted washing; however, the Food and Drug Administration stated that rinsing is unnecessary when the peracetic acid (PAA) concentration does not exceed 80 ppm. In this study, we proposed a novel US-assisted hurdle technology of 80 ppm PAA combined with low-frequency US (25 kHz) during washing, followed by US-assisted aerosolization processing (nonimmersion coating). Ascorbic acid (AA), a safe and low-cost agent, was selected as the aerosolization solution. Cherry tomatoes were selected as the model, and the proposed method was compared with traditional US-assisted disinfection methods (US-10 ppm free chlorine washing + TW rinsing and US-5 ppm chlorine dioxide washing + TW rinsing) to analyze the disinfection efficacy and quality changes. During storage, US-PAA + 1%AA facilitated additional 0.7-0.9, 0.6-0.8, 0.7-1.0, and 0.5-1.0 log CFU/g reductions in the counts of Escherichia coli O157:H7, Salmonella Typhimurium, aerobic mesophilic counts, and molds and yeasts, respectively, as compared with traditional US-assisted methods. Sensory properties, color index, total soluble solids, titratable acidity, and weight loss were not negatively affected by any of the treatments. Firmness was slightly reduced after all treatments; however, the firmness of the samples was maintained during storage, in contrast with the decreased firmness observed in the control. Phenolic content and antioxidant activity significantly increased after all treatments. Further analysis of two key enzymes (phenylalanine ammonia-lyase and 4-coumarate-CoA ligase) involved in phenolic synthesis showed that their levels significantly increased following all treatments, leading to an increase in phenolic content and antioxidant activity. This result also indicated that US-assisted washing could act as an abiotic elicitor to increase nutritional content. Overall, US-PAA + 1%AA treatment served as an effective method for disinfecting produce during washing and for controlling microbial growth after washing without prolonging the processing time, which is an advantage over traditional US-assisted washing.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | | |
Collapse
|
57
|
Dilarri G, Zamuner CFC, Bacci M, Ferreira H. Evaluation of calcium hydroxide, calcium hypochlorite, peracetic acid, and potassium bicarbonate as citrus fruit sanitizers. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1739-1747. [PMID: 35531424 PMCID: PMC9046501 DOI: 10.1007/s13197-021-05185-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 05/03/2023]
Abstract
Xanthomonas citri (X. citri) is a quarentenary plant pathogen and the causal agent of the citrus canker. X. citri forms biofilms and remains fixed on the surface of plant tissues, especially on leaves and fruits. Considering this, all the citrus fruits have to be sanitized before they can be commercialized. NaOCl is the main sanitizer used to decontaminate fruits in the world. Due to its toxicity, treatment with NaOCl is no longer accepted by some Europe Union countries. Therefore, the aim of this work was to evaluate potassium bicarbonate (KHCO3), calcium hydroxide (Ca(OH)2), calcium hypochlorite (Ca(OCl)2) and peracetic acid (CH3CO3H) as alternatives to NaOCl for the sanitization of citrus fruit. By monitoring cell respiration and bacterial growth, we determined that peracetic acid and calcium hypochlorite exhibit bactericidal action against X. citri. Time-response growth curves and membrane integrity analyses showed that peracetic acid and calcium hypochlorite target the bacterial cytoplasmatic membrane, which is probably responsible for cell death in the first minutes of contact. The simulation of the sanitization process of citrus fruit in packinghouses showed that only peracetic acid exhibited a performance comparable to NaOCl. Among the tested compounds, peracetic acid constitutes an efficient and safer alternative to NaOCl.
Collapse
Affiliation(s)
- Guilherme Dilarri
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| | - Caio Felipe Cavicchia Zamuner
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| | - Mauricio Bacci
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| | - Henrique Ferreira
- Department of General and Applied Biology, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP 13506-900 Brazil
| |
Collapse
|
58
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
59
|
Wang J, Wu Z. Combined use of ultrasound-assisted washing with in-package atmospheric cold plasma processing as a novel non-thermal hurdle technology for ready-to-eat blueberry disinfection. ULTRASONICS SONOCHEMISTRY 2022; 84:105960. [PMID: 35240411 PMCID: PMC8891714 DOI: 10.1016/j.ultsonch.2022.105960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) has limited disinfection efficacy, and it has been recommended to combine it with chemical disinfectants during fresh produce washing. After washing and before packaging, the disinfection effect of US-assisted washing can be weakened; thus, in-package disinfection is important. As a nutritious fruit, there are no packaged blueberries can be directly eaten. Therefore, in this study, blueberry was selected as the model, and the two most commonly used disinfectants (free chlorine [FC] at 10 ppm and peracetic acid [PAA] at 80 ppm) were combined with low-frequency US (25 kHz) during washing, followed by in-package disinfection using dielectric barrier discharge cold plasma (CP). The disinfection efficacy of US-FC and US-PAA against Escherichia coli O157:H7 and Salmonella Typhimurium was significantly higher than that of US, PAA, or FC alone. The highest disinfection efficacy of CP was observed at the pulse frequency range of 400-800 Hz. For US-FC (1 min) + CP (1 min), an additional 0.86, 0.71, 0.42, and 0.29 log CFU/g of reduction for E. coli O157:H7, S. Typhimurium, aerobic mesophilic counts, and mold and yeast was achieved, respectively, compared with US-FC (2 min) alone. For US-PAA (1 min) + CP (1 min) an additional 0.71, 0.59, 0.32, and 0.21 log CFU/g of reduction was achieved for the above organisms, respectively, compared with US-PAA (2 min) alone. Quality loss (in total color difference, firmness, and anthocyanin content) was not observed after treatment with US-FC + CP, US-PAA + CP, US-FC, or US-PAA. After treatment with US-FC + CP or US-PAA + CP, the reactive oxygen species (ROS) content was significantly lower than that in the other groups, and antioxidant enzyme activity was significantly higher than that in the other groups, suggesting that in-package CP can activate the blueberry antioxidant system to scavenge ROS, thereby lowering the risk of quality loss. US-CP combination not only improves the disinfection efficacy but also lowers quality loss caused by ROS, without prolonging the processing time.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| |
Collapse
|
60
|
Unal Turhan E, Polat S, Erginkaya Z, Konuray G. Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Ezzatpanah H, Gómez‐López VM, Koutchma T, Lavafpour F, Moerman F, Mohammadi M, Raheem D. New food safety challenges of viral contamination from a global perspective: Conventional, emerging, and novel methods of viral control. Compr Rev Food Sci Food Saf 2022; 21:904-941. [DOI: 10.1111/1541-4337.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Tatiana Koutchma
- Guelph Research and Development Center Agriculture and Agri‐Food Canada Guelph Ontario Canada
| | | | - Frank Moerman
- Department of Chemistry Catholic University of Leuven ‐ KU Leuven Leuven Belgium
| | | | - Dele Raheem
- Arctic Centre (NIEM) University of Lapland Rovaniemi Finland
| |
Collapse
|
62
|
Zhang L, Yu X, Yagoub AEA, Xia G, Zhou C. Effect of vacuum impregnation assisted probiotics fermentation suspension on shelf life quality of freshly cut lotus root. Food Chem 2022; 381:132281. [PMID: 35121314 DOI: 10.1016/j.foodchem.2022.132281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Probiotic fermentation suspension was used to extend the shelf life of freshly cut lotus root for the first time, which played a dual role of biological protection and quality maintenance. Fermentation suspension contained lactic acid bacteria (8-9 log CFU/mL) was prepared from juice of lotus root and used to immerse samples under atmospheric pressure and vacuum. Probiotic fermentation suspension inhibited microorganism and the activity of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), which slowed down the physiological reaction and was beneficial to maintain the color and hardness of tissues. Lactic acid bacteria antagonized other microorganisms, and metabolic acid production played a continuous role in preservation during storage. The vacuum was helpful for the fermentation suspension to be fully impregnated into samples. The probiotic fermentation suspension had a significant inhibitory effect on E.coli O157:H7, and extended lotus root shelf life from 3 to 9 days.
