51
|
Sulfated Polysaccharides from Macroalgae-A Simple Roadmap for Chemical Characterization. Polymers (Basel) 2023; 15:polym15020399. [PMID: 36679279 PMCID: PMC9861475 DOI: 10.3390/polym15020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The marine environment presents itself as a treasure chest, full of a vast diversity of organisms yet to be explored. Among these organisms, macroalgae stand out as a major source of natural products due to their nature as primary producers and relevance in the sustainability of marine ecosystems. Sulfated polysaccharides (SPs) are a group of polymers biosynthesized by macroalgae, making up part of their cell wall composition. Such compounds are characterized by the presence of sulfate groups and a great structural diversity among the different classes of macroalgae, providing interesting biotechnological and therapeutical applications. However, due to the high complexity of these macromolecules, their chemical characterization is a huge challenge, driving the use of complementary physicochemical techniques to achieve an accurate structural elucidation. This review compiles the reports (2016-2021) of state-of-the-art methodologies used in the chemical characterization of macroalgae SPs aiming to provide, in a simple way, a key tool for researchers focused on the structural elucidation of these important marine macromolecules.
Collapse
|
52
|
Scientific basis for the use of minimally processed homogenates of Kappaphycus alvarezii (red) and Sargassum wightii (brown) seaweeds as crop biostimulants. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
53
|
Azelee NIW, Noor NM, Rasid ZIA, Suhaimi SH, Salamun N, Jasman SM, Manas NHA, Hasham@Hisam R. Marine waste for nutraceutical and cosmeceutical production. VALORIZATION OF WASTES FOR SUSTAINABLE DEVELOPMENT 2023:241-272. [DOI: 10.1016/b978-0-323-95417-4.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
54
|
Hamad G, Amer A, Kirrella G, Mehany T, Elfayoumy RA, Elsabagh R, Elghazaly EM, Esatbeyoglu T, Taha A, Zeitoun A. Evaluation of the Prevalence of Staphylococcus aureus in Chicken Fillets and Its Bio-Control Using Different Seaweed Extracts. Foods 2022; 12:foods12010020. [PMID: 36613239 PMCID: PMC9818820 DOI: 10.3390/foods12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This study aims to assess the occurrence of Staphylococcus aureus in chicken fillets and to control its growth using various lyophilized seaweed extracts (i.e., Halimeda opuntia (HO), Actinotrichia fragilis, and Turbinaria turbinata) by an agar disk diffusion assay in vitro. Results showed that prevalence of S. aureus in breast and thigh samples reached of 92% and 84%, respectively. Lyophilized HO extract was the only seaweed that showed the antibacterial activity against S aureus with a significant difference at p < 0.05. The minimum inhibitory concentration (MIC) of HO extract was 1.5%, with an inhibition zone of 8.16 ± 0.73 mm. Regarding 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, IC50 was recorded at 55.36 μg/mL, whereas cytotoxic IC50 of the lyophilized HO extract on peripheral blood mononuclear cells (PBMCs) was 33.7 µg/mL; a higher IC50 of HO extracts permits their use as a safe food additive in meat products. Moreover, total phenolic compounds and total flavonoids compounds recorded 20.36 ± 0.092 and 16.59 ± 0.029 mg/mL, respectively. HPLC analyses of phenolic compounds profiles exhibited many bioactive substances and the higher ratio was daidzein with 10.84 ± 0.005 µg/mL and followed by gallic acid with a value of 4.06 ± 0.006 µg/mL. In a challenge study, chicken fillet (CHF) experimentally inoculated with S. aureus (ST) and treated with the lyophilized HO algal extract at 4% and 6% (CHF/ST/HO) showed a complete reduction of S. aureus count on the 6th and 4th days in chicken fillet stored at 4 °C, respectively. Moreover, CHF/ST/HO at 4% and 6% of HO extract enhanced the sensory attributes of grilled un-inoculated chicken fillet. Thus, lyophilized HO extracts are promising antibacterial and antioxidant candidates in the chicken meat industry.
Collapse
Affiliation(s)
- Gamal Hamad
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Egypt
| | - Amr Amer
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Ghada Kirrella
- Department of Food Control, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Taha Mehany
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Egypt
- Correspondence: (T.M.); (T.E.); Tel.: +20-1028065903 (T.M.); +49-5117625589 (T.E.)
| | - Reham A. Elfayoumy
- Department of Botany and Microbiology, Faculty of Science, Damietta University, Damietta 34511, Egypt
| | - Rasha Elsabagh
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt
| | - Eman M. Elghazaly
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence: (T.M.); (T.E.); Tel.: +20-1028065903 (T.M.); +49-5117625589 (T.E.)
| | - Ahmed Taha
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, 10257 Vilnius, Lithuania
| | - Ahmed Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
55
|
Karuppusamy S, Rajauria G, Fitzpatrick S, Lyons H, McMahon H, Curtin J, Tiwari BK, O’Donnell C. Biological Properties and Health-Promoting Functions of Laminarin: A Comprehensive Review of Preclinical and Clinical Studies. Mar Drugs 2022; 20:772. [PMID: 36547919 PMCID: PMC9780867 DOI: 10.3390/md20120772] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Marine algal species comprise of a large portion of polysaccharides which have shown multifunctional properties and health benefits for treating and preventing human diseases. Laminarin, or β-glucan, a storage polysaccharide from brown algae, has been reported to have potential pharmacological properties such as antioxidant, anti-tumor, anti-coagulant, anticancer, immunomodulatory, anti-obesity, anti-diabetic, anti-inflammatory, wound healing, and neuroprotective potential. It has been widely investigated as a functional material in biomedical applications as it is biodegradable, biocompatible, and is low toxic substances. The reported preclinical and clinical studies demonstrate the potential of laminarin as natural alternative agents in biomedical and industrial applications such as nutraceuticals, pharmaceuticals, functional food, drug development/delivery, and cosmeceuticals. This review summarizes the biological activities of laminarin, including mechanisms of action, impacts on human health, and reported health benefits. Additionally, this review also provides an overview of recent advances and identifies gaps and opportunities for further research in this field. It further emphasizes the molecular characteristics and biological activities of laminarin in both preclinical and clinical settings for the prevention of the diseases and as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shanmugapriya Karuppusamy
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Gaurav Rajauria
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | | | - Henry Lyons
- Nutramara Ltd., Beechgrove House Strand Street, V92 FH0K Tralee, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, V92 CX88 Tralee, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D01 K822 Dublin, Ireland
| | - Brijesh K. Tiwari
- Teagasc Food Research Centre, Department of Food Chemistry and Technology, Ashtown, D15 KN3K Dublin, Ireland
| | - Colm O’Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
56
|
Structural and bioactive roles of fucoidan in nanogel delivery systems. A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
57
|
Microwave-assisted extraction optimization, antimicrobial and antioxidant properties of carrageenan from red algae (Gracilaria acerosa). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
58
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Production and Characterization of Durvillaea antarctica Enzyme Extract for Antioxidant and Anti-Metabolic Syndrome Effects. Catalysts 2022. [DOI: 10.3390/catal12101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, three enzyme hydrolysate termed Dur-A, Dur-B, and Dur-C, were produced from Durvillaea antarctica biomass using viscozyme, cellulase, and α-amylase, respectively. Dur-A, Dur-B, and Dur-C, exhibited fucose-containing sulfated polysaccharide from chemical composition determination and characterization by FTIR analyses. In addition, Dur-A, Dur-B, and Dur-C, had high extraction yields and low molecular weights. All extracts determined to have antioxidant activities by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), and ferrous ion-chelating methods. All extracts were also able to positively suppress the activities of key enzymes involved in metabolic syndrome: angiotensin I-converting enzyme (ACE), α-amylase, α-glucosidase, and pancreatic lipase. In general, Dur-B exhibited higher antioxidant and higher anti-metabolic syndrome effects as compared to the other two extracts. Based on the above health promoting properties, these extracts (especially Dur-B) can be used as potential natural antioxidants and natural anti-metabolic syndrome agents in a variety of food, cosmetic, and nutraceutical products for health applications.