Collapse
Affiliation(s)
- Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Nanjing Shennongyuan Food Industry Co. LTD, Pingan Xi Road, Lishui, Nanjing, 211219, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Guohua Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
63
|
Katsigiannis AS, Bayliss DL, Walsh JL. Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2022; 21:1086-1124. [DOI: 10.1111/1541-4337.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Danny L. Bayliss
- Processing & Production Research Department Campden BRI Gloucestershire UK
| | - James L. Walsh
- Department of Electrical Engineering & Electronics University of Liverpool Liverpool UK
| |
Collapse
|
64
|
Raffo A, Paoletti F. Fresh-Cut Vegetables Processing: Environmental Sustainability and Food Safety Issues in a Comprehensive Perspective. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.681459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The fresh-cut industry supplies the food market with healthy fresh fruit and vegetables and, in that way, may contribute to improve the nutritional status of the general population. On the other hand, over the last few years increasing concerns have been raised regarding the environmental impact of the fresh-cut industry, human health risks from exposure to disinfection by-products found in fresh-cut products and chlorine-based disinfection treatments during produce processing. This review provides a comprehensive view of the main interlinked aspects related to food safety and environmental impact of processing of fresh-cut vegetables. Advantages and downsides of the mainstream disinfection strategy, based on the use of chlorine-related disinfecting agents, along with some alternative treatments close to a wide commercial application, are discussed. Limitation in the application of these strategies to processing of organic fresh-cut produce are also highlighted, examining the specific environmental and food safety problems in the organic sector. Areas where lack of available information hinders at present a clear understanding of priorities of research and action are pointed out. Innovative conceptual tools are proposed to address these multiple and interlinking issues and to overcome limitations of currently available technologies. A comprehensive and multidisciplinary approach is suggested to move toward a more safe and environmentally sustainable production of fresh-cut products.
Collapse
|
65
|
Han B, Han X, Ren M, You Y, Zhan J, Huang W. Antimicrobial Effects of Novel H2O2-Ag+ Complex on Membrane Damage to Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella Typhimurium. J Food Prot 2022; 85:104-111. [PMID: 34265056 DOI: 10.4315/jfp-21-087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Diseases caused by harmful microorganisms pose a serious threat to human health. Safe and environmentally friendly disinfectants are, therefore, essential in preventing and controlling such pathogens. This study aimed to investigate the antimicrobial activity and mechanism of a novel hydrogen peroxide and silver (H2O2-Ag+) complex (HSC) in combatting Staphylococcus aureus ATCC 29213, Escherichia coli O157:H7 NCTC 12900, and Salmonella Typhimurium SL 1344. The MICs and MBCs against S. aureus were found to be 0.014% H2O2-3.125 mg/L Ag+, and for both E. coli O157:H7 and Salmonella Typhimurium they were 0.028% H2O2-6.25 mg/L Ag+. Results of the time-kill trial suggest that HSC could inhibit the growth of the tested bacteria, because 99.9% of viable cells were killed following treatment at 1 MIC for 3 h. The mechanism of antibacterial action of HSC was found to include the disruption of the bacterial cell membrane, followed by reduction of intracellular ATP concentration and inhibition of the activity of antioxidases, superoxide dismutase, and catalase. The enhanced bactericidal effect of hydrogen peroxide combined with silver indicates a potential for its application in environmental disinfection, particularly in the food industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Bing Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing, 100083, People's Republic of China
| | - Mengmeng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing, 100083, People's Republic of China
| | - Yilin You
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing, 100083, People's Republic of China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing, 100083, People's Republic of China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
66
|
Changes on epicuticular waxes and colour induced by ozone in blueberries (Vaccinium corymbosum L. ‘O’ Neal’). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
67
|
Fan N, Wang X, Sun J, Lv X, Gu J, Zhao C, Wang D. Effects of konjac glucomannan/pomegranate peel extract composite coating on the quality and nutritional properties of fresh-cut kiwifruit and green bell pepper. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:228-238. [PMID: 35068567 PMCID: PMC8758865 DOI: 10.1007/s13197-021-05006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
The effects of an edible coating, based on konjac glucomannan (KG) incorporated with pomegranate peel extracts (PE), on the physicochemical and nutritional properties of fresh-cut kiwifruit and green bell pepper during storage were investigated. The optimal extract time (40.6 min), temperature (54.5 °C), and ultrasound power (255.5 W) with response surface method, provided a high total antioxidant activity (TAA) of (92.31 ± 1.43)%. Fresh-cut kiwifruit and green bell pepper were coated by dipping using five treatments (distilled water, ascorbic acid, KG, PE, KG + PE), packed into polymeric film and stored for 8 days at 10 °C. Distilled water treatment was used as control. KG + PE treatment resulted in the highest total soluble solid and titratable acidity in fresh-cut kiwifruit, while the maximum firmness in fresh-cut green bell pepper. The weight loss was both effectively decreased in samples treated with KG or KG + PE. All samples treated with KG + PE had significantly higher contents of chlorophyll, ascorbic acid, total phenolic and TAA than others. Moreover, the KG + PE group had the lowest counts of microorganisms in all samples. KG coating incorporated with PE was proved to be efficient in maintaining the physico-chemical and nutritional properties of fresh-cut kiwifruit and green bell pepper during low temperature storage compared with control. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05006-7.