Collapse
|
60
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
61
|
Korbecka-Glinka G, Piekarska K, Wiśniewska-Wrona M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers (Basel) 2022; 14:2854. [PMID: 35890629 PMCID: PMC9322042 DOI: 10.3390/polym14142854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fungal pathogens cause significant yield losses of many important crops worldwide. They are commonly controlled with fungicides which may have negative impact on human health and the environment. A more sustainable plant protection can be based on carbohydrate biopolymers because they are biodegradable and may act as antifungal compounds, effective elicitors or carriers of active ingredients. We reviewed recent applications of three common polysaccharides (chitosan, alginate and cellulose) to crop protection against pathogenic fungi. We distinguished treatments dedicated for seed sowing material, field applications and coating of harvested fruits and vegetables. All reviewed biopolymers were used in the three types of treatments, therefore they proved to be versatile resources for development of plant protection products. Antifungal activity of the obtained polymer formulations and coatings is often enhanced by addition of biocontrol microorganisms, preservatives, plant extracts and essential oils. Carbohydrate polymers can also be used for controlled-release of pesticides. Rapid development of nanotechnology resulted in creating new promising methods of crop protection using nanoparticles, nano-/micro-carriers and electrospun nanofibers. To summarize this review we outline advantages and disadvantages of using carbohydrate biopolymers in plant protection.
Collapse
Affiliation(s)
- Grażyna Korbecka-Glinka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Klaudia Piekarska
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| | - Maria Wiśniewska-Wrona
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| |
Collapse
|
62
|
Subbiah V, Xie C, Dunshea FR, Barrow CJ, Suleria HAR. The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Hafiz A. R. Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
63
|
Vaghela P, Das AK, Trivedi K, Anand KV, Shinde P, Ghosh A. Characterization and metabolomics profiling of Kappaphycus alvarezii seaweed extract. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
64
|
Carpena M, Garcia-Perez P, Garcia-Oliveira P, Chamorro F, Otero P, Lourenço-Lopes C, Cao H, Simal-Gandara J, Prieto MA. Biological properties and potential of compounds extracted from red seaweeds. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-32. [PMID: 35791430 PMCID: PMC9247959 DOI: 10.1007/s11101-022-09826-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/22/2022] [Indexed: 05/03/2023]
Abstract
Macroalgae have been recently used for different applications in the food, cosmetic and pharmaceutical industry since they do not compete for land and freshwater against other resources. Moreover, they have been highlighted as a potential source of bioactive compounds. Red algae (Rhodophyta) are the largest group of seaweeds, including around 6000 different species, thus it can be hypothesized that they are a potential source of bioactive compounds. Sulfated polysaccharides, mainly agar and carrageenans, are the most relevant and exploited compounds of red algae. Other potential molecules are essential fatty acids, phycobiliproteins, vitamins, minerals, and other secondary metabolites. All these compounds have been demonstrated to exert several biological activities, among which antioxidant, anti-inflammatory, antitumor, and antimicrobial properties can be highlighted. Nevertheless, these properties need to be further tested on in vivo experiments and go in-depth in the study of the mechanism of action of the specific molecules and the understanding of the structure-activity relation. At last, the extraction technologies are essential for the correct isolation of the molecules, in a cost-effective way, to facilitate the scale-up of the processes and their further application by the industry. This manuscript is aimed at describing the fundamental composition of red algae and their most studied biological properties to pave the way to the utilization of this underused resource.
Collapse
Affiliation(s)
- M. Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - P. Garcia-Perez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - F. Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
65
|
Mendes MC, Navalho S, Ferreira A, Paulino C, Figueiredo D, Silva D, Gao F, Gama F, Bombo G, Jacinto R, Aveiro SS, Schulze PSC, Gonçalves AT, Pereira H, Gouveia L, Patarra RF, Abreu MH, Silva JL, Navalho J, Varela JCS, Speranza LG. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022; 11:foods11131871. [PMID: 35804686 PMCID: PMC9265617 DOI: 10.3390/foods11131871] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Algae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.
Collapse
Affiliation(s)
- Madalena Caria Mendes
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Cristina Paulino
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Figueiredo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Silva
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Fengzheng Gao
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Florinda Gama
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Rita Jacinto
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Susana S. Aveiro
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Peter S. C. Schulze
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Ana Teresa Gonçalves
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Luisa Gouveia
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Rita F. Patarra
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, Faculty of Sciences and Technology, University of the Azores, 500-321 Ponta Delgada, Portugal;
- Expolab—Ciência Viva Science Centre, Avenida da Ciência—Beta, 9560-421 Lagoa, Portugal
| | - Maria Helena Abreu
- ALGAplus, Produção e Comercialização de Algas e Seus Derivados, Lda., 3830-196 Ílhavo, Portugal;
| | - Joana L. Silva
- Allmicroalgae—Natural Products, 2445-413 Pataias, Portugal;
| | - João Navalho
- Necton S.A., Belamandil s/n, 8700-152 Olhão, Portugal;
| | - João C. S. Varela
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Lais Galileu Speranza
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Correspondence:
| |
Collapse
|
66
|
Purcell D, Packer MA, Hayes M. Angiotensin-I-Converting Enzyme Inhibitory Activity of Protein Hydrolysates Generated from the Macroalga Laminaria digitata (Hudson) JV Lamouroux 1813. Foods 2022; 11:1792. [PMID: 35741988 PMCID: PMC9222848 DOI: 10.3390/foods11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Seaweeds have a long history of use as both food and medicine, especially in Asian cultures. Moreover, there is growing interest in the use of seaweed ingredients and bioactive compounds in pharmaceutical and nutraceutical products. One ailment that seaweed bioactive compounds may impact is hypertension caused by the enzyme Angiotensin Converting Enzyme 1 (ACE-1; EC 3.4.15.1), found within the Renin-Angiotensin Aldosterone System (RAAS), which causes vasoconstriction of blood vessels, including veins and arteries. The aim of this paper is to generate bioactive peptide containing protein hydrolysates from the brown seaweed Laminaria digitata (Hudson) JV Lamouroux 1813. Proteins were extracted from this seaweed by disrupting the seaweed cell wall using a combination of carbohydrases and proteolytic enzymes. Bioactive peptide containing permeates were generated from L. digitata protein hydrolysates, and both hydrolysates and permeates were screened for their ability to inhibit the enzyme ACE-1. The protein content of the permeate fractions was found to be 23.87% compared to the untreated seaweed, which contained 15.08% protein using LECO analysis. Hydrolysis and filtration resulted in a "white" protein powder, and the protein content of this powder increased by 9% compared to the whole seaweed. The total amino acid (TAA) content of the L. digitata protein permeate was 53.65 g/100 g of the sample, and contains over 32% essential amino acids (EAA). Furthermore, the L. digitata permeate was found to inhibit the ACE-1 enzyme by 75% when compared to the commercial drug Captopril© when assayed at a concentration of 1 mg/mL. The inhibition of ACE-1 (the IC50 value) of 590 µg/mL for the L. digitata permeate compares well with Captopril©, which had 100% inhibition of ACE-1, with an IC50 value of 500 µg/mL. This study indicates that there is potential to develop protein powders with ACE-1 inhibitory bioactivities from the brown seaweed L. digitata using enzymatic hydrolysis as a cell disruption and protein extraction/hydrolysate generation procedure.
Collapse
Affiliation(s)
- Diane Purcell
- Food BioSciences, Teagasc, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland;
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand;
| | | | - Maria Hayes
- Food BioSciences, Teagasc, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland;
| |
Collapse
|
67
|
Garrido-Bañuelos G, Miljkovic A, Morange C, Mihnea M, Lopez-Sanchez P. Assessing the volatile composition of seaweed (Laminaria digitata) suspensions as function of thermal and mechanical treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Frazzini S, Scaglia E, Dell’Anno M, Reggi S, Panseri S, Giromini C, Lanzoni D, Sgoifo Rossi CA, Rossi L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11050992. [PMID: 35624856 PMCID: PMC9137800 DOI: 10.3390/antiox11050992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Algae and cyanobacteria, other than their nutritional value, possess different beneficial properties, including antioxidant and antimicrobial ones. Therefore, they can be considered functional ingredients in animal feed and natural substitutes for antibiotics. The aim of this study was to evaluate the antioxidant and antimicrobial capacity against porcine O138 E. coli of Ascophyllum nodosum, Chlorella vulgaris, Lithotamnium calcareum, Schizochytrium spp. as algal species and Arthrospira platensis as cyanobacteria. The antioxidant capacity was determined by ABTS Radical Cation Decolorization Assay testing at three different concentrations (100%; 75%; 50%). The growth inhibition effect of the extracts at concentrations of 25%, 12.5%, 6%, 3% and 1.5% against porcine O138 E. coli was genetically characterized by PCR to detect the presence of major virulence factors; this was evaluated by following the microdilution bacterial growth method. The ABTS assay disclosed that Ascophyllum nodosum was the compound with the major antioxidant properties (57.75 ± 1.44 percentage of inhibition; p < 0.0001). All the extracts tested showed growth inhibition activity at a concentration of 25%. Among all extracts, A. nodosum was the most effective, showing a significant growth inhibition of E. coli; in particular, the log10 cells/mL of E. coli used as a control resulted in a significantly higher concentration of 25% and 12.5% after 4 h (8.45 ± 0.036 and 7.22 ± 0.025 log10 cells/mL, respectively; p < 0.005). This also suggests a dose-dependent relationship between the inhibitory activity and the concentration. Also, a synergistic effect was observed on antioxidant activity for the combination of Ascophyllum nodosum and Lithotamnium calcareum (p < 0.0001). Moreover, to determine if this combination could affect the viability of the IPEC-J2 cells under the normal or stress condition, the viability and membrane integrity were tested, disclosing that the combination mitigated the oxidative stress experimentally induced by increasing the cell viability. In conclusion, the results obtained highlight that the bioactive compounds of algal species are able to exert antioxidant capacity and modulate O138 E. coli growth. Also, the combination of Ascophyllum nodosum and Lithotamnium calcareum species can enhance their bioactivity, making them a promising functional feed additive and a suitable alternative to antibiotics.
Collapse
|
69
|
Usoltseva RV, Shevchenko NM, Silchenko AS, Anastyuk SD, Zvyagintsev NV, Ermakova SP. Determination of the structure and in vitro anticancer activity of fucan from Saccharina dentigera and its derivatives. Int J Biol Macromol 2022; 206:614-620. [PMID: 35219778 DOI: 10.1016/j.ijbiomac.2022.02.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
The fucoidan SdeF was isolated from brown alga Saccharina dentigera. The structure of the obtained polysaccharide was studied by chemical methods, NMR spectroscopy of the fully and partially desulfated derivatives, and mass spectrometry of the fucoidan fragments, labeled with 18O. The SdeF was shown to be sulfated (40%) 1,3-linked α-L-fucan, with branches at C2. The sulfate groups were found at positions C2 and C4. Derivatives SdeFDS and SdeFPL were obtained by solvolytic desulfation and autohydrolysis of SdeF, respectively. According to 13C NMR data, SdeFDS is 1,3-linked α-L-fucan, while SdeFPL is 4-sulfated 1,3-linked α-L-fucan. Native fucoidan SdeF was shown to be a non-toxic anticancer substance in the model of human malignant melanoma RPMI-7951, colorectal adenocarcinoma HCT-116, and small intestine adenocarcinoma HuTu 80 cells. The partial desulfation of SdeF at C2 and/or the reduction of its Mw, from 229 to 28 kDa, decreased the anticancer activity; complete removal of the sulfated groups and/or Mw reduction to 4.7 kDa further reduced the effect of this polysaccharide.