Collapse
Affiliation(s)
- Na Fan
- College of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China ,College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| | - Xian Wang
- College of Food Science and Engineering, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Jingyao Sun
- College of Food Science and Engineering, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Xingang Lv
- College of Food Science and Engineering, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Jiao Gu
- College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| | - Chunfang Zhao
- College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| | - Danping Wang
- College of Healthy Management, Shangluo University, Shangluo, 726000 People’s Republic of China
| |
Collapse
|
68
|
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Advances in emerging technologies for the decontamination of the food contact surfaces. Food Res Int 2022; 151:110865. [PMID: 34980401 DOI: 10.1016/j.foodres.2021.110865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Foodborne pathogens could be transferred to food from food contact surfaces contaminated by poor hygiene or biofilm formation. The food processing industry has various conditions favouring microbes' adherence, such as moisture, nutrients, and the microbial inoculums obtained from the raw material. The function of the ideal antimicrobial surface is preventing initial attachment of the microbes, killing the microbes or/and removing the dead bacteria. This review article provides detail about the challenges food industries are facing with respect to food contact materials. It also summarises the merits and demerits of several sanitizing methods developed for industrial use. Furthermore, it reviews the new and emerging techniques that enhance the efficiency of reducing microbial contamination. Techniques such as surface functionalisation, high-intensity ultrasound, cold plasma technologies etc. which have high potential to be used for the decontamination of food contact surfaces are discussed. The emerging designs of antibacterial surfaces provide the opportunity to reduce or eradicate the adhesion of microorganisms. The most important purpose of these surfaces is to prevent the attachment of bacteria and to kill the bacteria that come in contact. These emerging technologies have a high potential for developing safe and inert food contact materials for the food industry.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland; Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| |
Collapse
|
69
|
Numerical simulation and experimental validation of bacterial detachment using a spherical produce model in an industrial-scale flume washer. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Asimakopoulou E, Εkonomou SΙ, Papakonstantinou P, Doran O, Stratakos AC. Inhibition of corrosion causing Pseudomonas aeruginosa using plasma-activated water. J Appl Microbiol 2021; 132:2781-2794. [PMID: 34846774 DOI: 10.1111/jam.15391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022]
Abstract
AIMS The cost of Microbiologically Influenced Corrosion (MIC) significantly affects a wide range of sectors. This study aims to assess the efficiency of a novel technology based on the use of plasma-activated water (PAW) in inhibiting corrosion caused by bacteria. METHODS AND RESULTS This study evaluated the effectiveness of PAW, produced by a plasma bubble reactor, in reducing corrosion causing Pseudomonas aeruginosa planktonic cells in tap water and biofilms were grown onto stainless steel (SS) coupons. Planktonic cells and biofilms were treated with PAW at different discharge frequencies (500-1500 Hz) and exposure times (0-20 min). P. aeruginosa cells in tap water were significantly reduced after treatment, with higher exposure times and discharge frequencies achieving higher reductions. Also, PAW treatment led to a gradual reduction for young and mature biofilms, achieving >4-Log reductions after 20 min. Results were also used to develop two predictive inactivation models. CONCLUSIONS This work presents evidence that PAW can be used to inactivate both planktonic cells and biofilms of P. aeruginosa. Experimental and theoretical results also demonstrate that reduction is dependent on discharge frequency and exposure time. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrates the potential of using PAW as means to control MIC.
Collapse
Affiliation(s)
| | - Sotiriοs Ι Εkonomou
- Faculty of Health and Applied Sciences (HAS), Centre for Research in Biosciences, University of the West of England, Bristol, UK
| | | | - Olena Doran
- Faculty of Health and Applied Sciences (HAS), University of the West of England, Coldharbour Ln, Bristol, UK
| | - Alexandros Ch Stratakos
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences (HAS), University of the West of England, Bristol, UK
| |
Collapse
|
71
|
Wójcicki M, Średnicka P, Błażejak S, Gientka I, Kowalczyk M, Emanowicz P, Świder O, Sokołowska B, Juszczuk-Kubiak E. Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products. Int J Mol Sci 2021; 22:12460. [PMID: 34830335 PMCID: PMC8624825 DOI: 10.3390/ijms222212460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
The food industry is still searching for novel solutions to effectively ensure the microbiological safety of food, especially fresh and minimally processed food products. Nowadays, the use of bacteriophages as potential biological control agents in microbiological food safety and preservation is a promising strategy. The aim of the study was the isolation and comprehensive characterization of novel bacteriophages with lytic activity against saprophytic bacterial microflora of minimally processed plant-based food products, such as mixed leaf salads. From 43 phages isolated from municipal sewage, four phages, namely Enterobacter phage KKP 3263, Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 have lytic activity against Enterobacter ludwigii KKP 3083, Citrobacter freundii KKP 3655, Enterobacter cloacae KKP 3082, and Serratia fonticola KKP 3084 bacterial strains, respectively. Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) identified Enterobacter phage KKP 3263 as an Autographiviridae, and Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 as members of the Myoviridae family. Genome sequencing revealed that these phages have linear double-stranded DNA (dsDNA) with sizes of 39,418 bp (KKP 3263), 61,608 bp (KKP 3664), 84,075 bp (KKP 3262), and 148,182 bp (KKP 3264). No antibiotic resistance genes, virulence factors, integrase, recombinase, or repressors, which are the main markers of lysogenic viruses, were annotated in phage genomes. Serratia phage KKP 3264 showed the greatest growth inhibition of Serratia fonticola KKP 3084 strain. The use of MOI 1.0 caused an almost 5-fold decrease in the value of the specific growth rate coefficient. The phages retained their lytic activity in a wide range of temperatures (from -20 °C to 50 °C) and active acidity values (pH from 4 to 11). All phages retained at least 70% of lytic activity at 60 °C. At 80 °C, no lytic activity against tested bacterial strains was observed. Serratia phage KKP 3264 was the most resistant to chemical factors, by maintaining high lytic activity across a broader range of pH from 3 to 11. The results indicated that these phages could be a potential biological control agent against saprophytic bacterial microflora of minimally processed plant-based food products.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Iwona Gientka
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland; (S.B.); (I.G.)
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.K.); (P.E.)
| |
Collapse
|
72
|
Siddique Z, Malik AU, Asi MR, Inam-Ur-Raheem M, Iqbal M, Abdullah M. Impact of sonolytic ozonation (O 3/US) on degradation of pesticide residues in fresh vegetables and fruits: Case study of Faisalabad, Pakistan. ULTRASONICS SONOCHEMISTRY 2021; 79:105799. [PMID: 34673342 PMCID: PMC8528788 DOI: 10.1016/j.ultsonch.2021.105799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
High pesticide residues in fresh produce is a serious food safety issue. This study was aimed at assessing the pesticides residues in some important vegetables and fruits marketed in Faisalabad, Pakistan and the impact of sonolytic ozonation (O3/US) treatment in removing these contaminants. From a short grower's survey, five registered and mostly used pesticides (acetamiprid, carbendazim, imidacloprid, thiacloprid and thiamethoxam) were identified. A time optimization trial of O3/US application (05, 10 and 15 min) on okra, showed that 10 min treatment significantly reduced three identified chemicals (thiamethoxam 100 %, imidacloprid and thiacloprid 97.17 %), without any adverse effect on its quality. In follow up trial, five fresh vegetables (cauliflower, chillies, cucumber, spinach and tomato) three fresh fruits (grapes, guava and peach) collected from three markets of Faisalabad, were pooled together to have uniform samples. Vegetables and fruits were treated with O3/US for 10 and 6 min, respectively, along with control (simple tap wash) for determining the impacts on pesticides degradation. Samples were processed for extraction, clean up and analysis using HPLC-UV-Vis in isocratic mode. The data revealed the presence of five mentioned chemicals, with an accumulative mean residue of 9.006 and 1.921 µg/g in tested vegetables and fruits, respectively. After subjecting to O3/US, the accumulative chemical residues were reduced to 3.214 µg/g (64.313 %) and 1.064 (44.6 %) in treated vegetables and fruits respectively. Irrespective of fresh produce, the mean residues of thiamethoxam, imidachloprid, acetamiprid and thiachloprid and carbendazim were reduced by 99.3 %, 52.6 %, 65.2 %, 87.3 % and 72% respectively. It was concluded that sonolytic ozonation treatment was effective in significant reduction of pesticide residues from vegetables and fruits and thus can be employed as a good food safety practice at culinary level to reduce the associated health hazardous risks.