Collapse
Affiliation(s)
- Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation..
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Stanislav D Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Nikolai V Zvyagintsev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 100-Let Vladivostoku Ave., 690022 Vladivostok, Russian Federation
| |
Collapse
|
70
|
Hsiao WC, Hong YH, Tsai YH, Lee YC, Patel AK, Guo HR, Kuo CH, Huang CY. Extraction, Biochemical Characterization, and Health Effects of Native and Degraded Fucoidans from Sargassum crispifolium. Polymers (Basel) 2022; 14:polym14091812. [PMID: 35566981 PMCID: PMC9103907 DOI: 10.3390/polym14091812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022] Open
Abstract
In the current investigation, a native crude fucoidan (Ex) was extracted from Sargassum crispifolium, pretreated by single-screw extrusion, and two degraded fucoidans, i.e., ExAh (degradation of Ex by ascorbic acid) and ExHp (degradation of Ex by hydrogen peroxide), were obtained. The extrusion pretreatment increased the extraction yield of fucoidan by approximately 1.73-fold as compared to the non-extruded sample. Among Ex, ExAh, and ExHp, their molecular weight and chemical compositions varied, but the structural features were similar. ExHp possessed the greatest antioxidant activities among the extracted fucoidans. According to the outcome, ExAh exhibited the maximum immune promoting effects via enhanced NO, TNF-α, IL-1β, IL-6, and IL-10 secretion. Thus, both ExHp and ExAh may potentially be used as an effective antioxidant and as immunostimulant agents, which could be of great value in the development of food and nutraceutical products.
Collapse
Affiliation(s)
- Wei-Cheng Hsiao
- Division of Gastroenterology (General Medicine), Department of Internal Medicine, Yuan’s General Hospital, No. 162, Cheng Kung 1st Rd., Lingya District, Kaohsiung City 80249, Taiwan;
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University (Yanchao Campus), No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan;
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (Y.-C.L.); (H.-R.G.)
| | - Yi-Chen Lee
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (Y.-C.L.); (H.-R.G.)
| | - Anil Kumar Patel
- Sustainable Environment Research Center, Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan;
| | - Hui-Ru Guo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (Y.-C.L.); (H.-R.G.)
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (Y.-C.L.); (H.-R.G.)
- Correspondence: (C.-H.K.); (C.-Y.H.); Tel.: +886-7-3617141 (ext. 23646) (C.-H.K.); +886-7-3617141 (ext. 23606) (C.-Y.H.)
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (Y.-C.L.); (H.-R.G.)
- Correspondence: (C.-H.K.); (C.-Y.H.); Tel.: +886-7-3617141 (ext. 23646) (C.-H.K.); +886-7-3617141 (ext. 23606) (C.-Y.H.)
| |
Collapse
|
71
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
72
|
Huang W, Tan H, Nie S. Beneficial effects of seaweed-derived dietary fiber: Highlights of the sulfated polysaccharides. Food Chem 2022; 373:131608. [PMID: 34815114 DOI: 10.1016/j.foodchem.2021.131608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds and their derivatives are important bioresources of natural bioactive compounds. Nutritional studies indicate that dietary fibers derived from seaweeds have great beneficial potentials in human health and can be developed as functional food. Moreover, sulfated polysaccharides are more likely to be the main bioactive components which are widely distributed in various species of seaweeds including Phaeophyceae, Rhodophyceae and Chlorophyceae. The catabolism by gut microbiota of the seaweeds-derived dietary fibers (DFs) may be one of the pivotal pathways of their physiological functions. Therefore, in this review, we summarized the latest results of the physiological characteristics of seaweed-derived dietary fiber and highlighted the roles of sulfated polysaccharides in the potential regulatory mechanisms against disorders. Meanwhile, the effects of different types of seaweed-derived dietary fiber on gut microbiota were discussed. The analysis of the structure-function correlations and gut microbiota related mechanisms and will contribute to further better applications in food and biotherapeutics.
Collapse
Affiliation(s)
- Wenqi Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
73
|
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349:32-46. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shreya Muthukumar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shruti Morjaria
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| |
Collapse
|
74
|
Assessing the Environmental and Economic Sustainability of Functional Food Ingredient Production Process. Processes (Basel) 2022. [DOI: 10.3390/pr10030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Development and application of novel technologies in food processing is vital for ensuring the availability of adequate, safe, and convenient food with the desired quality and functional properties. Environmental and economic sustainability of technologies is essential prior to their application in the food processing sector. The objective of this research is to determine the environmental and economic feasibility of ultrasound-assisted extraction (UAE) for recovering functional food ingredients from seaweed. Experimental data is used to conduct a life cycle assessment (LCA) to investigate the environmental performance with a functional unit (FU) of obtaining 1 g of extracted polyphenols, measured as gallic acid equivalents (mg GAE)/g seaweed. A life cycle impact assessment is performed with ReCiPe 2016 at midpoint. The cost of manufacturing (COM) of phenolic-rich extracts (as functional ingredient, bioactive, or nutraceutical) is estimated using time-driven activity-based costing (TDABC). The environmental profile findings show that across all categories, the UAE has considerably lower impacts than the conventional method, with electricity as the most important impact contributor, followed by solvent production. An economic assessment estimates the COM over a one-year period at a large scale using the UAE to be EUR 1,200,304, EUR 2,368,440, and EUR 4,623,290 for extraction vessel capacities of 0.05, 0.1, and 0.15 m3, respectively. Raw materials (including the type of raw material) and operational labour costs are the primary contributors to the COM. The findings thus present evidence to support the adoption of an environmentally and economically viable technology for functional ingredient production.
Collapse
|
75
|
Application of Ultrasound-Assisted Extraction and Non-Thermal Plasma for Fucus virsoides and Cystoseira barbata Polysaccharides Pre-Treatment and Extraction. Processes (Basel) 2022. [DOI: 10.3390/pr10020433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brown algae Fucus virsoides and Cystoseira barbata are an abundant source of sulfated polysaccharide fucoidan, which has shown a wide range of biological activities. These activities are significantly dependent on the fucoidan chemical composition, which is closely linked with the applied extraction technique and process parameters. In order to overcome the drawbacks of lengthy conventional extraction (CE), advanced extraction techniques, such as ultrasound-assisted extraction (UAE) and non-thermal plasma (NTP), were applied. Furthermore, this study also investigated the efficiency of different solvents as well as UAE and NTP as 5 min pre-treatments prior to CE as a more effective course of cell wall breakage and, consequently, a higher polysaccharide yield (%PS). Apart from %PS, the effect of this procedure on the chemical composition and antioxidant capacity of the extracted polysaccharides was also monitored. When comparing the extraction solvent, the application of 0.1 M H2SO4, instead of H2O, resulted in a three-fold higher %PS, a higher sulfate group, and a lower fucose content. Application of CE resulted in higher %PS, uronic acids, and fucose content as well as oxygen radical absorbance capacity (ORAC) and DPPH values, while the average molecular weight (Mw), sulfate group, and glucose content were lower during CE when compared to 30 min of UAE and NTP treatment. Application of UAE and NTP as 5 min pre-treatments decreased fucose content, while %PS and sulfate content were similar to values obtained when using CE.
Collapse
|
76
|
Macroalgal Proteins: A Review. Foods 2022; 11:foods11040571. [PMID: 35206049 PMCID: PMC8871301 DOI: 10.3390/foods11040571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Population growth is the driving change in the search for new, alternative sources of protein. Macroalgae (otherwise known as seaweeds) do not compete with other food sources for space and resources as they can be sustainably cultivated without the need for arable land. Macroalgae are significantly rich in protein and amino acid content compared to other plant-derived proteins. Herein, physical and chemical protein extraction methods as well as novel techniques including enzyme hydrolysis, microwave-assisted extraction and ultrasound sonication are discussed as strategies for protein extraction with this resource. The generation of high-value, economically important ingredients such as bioactive peptides is explored as well as the application of macroalgal proteins in human foods and animal feed. These bioactive peptides that have been shown to inhibit enzymes such as renin, angiotensin-I-converting enzyme (ACE-1), cyclooxygenases (COX), α-amylase and α-glucosidase associated with hypertensive, diabetic, and inflammation-related activities are explored. This paper discusses the significant uses of seaweeds, which range from utilising their anthelmintic and anti-methane properties in feed additives, to food techno-functional ingredients in the formulation of human foods such as ice creams, to utilising their health beneficial ingredients to reduce high blood pressure and prevent inflammation. This information was collated following a review of 206 publications on the use of seaweeds as foods and feeds and processing methods to extract seaweed proteins.
Collapse
|
77
|
A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
78
|
He Y, Chen Z, Nie X, Wang D, Zhang Q, Peng T, Zhang C, Wu D, Zhang J. Recent advances in polysaccharides from edible and medicinal Polygonati rhizoma: From bench to market. Int J Biol Macromol 2022; 195:102-116. [PMID: 34896461 DOI: 10.1016/j.ijbiomac.2021.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Abstract
Although the increasing studies have corroborated the biological activities and great market utilization value of polysaccharide fractions derived from Polygonati rhizome, a well-known edible and medicinal plant, Polygonati rhizome polysaccharides (PRPs) still lack sufficient attention. Herein, we make attempt to systematically summarize recent advances in the extraction, purification, structural characteristics, biological activities, and commercial products of PRPs. Based on the detailed extraction and structural characteristics, the biological activities of PRPs including immune-regulation, anti-osteoporosis, anti-Alzheimer's disease, anti-diabetes and anti-atherosclerotic, are emphatically summarized, as well as the possible related mechanisms. Most importantly, about 365 kinds of commercial functional foods and over 500 patents related to PRPs as the main raw material were analyzed to explore the status quo and bottleneck for the development and utilization of PRPs. In conclusion, this review will benefit to bridge the gap between basic knowledge and market innovations, and facilitate the in-depth utilization of PRPs.
Collapse
Affiliation(s)
- Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhang
- Pengzhou Hospital of traditional Chinese Medicine, Pengzhou 611930, China
| | - Teng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
79
|
Structural characterization and bioactive and functional properties of the Brown macroalgae (Sargassum illicifolium) polysaccharide. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
80
|
Ma Y, Meng A, Liu P, Chen Y, Yuan A, Dai Y, Ye K, Yang Y, Wang Y, Li Z. Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules 2022; 27:362. [PMID: 35056677 PMCID: PMC8778679 DOI: 10.3390/molecules27020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Phenols were extracted from the Pleioblastus amarus (Keng) shell (PAS) using ethanol. A Plackett-Burman assessment indicated that the factors affecting polyphenol extraction included the ethanol concentration, extraction temperature, liquid to solid ratio, extraction time, and reflux extraction times; the best extraction parameters were the ethanol concentration of 75%, a 20:1 liquid to solid ratio, and an extraction time of 2.1 h. The number of polyphenols was 7.216 mg/g. Furthermore, the phenol composition analysis showed the presence of p-Coumaric acid (196.88 mg /mL) and rutin (312.9 mg /mL), which were used for the in vitro extraction and determination of the antioxidant activity. According to the A, B, C, and D antioxidant activity assays, the ethyl acetate phase was the strongest with low IC50 values of 0.169 ± 0.01 mg/mL, 0.289 ± 0.01 mg/mL, 0.372 ± 0.01 mg/mL, and 1.029 ± 0.03 mg/mL, respectively, confirming high antioxidant activity. For the n-butanol and petroleum ether phases, antioxidant activity was lower. This study showed that the polyphenol extract from Pleioblastus amarus (Keng) shell displayed excellent antioxidant activity, enhancing its practical application.