Collapse
Affiliation(s)
- Zarghona Siddique
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Muhammad Inam-Ur-Raheem
- Department of Food Science and Technology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Iqbal
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | |
Collapse
|
73
|
Banach J, Zwietering M, van der Fels-Klerx H. Multi-criteria decision analysis to evaluate control strategies for preventing cross-contamination during fresh-cut lettuce washing. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Nahim-Granados S, Martínez-Piernas AB, Rivas-Ibáñez G, Plaza-Bolaños P, Oller I, Malato S, Pérez JAS, Agüera A, Polo-López MI. Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. WATER RESEARCH 2021; 203:117532. [PMID: 34419922 DOI: 10.1016/j.watres.2021.117532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (H2O2/solar, Fe3+-EDDHA/H2O2/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E. coli O157:H7 and Salmonella enteritidis) and five organic microcontaminants (OMCs: atrazine, azoxystrobin, buprofezin, procymidone and terbutryn) were monitored along the whole process. The three studied processes showed a high treatment capability (reaching microbial loads < 7 CFU/100 mL and 21-90 % of OMC reduction), robustness (based on 7 or 10 analysed batches for each treatment process) and high suitability for subsequent treated SFCWW safe reuse: non-phytotoxic towards Lactuca sativa and no bacterial regrowth during its storage for a week. The analysis of the harvested crop samples irrigated with treated SFCWW in all the studied processes showed an absence of microbial contamination (< limit of detection, LOD; i.e., < 1 CFU/99 g of lettuce and < 1 CFU/8 g of radish), a significant reduction of OMC uptake (in the range 40-60 % and > 90 % for solar treated and ozonated SFCWW, respectively) and bioaccumulation in both crops in comparison with the results obtained with untreated SFCWW. Moreover, the chlorophyll content in the harvested lettuces irrigated with SFCWW treated by Fe3+-EDDHA/H2O2/solar was twice than that irrigated with SFCWW treated by H2O2/solar and ozone, indicating the additional advantage of using Fe3+-EDDHA as an iron source to reduce the risk of iron chlorosis in crops. Finally, the chemical (dietary risk assessment for the combined exposure of the 5 OMCs) and quantitative microbiological risk assessment (QMRA) of the harvested crops showed the capability of the studied processes to reduce the risk associated with untreated SFCWW reuse by more than 50 % and more than 4 orders of magnitude, respectively.
Collapse
Affiliation(s)
- Samira Nahim-Granados
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Ana Belén Martínez-Piernas
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Gracia Rivas-Ibáñez
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Sixto Malato
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | | | - Ana Agüera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - María Inmaculada Polo-López
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain.
| |
Collapse
|
75
|
López-Vinent N, Cruz-Alcalde A, Giménez J, Esplugas S. Mixtures of chelating agents to enhance photo-Fenton process at natural pH: Influence of wastewater matrix on micropollutant removal and bacterial inactivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147416. [PMID: 33964782 DOI: 10.1016/j.scitotenv.2021.147416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Three organic fertilizers (EDTA (Ethylenedinitrilotetraacetic acid), EDDS (Ethylenediamine-N, N'-disuccinic acid) and DTPA (Diethylene triamine pentaacetic acid)) were tested as Fe-complexes in photo-Fenton process at natural pH for micropollutants (MPs) abatement and simultaneous E.coli inactivation. Less stable Fe-complexes show high iron precipitation, stopping MPs degradation. On the contrary, stable Fe-complexes imply low kinetic rates for MPs removal. To solve these inconveniences, three mixtures of organic fertilizers were also tested, trying to improve the kinetic rates of micropollutants oxidation and overcome iron precipitation. Three different pollutants (propranolol (PROP), acetamiprid (ACMP) and sulfamethoxazole (SMX)) were used as the target compounds. As the iron release is, in part, linked to the hardness of water, two water matrices from two different secondary wastewaters (Membrane Bioreactor (MBR) and Conventional Activated Sludge (CAS)) were tested. The best performance in micropollutant degradation and E.coli inactivation was achieved with the combination of EDDS + EDTA, accomplishing a good equilibrium between iron precipitation and rate of MPs removal. For instance, total removal of propranolol was achieved at 45 min in MBR, while it was only 85.7% in CAS, being an improvement of the process comparing with that obtained using single organic fertilizers. At the end of the treatment, 2.1 log-inactivation for E.coli was reached in CAS. The differences observed between both wastewaters were related to CAS' higher DOC, turbidity, and hardness. Finally, from the physicochemical characterization conducted, including Biochemical Oxygen Demand at 5 days and phytotoxicity, it is possible to highlight the suitability of these treated effluents for its reuse in irrigation, as long as in CAS matrix the final values of E. coli are within the legal limit.
Collapse
Affiliation(s)
- N López-Vinent
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain.
| | - A Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain; Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - J Giménez
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| | - S Esplugas
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| |
Collapse
|
76
|
Farahmandfar R, Asnaashari M, Hesami B. Monitoring of new coronavirus (SARS-CoV-2): Origin, transmission, and food preservation methods. J FOOD PROCESS PRES 2021; 45:e15564. [PMID: 34219846 PMCID: PMC8237013 DOI: 10.1111/jfpp.15564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Unfortunately, there is limited research on coronavirus survival of food products and also food processing. The knowledge of the physical and chemical characteristics of coronaviruses mostly comes from the study of SARS-CoV and MERS-CoV physical (i.e., thermal processing, chilling and freezing, microwave irradiation, ultraviolet light, gamma irradiation, high hydrostatic pressure) and chemical (acidification and use of common disinfectants in the food industry like chlorinated derivatives and ozone) are means which could be used to inactive the coronaviruses or reduce the infection. These methods can be applied individually or in combination to act better performance. Thermal processing is one of the most effective methods for inactive coronavirus. Heating at 75°C (15-60 min) and 65°C (1 min) was the best temperature for inactive SARS-CoV and MERS virus, respectively. Among irradiation methods (microwave, UV, and gamma), the most effective one is UVC rays. Moreover, the use of disinfectant like chlorinated derivatives is appropriate way to disinfect food product surfaces. Novelty impact statement This review provided updated information on effective strategies for inactive coronavirus that can be used in the food industry. SARS-CoV-2 as a new pandemic coronavirus was initiated from contaminated foods and can be transmitted by close contact, aerosols, and food surfaces. Food preservation (physical and chemical) methods could decrease SARS-CoV-2. Probably, heating and UVC are the most effective approach to inactive SARS-CoV-2. Despite the findings of coronavirus inactivation which were here discussed, much research is still needed for the development of new approaches to overcome the coronavirus.
Collapse
Affiliation(s)
- Reza Farahmandfar
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Maryam Asnaashari
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Bakhtiyar Hesami
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| |
Collapse
|
77
|
Production of packaged ready – to – eat whole strawberries (cv. San Andreas): Packaging conditions for shelf-life extension. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
78
|
Pérez-Lavalle L, Carrasco E, Vallesquino-Laguna P, Cejudo-Gómez M, Posada-Izquierdo GD, Valero A. Internalization capacity of Salmonella enterica sv Thompson in strawberry plants via root. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
79
|
Pelissari EMR, Covre KV, do Rosario DKA, de São José JFB. Application of chemometrics to assess the influence of ultrasound and chemical sanitizers on vegetables: Impact on natural microbiota, Salmonella Enteritidis and physicochemical nutritional quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
80
|
Zhang L, Yu X, Yagoub AEA, Owusu-Ansah P, Wahia H, Ma H, Zhou C. Effects of low frequency multi-mode ultrasound and it's washing solution's interface properties on freshly cut cauliflower. Food Chem 2021; 366:130683. [PMID: 34343952 DOI: 10.1016/j.foodchem.2021.130683] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/05/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of single and dual frequency ultrasound washing on freshly cut cauliflower, by pulsed and sweep frequency modes, with or without the addition of zinc acetate (ZA), tea saponin (TS) and ethanol (ET). Results showed that the surface microorganisms were efficiently decreased by sweep dual frequency ultrasound washing. Moreover, the use of 0.5% ZA, or 0.06% TS or 5% ET as washing solution improved the bacterial reduction efficiency. Reducing the interfacial tension, viscosity and contact angle of washing solution may strengthen ultrasound cavitation. Nearly 2.0 log CFU/g natural microorganisms were decreased, and shelf life was extended from 2 to 4-8 days under 4 °C. Physicochemical parameters of bioactive compounds content, enzyme activity, antioxidant ability, freshness were analyzed. Results showed that 0.5% ZA as washing solution of ultrasound washing was beneficial to the quality maintenance during storage period.
Collapse
Affiliation(s)
- Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Patrick Owusu-Ansah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
81
|
Shang Y, Sun Q, Chen H, Wu Q, Chen M, Yang S, Du M, Zha F, Ye Q, Zhang J. Isolation and Characterization of a Novel Salmonella Phage vB_SalP_TR2. Front Microbiol 2021; 12:664810. [PMID: 34234757 PMCID: PMC8256156 DOI: 10.3389/fmicb.2021.664810] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a widely distributed foodborne pathogen. The use of Salmonella phages as biocontrol agents has recently gained significant interest. Because the Salmonella genus has high diversity, efforts are necessary to identify lytic Salmonella phages focusing on different serovars. Here, five Salmonella phages were isolated from soil samples, and vB_SalP_TR2 was selected as a novel phage with high lytic potential against the host Salmonella serovar Albany, as well as other tested serovars, including Corvallis, Newport, Kottbus, and Istanbul. Morphological analyses demonstrated that phage vB_SalP_TR2 belongs to the Podoviridae family, with an icosahedral head (62 ± 0.5 nm in diameter and 60 ± 1 nm in length) and a short tail (35 ± 1 nm in length). The latent period and burst size of phage vB_SalP_TR2 was 15 min and 211 PFU/cell, respectively. It contained a linear dsDNA of 71,453 bp, and G + C content was 40.64%. Among 96 putative open reading frames detected, only 35 gene products were found in database searches, with no virulence or antibiotic resistance genes being identified. As a biological control agent, phage vB_SalP_TR2 exhibited a high temperature and pH tolerance. In vitro, it lysed most S. Albany after 24 h at 37°C with multiplicities of infection of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100. In food matrices (milk and chicken meat), treatment with phage vB_SalP_TR2 also reduced the number of S. Albany compared with that in controls. These findings highlighted phage vB_SalP_TR2 as a potential antibacterial agent for the control of Salmonella in food samples.
Collapse
Affiliation(s)
- Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qifan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hanfang Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuanghong Yang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingzhu Du
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fei Zha
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
82
|
Pomegranate Peel Powder as a Food Preservative in Fruit Salad: A Sustainable Approach. Foods 2021; 10:foods10061359. [PMID: 34208320 PMCID: PMC8231101 DOI: 10.3390/foods10061359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
This study aimed to assess the potential of pomegranate peel powder as a natural preservative. Its effects were tested on fruit salad quality decay during refrigerated storage. Nectarine and pineapple, equally portioned in polypropylene containers and covered with fructose syrup, were closed using a screw cap in air, with and without the addition of a by-product peel powder. Specifically, amounts of 2.5% and 5% (w/v) of pomegranate peel powder were put into each container. Both the microbiological and sensory qualities of the fruit salad were monitored during storage at 5 °C for 28 days. The results demonstrated that the fruit salad with the by-products showed lower counts of total mesophilic bacteria, total psychrotrophic microorganisms, yeasts, and lactic acid bacteria compared to the control, thus confirming the recognized antimicrobial properties of pomegranate peel. The other interesting finding of this study is that the addition of the investigated by-product in fruit salad did not worsen the main sensory attributes of fresh-cut fruit. Therefore, these preliminary results suggest that pomegranate peel powder has potential applications as a natural preservative in the fresh-cut food sector.
Collapse
|
83
|
Difonzo G, Squeo G, Pasqualone A, Summo C, Paradiso VM, Caponio F. The challenge of exploiting polyphenols from olive leaves: addition to foods to improve their shelf-life and nutritional value. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3099-3116. [PMID: 33275783 DOI: 10.1002/jsfa.10986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Olive leaves represent a waste from the olive oil industry which can be reused as source of polyphenols. The most representative phenolic compound of olive leaves is the secoiridoid oleuropein, followed by verbascoside, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and simple phenols. The attention towards these compounds derives above all from the large number of studies demonstrating their beneficial effect on health, in fact olive leaves have been widely used in folk medicine in the Mediterranean regions. Moreover, the growing demand from consumers to replace the synthetic antioxidants, led researchers to conduct studies on the addition of plant bioactives in foods to improve their shelf-life and/or to obtain functional products. The current study overviews the findings on the addition of polyphenol-rich olive leaf extract (OLE) to foods. In particular, the effect of OLE addition on the antioxidant, microbiological and nutritional properties of different foods is examined. Most studies have highlighted the antioxidant effect of OLE in different food matrices, such as oils, meat, baked goods, vegetables, and dairy products. Furthermore, the antimicrobial activity of OLE has been observed in meat and vegetable foods, highlighting the potential of OLE as a replacer of synthetic preservatives. Finally, several authors studied the effect of OLE addition with the aim of improving the nutritional properties of vegetable products, tea, milk, meat and biscuits. Advantages and drawbacks of the different use of OLE were reported and discussed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Vito M Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
84
|
Zhang Y, Xie J. The effect of red and violet light emitting diode (LED) treatments on the postharvest quality and biodiversity of fresh-cut pakchoi ( Brassica rapa L. Chinensis). FOOD SCI TECHNOL INT 2021; 28:297-308. [PMID: 34039081 DOI: 10.1177/10820132211018892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of red and violet Light Emitting Diode (LED) irradiation on the quality changes of fresh cut pakchoi (Brassica rapa L.Chinensis), such as water migration, soluble solids, chlorophyll, ASA, shelf life, antioxidant enzyme activity and changes of biodiversity were evaluated in this study using physicochemical and high-throughput sequencing analys. The results showed that red and violet LED irradiation (15 μ mol/(m2 · s)) (1) are significantly inhibited the changes of sensory evaluation, (2) increased the content of chlorophyll, ASA and antioxidant enzymes, and (3) prolonged the shelf life of pakchoi at 4 °C. Furthermore, through the using of high-throughput sequencing, aerobic plate count and the count of Pseudomonas spp., it was found that (4) red and violet LED changed the microbial community structure among samples, and inhibited the reproduction of specific spoilage organism (SSO) in fresh cut pakchoi. At the same time, compared with the traditional sterilization method, the results showed that visible light sterilization was also effective. In general, the results showed that LED treatment was an effective way to delay the senescence and maintain the quality of the pakchoi by enhancing the activity of antioxidant enzymes and regulating chlorophyll and ASA metabolism, inhibited the reproduction of SSO.