Collapse
|
81
|
Meng W, Mu T, Marco GV. Seaweeds and microalgal biomass: The future of food and nutraceuticals. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
82
|
Qiu SM, Aweya JJ, Liu X, Liu Y, Tang S, Zhang W, Cheong KL. Bioactive polysaccharides from red seaweed as potent food supplements: a systematic review of their extraction, purification, and biological activities. Carbohydr Polym 2022; 275:118696. [PMID: 34742423 DOI: 10.1016/j.carbpol.2021.118696] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023]
Abstract
Most marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds. Beside serving as food source, recent studies have shown that red seaweeds are rich sources of bioactive polysaccharides. Red seaweed polysaccharides (RSPs) have various physiological and biological activities, which allow them to be used as immunomodulators, anti-obesity agents, and prebiotic ingredients. Lack of summary information and human clinical trials on the various polysaccharides from red seaweeds, however limits industrial-scale utilization of RSPs in functional foods. This review summarizes recent information on the approaches used for RSPs extraction and purification, mechanistic investigations of their biological activities, and related molecular principles behind their purported ability to prevent diseases. The information here also provides a theoretical foundation for further research into the structure and mechanism of action of RSPs and their potential applications in functional foods.
Collapse
Affiliation(s)
- Si-Min Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China..
| |
Collapse
|
83
|
Venardou B, O’Doherty JV, Garcia-Vaquero M, Kiely C, Rajauria G, McDonnell MJ, Ryan MT, Sweeney T. Evaluation of the Antibacterial and Prebiotic Potential of Ascophyllum nodosum and Its Extracts Using Selected Bacterial Members of the Pig Gastrointestinal Microbiota. Mar Drugs 2021; 20:41. [PMID: 35049896 PMCID: PMC8778111 DOI: 10.3390/md20010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022] Open
Abstract
Ascophyllum nodosum and its extracts are promising antibacterial and prebiotic dietary supplements for pigs. The objectives of this study were to evaluate the effects of the increasing concentrations of: (1) two whole biomass samples of A. nodosum with different harvest seasons, February (ANWB-F) and November (ANWB-N), in a weaned pig faecal batch fermentation assay, and (2) A. nodosum extracts produced using four different extraction conditions of a hydrothermal-assisted extraction methodology (ANE1-4) and conventional extraction methods with water (ANWE) and ethanol (ANEE) as solvent in individual pure culture growth assays using a panel of beneficial and pathogenic bacterial strains. In the batch fermentation assay, ANWB-F reduced Bifidobacterium spp. counts (p < 0.05) while ANWB-N increased total bacterial counts and reduced Bifidobacterium spp. and Enterobacteriaceae counts (p < 0.05). Of the ANE1-4, produced from ANWB-F, ANWE and ANEE that were evaluated in the pure culture growth assays, the most interesting extracts were the ANE1 that reduced Salmonella Typhimurium, enterotoxigenic Escherichia coli and B. thermophilum counts and the ANE4 that stimulated B. thermophilum growth (p < 0.05). In conclusion, the extraction method and conditions influenced the bioactivities of the A. nodosum extracts with ANE1 and ANE4 exhibiting distinct antibacterial and prebiotic properties in vitro, respectively, that merit further exploration.
Collapse
Affiliation(s)
- Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (M.T.R.)
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Claire Kiely
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Mary J. McDonnell
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (J.V.O.); (M.G.-V.); (C.K.); (G.R.); (M.J.M.)
| | - Marion T. Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (M.T.R.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (M.T.R.)
| |
Collapse
|
84
|
Quitério E, Soares C, Ferraz R, Delerue-Matos C, Grosso C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021; 10:3100. [PMID: 34945651 PMCID: PMC8702156 DOI: 10.3390/foods10123100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.
Collapse
Affiliation(s)
- Eva Quitério
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
| | - Cristina Soares
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Clara Grosso
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| |
Collapse
|
85
|
Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Surits VV, Imbs TI, Malyarenko OS, Besednova NN, Ivanushko LA, Ermakova SP. Structural diversity of fucoidans and their radioprotective effect. Carbohydr Polym 2021; 273:118551. [PMID: 34560963 DOI: 10.1016/j.carbpol.2021.118551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Fucoidans are biologically active sulfated polysaccharides of brown algae. They have a great structural diversity and a wide spectrum of biological activity. This review is intended to outline what is currently known about the structures of fucoidans and their radioprotective effect. We classified fucoidans according to their composition and structure, examined the structure of fucoidans of individual representatives of algae, summarized the available data on changes in the yields and compositions of fucoidans during algae development, and focused on information about underexplored radioprotective effect of these polysaccharides. Based on the presented in the review data, it is possible to select algae, which are the sources of fucoidans of desired structures and to determine the best time to harvest them. The use of high purified polysaccharides with established structures increase the value of studies of their biological effects and the determination of the dependence "structure - biological effect".
Collapse
Affiliation(s)
- Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation.
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Valerii V Surits
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Tatiana I Imbs
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Natalia N Besednova
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Lyudmila A Ivanushko
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| |
Collapse
|
86
|
Drira M, Hentati F, Babich O, Sukhikh S, Larina V, Sharifian S, Homai A, Fendri I, Lemos MFL, Félix C, Félix R, Abdelkafi S, Michaud P. Bioactive Carbohydrate Polymers-Between Myth and Reality. Molecules 2021; 26:7068. [PMID: 34885655 PMCID: PMC8659292 DOI: 10.3390/molecules26237068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Polysaccharides are complex macromolecules long regarded as energetic storage resources or as components of plant and fungal cell walls. They have also been described as plant mucilages or microbial exopolysaccharides. The development of glycosciences has led to a partial and difficult deciphering of their other biological functions in living organisms. The objectives of glycobiochemistry and glycobiology are currently to correlate some structural features of polysaccharides with some biological responses in the producing organisms or in another one. In this context, the literature focusing on bioactive polysaccharides has increased exponentially during the last two decades, being sometimes very optimistic for some new applications of bioactive polysaccharides, notably in the medical field. Therefore, this review aims to examine bioactive polysaccharide, taking a critical look of the different biological activities reported by authors and the reality of the market. It focuses also on the chemical, biochemical, enzymatic, and physical modifications of these biopolymers to optimize their potential as bioactive agents.