Collapse
Affiliation(s)
- Yuchen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
85
|
Walsh MP, Tikekar RV, Nitin N, Wrenn S. Phospholipid bilayer responses to ultrasound-induced microbubble cavitation phenomena. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
86
|
Electrostatic Spraying of Passion Fruit (Passiflora edulis L.) Peel Extract for Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Fresh-Cut Lollo Rossa and Beetroot Leaves. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02608-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
87
|
Xu S, Campisi E, Li J, Fischetti VA. Decontamination of Escherichia coli O157:H7 on fresh Romaine lettuce using a novel bacteriophage lysin. Int J Food Microbiol 2021; 341:109068. [PMID: 33498009 DOI: 10.1016/j.ijfoodmicro.2021.109068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 11/28/2022]
Abstract
Raw vegetables are a key food for a healthy diet, but their increased consumption brings a higher risk for foodborne disease. Contamination of salad greens with Shiga toxin-producing Escherichia coli (STEC) O157:H7 has caused severe disease and important economic losses almost yearly in the United States over the last 10 years. To curb the risk of infections from contaminated produce, approaches based on bacterial virus - commonly known as bacteriophage or phage - have recently started to draw interest among other antimicrobial strategies. Phages enter bacterial cells to reproduce and cause cellular lysis to release their phage progeny at the end of their infection cycle. This lytic effect is caused by lysins, phage-encoded enzymes that have evolved to degrade the bacterial cell wall resulting in hypotonic lysis. When applied externally in their purified form, such enzymes are able to kill sensitive bacteria on contact in a similar way. Their unique bactericidal properties have made lysins effective antimicrobial agents in a variety of applications, from treating multidrug-resistant infections in humans to controlling bacterial contamination in several areas, including microbiological food safety. Here we describe a novel lysin, namely PlyEc2, with potent bactericidal activity against key gram-negative pathogens including E. coli, Salmonella, Shigella, Acinetobacter and Pseudomonas. PlyEc2 displayed high bactericidal activity against STEC to a concentration of 12.5 μg/ml under different pH conditions. This lysin was also able to reduce the bacterial titer of several pathogenic strains in vitro by more than 5 logarithmic units, resulting in complete sterilization. Importantly, PlyEc2 proved to be a powerful produce decontamination agent in its ability to clear 99.7% of contaminating STEC O157:H7 in our Romaine lettuce leaf model. PlyEc2 was also able to eradicate 99.8% of the bacteria contaminating the washing solution, drastically reducing the risk of cross-contamination during the washing process. A sensory evaluation panel found that treatment with PlyEc2 did not alter the visual and tactile quality of lettuce leaves compared to the untreated leaves. Our study is the first to describe a highly effective lysin treatment to control gram-negative pathogenic contamination on fresh lettuce without the addition of membrane destabilizing agents.
Collapse
Affiliation(s)
- Siyue Xu
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Ave, 10065 New York, NY, USA; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Edmondo Campisi
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Ave, 10065 New York, NY, USA.
| | - Jinquan Li
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Ave, 10065 New York, NY, USA; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Ave, 10065 New York, NY, USA
| |
Collapse
|
88
|
Activated release of hexanal and salicylaldehyde from imidazolidine precursors encapsulated in electrospun ethylcellulose-poly(ethylene oxide) fibers. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04372-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AbstractHexanal and salicylaldehyde are naturally-occurring antimicrobial volatiles from edible plants known for their efficacy for post-harvest preservation of fruits and vegetables. Due to their volatility and susceptibility to oxidation, these volatiles must be encapsulated within a carrier to control their release, especially when applied in modified atmnosphere and active packaging applications. In this study, salicylaldehyde precursor (SP; 1,3-dibenzylethane-2-hydroxyphenyl imidazolidine) and hexanal precursor (HP) were synthetized through a Schiff base reaction between these aldehydes and N,N’-dibenzylethane-1,2-diamine. The structure of SP was confirmed using nuclear magnetic resonance and attenuated total reflection-Fourier transform infrared (FTIR) spectroscopies. SP and HP, separately and in combinations, were encapsulated within ethylcellulose–poly(ethylene oxide) (EC–PEO) nonwoven membranes, using a free-surface electrospinning technique. Scanning electron microscopy showed that the morphology of the fibers varied substantially with SP and HP ratio. Specific interactions between SP and HP with the polymers were not detected from the FTIR spectroscopy analysis, suggesting that the precursors were mainly physically entrapped within the EC–PEO fiber matrix. Headspace gas chromatography showed that the release of hexanal and salicylaldehyde could be activated by contacting the precursor-containing electrospun nonwoven with an acidified agarose gel containing 0.003–0.3 M of citric acid. The delivery system can be promising for controlled release of hexanal and salicylaldehyde to extend the shelf-life of fruits and vegetables.
Collapse
|
89
|
Chang Y, Xing M, Hu X, Feng H, Wang Y, Guo B, Sun M, Ma L, Fei P. Antibacterial Activity of Chrysanthemum buds Crude Extract Against Cronobacter sakazakii and Its Application as a Natural Disinfectant. Front Microbiol 2021; 11:632177. [PMID: 33613472 PMCID: PMC7887297 DOI: 10.3389/fmicb.2020.632177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 11/14/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic food-borne pathogen that endangers the health of neonates and infants. This study aims to elucidate the antibacterial activity and mechanism of Chrysanthemum buds crude extract (CBCE) against C. sakazakii and its application as a natural disinfectant. The antibacterial activity was evaluated by the determination of the diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), and minimum bactericide concentration (MBC). The antibacterial mechanism was explored based on the changes of growth curve assay, intracellular ATP concentration, membrane potential, intracellular pH (pHin), content of soluble protein and nucleic acid, and cell morphology. Finally, the inactivation effects of CBCE against C. sakazakii in biofilm on stainless steel tube, tinplate, glass, and polystyrene were evaluated. The results showed that the DIZ, MIC, and MBC of CBCE against C. sakazakii were 14.55 ± 0.44–14.84 ± 0.38 mm, 10 mg/mL, and 20 mg/mL, respectively. In the process of CBCE acting on C. sakazakii, the logarithmic growth phase of the tested bacteria disappeared, and the concentrations of intracellular ATP, pHin, bacterial protein, and nucleic acid were reduced. Meanwhile, CBCE caused the cell membrane depolarization and leakage of cytoplasm of C. sakazakii. In addition, about 6.5 log CFU/mL of viable C. sakazakii in biofilm on stainless steel tube, tinplate, glass, and polystyrene could be inactivated after treatment with 1 MIC of CBCE for 30 min at 25°C. These findings reveal the antibacterial activity and mechanism of CBCE against C. sakazakii and provide a possibility of using a natural disinfectant to kill C. sakazakii in the production environment, packaging materials, and utensils.
Collapse
Affiliation(s)
- Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China.,Guizhou Fruit Processing Engineering Technology Research Center, Guiyang, China
| | - Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinying Hu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Bingrui Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Maocheng Sun
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Lizhi Ma
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
90
|
Zhang JY, Pandya JK, McClements DJ, Lu J, Kinchla AJ. Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Crit Rev Food Sci Nutr 2021; 62:4752-4768. [PMID: 33533641 DOI: 10.1080/10408398.2021.1878103] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3D printing has numerous applications in the food industry that may enhance diversity, quality, healthiness, and sustainability. This innovative additive manufacturing technology has the ability to specifically tailor food properties for individuals. Nevertheless, several challenges still need to be overcome before 3D printing can be utilized more widely in the food industry. This article focuses on the development and characterization of "food inks" suitable for 3D printing of foods. Specifically, the main factors impacting successfully printed foods are highlighted, including material properties and printing parameters. The creation of a 3D printed food with the appropriate quality and functional attributes requires understanding and control of these factors. Food ink printability is an especially important factor that depends on their composition, structure, and physicochemical properties. Previous studies do not sufficiently describe the precise design and operation of 3D printers in sufficient detail, which makes comparing results challenging. Additionally, important physicochemical characteristics utilized in traditional food are not consistently reported in 3D inks, such as moisture content, water activity, and microbial contamination, which limits the practical application of the results. For this reason, we highlight important factors impacting 3D ink formulation and performance, then provide suggestions for standardizing and optimizing 3D printed foods.