Collapse
Affiliation(s)
- Maroua Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Faiez Hentati
- INRAE, URAFPA, Université de Lorraine, F-54000 Nancy, France;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Stanislas Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Ahmad Homai
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Carina Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Rafael Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
87
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|
88
|
Joniver CF, Photiades A, Moore PJ, Winters AL, Woolmer A, Adams JM. The global problem of nuisance macroalgal blooms and pathways to its use in the circular economy. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
89
|
Zhang X, Border A, Goosen N, Thomsen M. Environmental life cycle assessment of cascade valorisation strategies of South African macroalga Ecklonia maxima using green extraction technologies. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
90
|
O’Doherty JV, Venardou B, Rattigan R, Sweeney T. Feeding Marine Polysaccharides to Alleviate the Negative Effects Associated with Weaning in Pigs. Animals (Basel) 2021; 11:2644. [PMID: 34573610 PMCID: PMC8465377 DOI: 10.3390/ani11092644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In young pigs, the challenge of weaning frequently leads to dysbiosis. This predisposes pigs to intestinal infection such as post-weaning diarrhoea (PWD). Dietary interventions to reduce PWD have centred on dietary inclusion of antibiotic growth promoters (AGP) and antimicrobials in pig diets, or high concentrations of zinc oxide. These interventions are under scrutiny because of their role in promoting multidrug resistant bacteria and the accumulation of minerals in the environment. There are significant efforts being made to identify natural alternatives. Marine polysaccharides, such as laminarin and fucoidan from macroalgae and chitosan and chito-oligosaccharides from chitin, are an interesting group of marine dietary supplements, due to their prebiotic, antibacterial, anti-oxidant, and immunomodulatory activities. However, natural variability exists in the quantity, structure, and bioactivity of these polysaccharides between different macroalgae species and harvest seasons, while the wide range of available extraction methodologies and conditions results in further variation. This review will discuss the development of the gastrointestinal tract in the pig during the post-weaning period and how feeding marine polysaccharides in both the maternal and the post-weaned pig diet, can be used to alleviate the negative effects associated with weaning.
Collapse
Affiliation(s)
- John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| | - Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland; (B.V.); (T.S.)
| |
Collapse
|
91
|
Vázquez-Rodríguez B, Santos-Zea L, Heredia-Olea E, Acevedo-Pacheco L, Santacruz A, Gutiérrez-Uribe JA, Cruz-Suárez LE. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
92
|
Cabral EM, Mondala JRM, Oliveira M, Przyborska J, Fitzpatrick S, Rai DK, Sivagnanam SP, Garcia-Vaquero M, O'Shea D, Devereux M, Tiwari BK, Curtin J. Influence of molecular weight fractionation on the antimicrobial and anticancer properties of a fucoidan rich-extract from the macroalgae Fucus vesiculosus. Int J Biol Macromol 2021; 186:994-1002. [PMID: 34216667 DOI: 10.1016/j.ijbiomac.2021.06.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the antimicrobial and anticancer properties of a fucoidan extract and subsequent fractions isolated from the macroalgae Fucus vesiculosus. The fractions obtained (>300 kDa, <300 kDa, <100 kDa, <50 kDa and <10 kDa) could inhibit the growth of B. subtilis, E. coli, L. innocua and P. fluorescens when assayed at concentrations between 12,500 and 25,000 ppm. The bacterial growth was monitored by optical density (OD) measurements (600 nm, 24 h) at 30 °C or 37 °C, depending upon on the strain used. The extracted fractions were also tested for cytotoxicity against brain glioblastoma cancer cells using the Alamar Blue assay for 24 h, 48 h and 6 days. The >300 kDa fraction presented the lowest IC50 values (0.052% - 24 h; 0.032% - 6 days). The potential bioactivity of fucoidan as an antimicrobial and anticancer agent was demonstrated in this study. Hence, the related mechanisms of action should be explored in a near future.
Collapse
Affiliation(s)
| | - Julie Rose Mae Mondala
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Márcia Oliveira
- Department of Food Hygiene and Technology, Institute of Food Science and Technology, University of León, León, Spain.
| | - Joanna Przyborska
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, Co. Kerry, Ireland.
| | | | - Dilip K Rai
- Teagasc Food Research Centre Ashtown, Dublin 15, Ireland.
| | | | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Denis O'Shea
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Michael Devereux
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| | | | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin, City Campus, Dublin, Ireland.
| |
Collapse
|
93
|
Otero P, Carpena M, Garcia-Oliveira P, Echave J, Soria-Lopez A, Garcia-Perez P, Fraga-Corral M, Cao H, Nie S, Xiao J, Simal-Gandara J, Prieto MA. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit Rev Food Sci Nutr 2021; 63:1901-1929. [PMID: 34463176 DOI: 10.1080/10408398.2021.1969534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, consumers are increasingly aware of the relationship between diet and health, showing a greater preference of products from natural origin. In the last decade, seaweeds have outlined as one of the natural sources with more potential to obtain bioactive carbohydrates. Numerous seaweed polysaccharides have aroused the interest of the scientific community, due to their biological activities and their high potential on biomedical, functional food and technological applications. To obtain polysaccharides from seaweeds, it is necessary to find methodologies that improve both yield and quality and that they are profitable. Nowadays, environmentally friendly extraction technologies are a viable alternative to conventional methods for obtaining these products, providing several advantages like reduced number of solvents, energy and time. On the other hand, chemical modification of their structure is a useful approach to improve their solubility and biological properties, and thus enhance the extent of their potential applications since some uses of polysaccharides are still limited. The present review aimed to compile current information about the most relevant seaweed polysaccharides, available extraction and modification methods, as well as a summary of their biological activities, to evaluate knowledge gaps and future trends for the industrial applications of these compounds.Key teaching pointsStructure and biological functions of main seaweed polysaccharides.Emerging extraction methods for sulfate polysaccharides.Chemical modification of seaweeds polysaccharides.Potential industrial applications of seaweed polysaccharides.Biological activities, knowledge gaps and future trends of seaweed polysaccharides.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - J Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - A Soria-Lopez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Hui Cao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
94
|
Fournière M, Bedoux G, Souak D, Bourgougnon N, Feuilloley MGJ, Latire T. Effects of Ulva sp. Extracts on the Growth, Biofilm Production, and Virulence of Skin Bacteria Microbiota: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes Strains. Molecules 2021; 26:4763. [PMID: 34443349 PMCID: PMC8401615 DOI: 10.3390/molecules26164763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022] Open
Abstract
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 μg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 μg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 μg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 μg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Djouhar Souak
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| |
Collapse
|
95
|
Landeta-Salgado C, Cicatiello P, Stanzione I, Medina D, Berlanga Mora I, Gomez C, Lienqueo ME. The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiol Res 2021; 251:126835. [PMID: 34399103 DOI: 10.1016/j.micres.2021.126835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
The marine fungi Paradendryphiela salina and Talaromyces pinophilus degrade and assimilate complex substrates from plants and seaweed. Additionally, these fungi secrete surface-active proteins, identified as cerato-platanins and hydrophobins. These hydrophobic proteins have the ability to self-assemble forming amyloid-like aggregates and play an essential role in the growth and development of the filamentous fungi. It is the first time that one cerato-platanin (CP) is identified and isolated from P. salina (PsCP) and two Class I hydrophobins (HFBs) from T. pinophilus (TpHYD1 and TpHYD2). Furthermore, it is possible to extract cerato-platanins and hydrophobins using marine fungi that can feed on seaweed biomass, and through a submerged liquid fermentation process. The propensity to aggregate of these proteins has been analyzed using different techniques such as Thioflavin T fluorescence assay, Fourier-transform Infrared Spectroscopy, and Atomic Force Microscopy. Here, we show that the formation of aggregates of PsCP and TpHYD, was influenced by the carbon source from seaweed. This study highlighted the potential of these self-assembling proteins generated from a fermentation process with marine fungi and with promising properties such as conformational plasticity with extensive applications in biotechnology, pharmacy, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - David Medina
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Isadora Berlanga Mora
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile
| | - Carlos Gomez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Colombia
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile.