Collapse
Affiliation(s)
- John Y Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Janam K Pandya
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Amanda J Kinchla
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
91
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
92
|
Patange AD, Simpson JC, Curtin JF, Burgess CM, Cullen PJ, Tiwari BK. Inactivation efficacy of atmospheric air plasma and airborne acoustic ultrasound against bacterial biofilms. Sci Rep 2021; 11:2346. [PMID: 33504900 PMCID: PMC7840748 DOI: 10.1038/s41598-021-81977-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Biofilms are complex microbial communities that present serious contamination risks to our environment and health. In this study, atmospheric air plasma and airborne acoustic ultrasound technology were applied to inactivate Escherichia coli and Listeria innocua biofilms. Both technologies were efficient in controlling, or completely inactivating, the target bacterial biofilms. Viability and metabolic assays, along with microscopy analysis, revealed that atmospheric air plasma and airborne acoustic ultrasound damaged both the bacterial biofilm cells and its structural integrity. Scanning electron microscopy images highlighted the disruption of the biofilms and pore formation in bacterial cells exposed to both the plasma and acoustic treatments. Elevated reactive oxygen and nitrogen species in bacterial cells treated with atmospheric air plasma, demonstrated their primary role in the observed bacterial inactivation process. Our findings provide potential antimicrobial strategies to combat bacterial biofilms in the food and healthcare sectors.
Collapse
Affiliation(s)
- Apurva D Patange
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - James F Curtin
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - P J Cullen
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.,School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| | - Brijesh K Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
93
|
Liu C, Chen C, Jiang A, Zhang Y, Zhao Q, Hu W. Effects of aqueous ozone treatment on microbial growth, quality, and pesticide residue of fresh-cut cabbage. Food Sci Nutr 2021; 9:52-61. [PMID: 33473270 PMCID: PMC7802563 DOI: 10.1002/fsn3.1870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/03/2023] Open
Abstract
The influence of aqueous ozone (1.4 mg/L) treatment for 1, 5, and 10 min on the microbial growth and quality attributes of fresh-cut cabbage during storage at 4°C for 12 days was evaluated. The pesticide residue removal effect of aqueous ozone treatment for 5 min was also determined. The results show that the growth rates of aerobic bacteria, coliforms, and yeasts were significantly inhibited (p < .05) by aqueous ozone treatment during storage; treatment for 10 min showed the greatest inactivation of bacteria, coliforms, and molds. Aqueous ozone stimulated initial respiratory metabolism compared with that of the control. Aqueous ozone treatments reduced ethylene production and improved the overall quality of fresh-cut cabbage. In addition, the effect of aqueous ozone treatment for 5 min on the removal of trichlorfon, chlorpyrifos, methomyl, dichlorvos, and omethoate from fresh-cut cabbage was greater (p < .05) than that of the control. These results indicate that aqueous ozone treatment for 5 min could be an economic and effective method to remove pesticide residues and enhance the storability of fresh-cut cabbage.
Collapse
Affiliation(s)
- Chenghui Liu
- College of Life ScienceDalian Minzu UniversityDalianChina
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University)Ministry of EducationDalianChina
| | - Chen Chen
- College of Life ScienceDalian Minzu UniversityDalianChina
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University)Ministry of EducationDalianChina
| | - Aili Jiang
- College of Life ScienceDalian Minzu UniversityDalianChina
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University)Ministry of EducationDalianChina
| | - Yanhui Zhang
- College of Life ScienceDalian Minzu UniversityDalianChina
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University)Ministry of EducationDalianChina
| | - Qiqi Zhao
- College of Life ScienceDalian Minzu UniversityDalianChina
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University)Ministry of EducationDalianChina
| | - Wenzhong Hu
- College of Life ScienceDalian Minzu UniversityDalianChina
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University)Ministry of EducationDalianChina
| |
Collapse
|
94
|
AGIRDEMIR O, YURDAKUL O, KEYVAN E, SEN E. Effects of various chemical decontaminants on Salmonella Typhimurium survival in chicken carcasses. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.02920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Erdi SEN
- Burdur Mehmet Akif Ersoy University, Turkey
| |
Collapse
|
95
|
Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 inoculated on fresh-cut romaine lettuce by peanut skin extract/benzethonium chloride emulsion washing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
96
|
Berardinelli A, Hamrouni A, Dirè S, Ceccato R, Camera-Roda G, Ragni L, Palmisano L, Parrino F. Features and application of coupled cold plasma and photocatalysis processes for decontamination of water. CHEMOSPHERE 2021; 262:128336. [PMID: 33182148 DOI: 10.1016/j.chemosphere.2020.128336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Dielectric barrier discharge plasma and photocatalysis have been proposed as tools for decontamination of process water, especially in food industry. The present investigation aims to redefine and identify the features of coupling the two technologies in terms of degradation efficiency of a model compound. Results show that, when the process is carried out in plasma activated water in the presence of irradiated TiO2, the efficiency of the integrated process is lower than the sum of the two processes acting separately. It is proposed that afterglow species, e.g. hydrogen peroxide and/or peroxynitrites could be activated by UVA light irradiation producing hydroxyl radicals in the liquid phase. Even if TiO2 limits this additional effect by acting as UVA screen barrier material, its decontamination efficiency under certain conditions results higher than that obtained with plasma systems. These results open the route to chlorine-free decontamination processes and redefine the application framework of this integrated approach.
Collapse
Affiliation(s)
- Annachiara Berardinelli
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy; Centro Agricoltura Alimenti Ambiente - C3A, University of Trento, Via E. Mach 1, 38010, S. Michele all'Adige (TN), Italy
| | - Abdessalem Hamrouni
- Laboratoire de Recherche Catalyse et Matériaux pour l'Environnement et les Procédés URCMEP (UR11ES85), Faculté des Sciences de Gabès/Université de Gabès, Campus Universitaire Cité Erriadh, Gabès, 6072, Tunisia
| | - Sandra Dirè
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Riccardo Ceccato
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giovanni Camera-Roda
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, via Terracini 28, Bologna, 40131, Italy
| | - Luigi Ragni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Piazza Goidanich 60, 47521, Cesena (FC), Italy; Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521, Cesena (FC), Italy
| | - Leonardo Palmisano
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze Ed. 6, Palermo, 90128, Italy
| | - Francesco Parrino
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
97
|
Nicolau-Lapeña I, Abadias M, Viñas I, Bobo G, Lafarga T, Ribas-Agustí A, Aguiló-Aguayo I. Water UV-C treatment alone or in combination with peracetic acid: A technology to maintain safety and quality of strawberries. Int J Food Microbiol 2020; 335:108887. [PMID: 33002710 DOI: 10.1016/j.ijfoodmicro.2020.108887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/18/2020] [Accepted: 09/06/2020] [Indexed: 11/15/2022]
Abstract
Disinfection of fruits is one of the most important steps since they are going to be eaten fresh-or minimally-processed. This step affects quality, safety, and shelf-life of the product. Despite being a common sanitizer in the fruit industry, chlorine may react with organic matter leading to the formation of toxic by-products. Alternative sustainable disinfection strategies to chlorine are under study to minimize environmental and human health impact. Water-assisted UV-C light (WUV-C) is proposed here as an alternative sanitizing method for strawberries. In this study, strawberries were washed for 1 or 5 min in a tank with 2 or 4 lamps on, each emitting UV-C light at 17.2 W/cm2, or in a chlorine solution (200 ppm, pH 6.5). Moreover, trials with 4 lamps on, together with a washing solution consisting on peracetic acid at 40 or 80 ppm, were carried out. Overall, quality and nutritional parameters of strawberries after treatments were maintained. Changes in color were not noticeable and fruits did not lose firmness. No major changes were observed in antioxidant activity, organic acid, anthocyanin, vitamin C, and total phenolic content. Yeasts and molds were not affected by the WUV-C treatment, and 5 min were needed to significantly reduce total aerobic mesophylls population. However, reductions of artificially inoculated Listeria innocua and Salmonella Typhimurium after WUV-C treatments were comparable to those obtained with chlorine-wash, which were 3.0 log CFU / g. Moreover, WUV-C light was effective to minimize microorganisms remaining in washing water, avoiding cross-contamination and thus, allowing water recirculation. This effect was improved when combining the action of UV-C light with peracetic acid, showing the suitability of this combined treatment, understood as an alternative to chlorine sanitation, for sanitizing strawberries and keeping the populations of pathogenic bacteria in washing water lower than 0.6 ± 0.1 log CFU / mL.
Collapse
Affiliation(s)
- Iolanda Nicolau-Lapeña
- Food Technology Department, University of Lleida, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Maribel Abadias
- IIRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | - Inmaculada Viñas
- Food Technology Department, University of Lleida, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Catalonia, Spain.
| | - Gloria Bobo
- IIRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | - Tomás Lafarga
- IIRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | | | - Ingrid Aguiló-Aguayo
- IIRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain..
| |
Collapse
|
98
|
Qiu L, Zhang M, Bhandari B, Yang C. Shelf life extension of aquatic products by applying nanotechnology: a review. Crit Rev Food Sci Nutr 2020; 62:1521-1535. [PMID: 33167694 DOI: 10.1080/10408398.2020.1844139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aquatic products are extremely perishable due to their biological composition. Conventional preservation methods such as freezing, chemical treatments, packaging, and so forth are unable to inhibit enzymatic and microbiological spoilage efficiently and/or energy intensive and/or potentially toxic. However, the demand of consumers for aquatic products with long shelf life and high quality has urged the food industries to pursuit highly effective preservation methods for shelf life extension of aquatic products. Nanotechnology-related shelf life prolongation process possess the ability to overcome the drawbacks of conventional preservation technologies due to its unique properties. In this article, the aquatic products spoilage mechanisms, recent application of nanotechnology-related preservation techniques for aquatic products as well as the risk and regulation of nanomaterials have been reviewed. It has been shown that nanotechnology-related preservation techniques can effectively extend the shelf life without impairing the quality of aquatic products. However, the safety of nanotechnology is still remained controversial, therefore, the application of nanotechnology should be considered cautiously.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Chaohui Yang
- Yangzhou Ye Chun Food Production and Distribution Company, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
99
|
Choi JM, Camfield E, Bowman A, Rajan K, Labbé N, Gwinn KD, Ownley BH, Moustaid-Moussa N, D'Souza DH. Value-added switchgrass extractives for reduction of Escherichia coli O157:H7 and Salmonella Typhimurium populations on Formica coupons. Food Microbiol 2020; 95:103674. [PMID: 33397608 DOI: 10.1016/j.fm.2020.103674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Recurring outbreaks linked to Escherichia coli O157:H7-contaminated lettuce and Salmonella enterica-contaminated sprouts highlight the need for improved food safety measures. The aim of this study was to determine the ability of a bio-based antimicrobial extract prepared from switchgrass, a dedicated energy crop, to reduce E. coli O157:H7 and S. Typhimurium populations on Formica coupons, a model food-contact surface. Overnight cultures of ~7 log CFU/mL E. coli O157:H7 and S. Typhimurium, air-dried on Formica coupons were treated with 0.625% NaClO, 70% ethanol, sterile water or different batches of switchgrass extractives (SE1, SE2, and SE3) for up to 30 min. E. coli O157:H7 was reduced by 4.43 log CFU/mL after 1 min by SE3, and to non-detectable levels after 1 min by all other treatments. Populations of S. Typhimurium LT2 (15-min drying) were reduced by 3.30 log CFU/mL with 70% ethanol, 5.38 log CFU/mL with SE1, and to non-detectable levels with 0.625% NaClO after 1 min, while S. Typhimurium ATCC 23564 (1-h drying) was non-detectable after 1 min by all treatments. Under soiled conditions, 10-min treatment with SE1 and 70% ethanol reduced both bacteria to non-detectable levels. Studies with concentrated switchgrass extractives combined with various other natural disinfectants or in hurdle approaches warrant further investigation.
Collapse
Affiliation(s)
- J M Choi
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - E Camfield
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - A Bowman
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - K Rajan
- Center for Renewable Carbon, The University of Tennessee, Knoxville, TN, USA
| | - N Labbé
- Center for Renewable Carbon, The University of Tennessee, Knoxville, TN, USA
| | - K D Gwinn
- Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, USA
| | - B H Ownley
- Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, USA
| | - N Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - D H D'Souza
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
100
|
Dias VHC, Malacrida AM, Dos Santos AR, Batista AFP, Campanerut-Sá PAZ, Braga G, Bona E, Caetano W, Mikcha JMG. pH interferes in photoinhibitory activity of curcumin nanoencapsulated with pluronic® P123 against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 33:102085. [PMID: 33157329 DOI: 10.1016/j.pdpdt.2020.102085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Microbial contamination control is a public health concern and challenge for the food industry. Antimicrobial technologies employing natural agents may be useful in the food industry for these purposes. This work aimed to investigate the effect of photodynamic inactivation using curcumin in Pluronic® P123 nanoparticles (Cur/P123) at different pH and blue LED light against Staphylococcus aureus. Bacterial photoinactivation was conducted using different photosensitizer concentrations and exposure times at pH 5.0, 7.2 and 9.0. A mixture design was applied to evaluate the effects of exposure time (dark and light incubation) on the photoinhibitory effect. S. aureus was completely inactivated at pH 5.0 by combining low concentrations of Cur/P123 (7.80-30.25 μmol/L) and light doses (6.50-37.74 J/cm2). According to the mathematical model, dark incubation had low significance in bacterial inactivation at pH 5.0 and 9.0. No effect in bacterial inactivation was observed at pH 7.2. Cur/P123 with blue LED was effective in inactivating S. aureus. The antimicrobial effect of photodynamic inactivation was also pH-dependent.
Collapse
Affiliation(s)
| | - Amanda Milene Malacrida
- Department of Clinical Analyses and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil.
| | | | | | | | - Gustavo Braga
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Evandro Bona
- Department of Food, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Jane Martha Graton Mikcha
- Department of Agrarian Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Clinical Analyses and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|