| |
Collapse
|
96
|
Choudhary P, G VS, Khade M, Savant S, Musale A, G RKK, Chelliah MS, Dasgupta S. Empowering blue economy: From underrated ecosystem to sustainable industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112697. [PMID: 33934021 DOI: 10.1016/j.jenvman.2021.112697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
With increasing demand for resources to achieve global food-water-energy nexus and rapid decline in land-based sources, oceans represent both solution and boost to sustainable environment and economy. In addition to fundamental part of earth's ecosystem for uncatalogued diversity of life, oceans are undervalued economy powerhouse with gross marine product value. With sustainable management of existing assets including shipping, transportation, manufacturing, fisheries, tourism and exploration of new business like marine biotechnology and renewable energy, the ocean or blue economy has potential to fulfill sustainable development goals (SDG). In spite of recognition of blue economy as a new economic frontier, investments by existing industries and emergence of new ones are limited and less known, hence require more in depth attention and scientific understanding. In the present study, authors present a systematic comparative assessment of blue economy sectors with distinct challenges and strategies to be further explored and implemented for industrial deployment. The conceptualization of integrated routes of bio(economy) by the current study can act as gateway for key stakeholders, i.e. governance, bluepreneurs (scientists and industries) to prioritize technologies for sustainable applications of marine resources.
Collapse
Affiliation(s)
- Poonam Choudhary
- RIL Biofuel R&D Site, Reliance Industries Limited, Motikhavadi, Jamnagar, India.
| | - Venkata Subhash G
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India.
| | - Monika Khade
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India.
| | - Sandip Savant
- RIL Biofuel R&D Site, Reliance Industries Limited, Motikhavadi, Jamnagar, India.
| | - Amar Musale
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India.
| | - Raja Krishna Kumar G
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India.
| | | | - Santanu Dasgupta
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India.
| |
Collapse
|
97
|
Formation of Amphiphilic Molecules from the Most Common Marine Polysaccharides, toward a Sustainable Alternative? Molecules 2021; 26:molecules26154445. [PMID: 34361598 PMCID: PMC8371489 DOI: 10.3390/molecules26154445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023] Open
Abstract
Marine polysaccharides are part of the huge seaweeds resources and present many applications for several industries. In order to widen their potential as additives or bioactive compounds, some structural modifications have been studied. Among them, simple hydrophobization reactions have been developed in order to yield to grafted polysaccharides bearing acyl-, aryl-, alkyl-, and alkenyl-groups or fatty acid chains. The resulting polymers are able to present modified physicochemical and/or biological properties of interest in the current pharmaceutical, cosmetics, or food fields. This review covers the chemical structures of the main marine polysaccharides, and then focuses on their structural modifications, and especially on hydrophobization reactions mainly esterification, acylation, alkylation, amidation, or even cross-linking reaction on native hydroxyl-, amine, or carboxylic acid functions. Finally, the question of the necessary requirement for more sustainable processes around these structural modulations of marine polysaccharides is addressed, considering the development of greener technologies applied to traditional polysaccharides.
Collapse
|
98
|
Nigam S, Singh R, Bhardwaj SK, Sami R, Nikolova MP, Chavali M, Sinha S. Perspective on the Therapeutic Applications of Algal Polysaccharides. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:785-809. [PMID: 34305487 PMCID: PMC8294233 DOI: 10.1007/s10924-021-02231-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 05/04/2023]
Abstract
Abstract Algae are an enormous source of polysaccharides and have gained much interest in human flourishing as organic drugs. Algal polysaccharides have aroused interest in the health sector owing to the various bioactivities namely anticancer, antiviral, immunoregulation, antidiabetic and antioxidant effects. The research community has comprehensively described the importance of algal polysaccharides regarding their extraction, purification, and potential use in various sectors. However, regardless of all the intriguing properties and potency in the health sector, these algal polysaccharides deserve detailed investigation. Hence, the present review emphasizes extensively on the previous and latest developments in the extraction, purification, structural properties and therapeutic bioactivities of algal polysaccharides to upgrade the knowledge for further advancement in this area of research. Moreover, the review also addresses the challenges, prospective research gaps and future perspective. We believe this review can provide a boost to upgrade the traditional methods of algal polysaccharide production for the development of efficacious drugs that will promote human welfare. Graphic Abstract
Collapse
Affiliation(s)
- Sonal Nigam
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201 313 Uttar Pradesh India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| | - Sheetal Kaushik Bhardwaj
- Vant Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Rokkayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, 21944 Saudi Arabia
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str, 7017 Ruse, Bulgaria
| | - Murthy Chavali
- Nano Technology Research Centre (NTRC), MCETRC, and Aarshanano Composite Technologies Pvt. Ltd, Guntur, Andhra Pradesh 522 201 India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| |
Collapse
|
99
|
Silva M, Seijas P, Otero P. Exploitation of Marine Molecules to Manage Alzheimer's Disease. Mar Drugs 2021; 19:md19070373. [PMID: 34203244 PMCID: PMC8307759 DOI: 10.3390/md19070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.
Collapse
Affiliation(s)
- Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal;
- Department of Plant Biology, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paula Seijas
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Paz Otero
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence UAM+CSIC, 28049 Madrid, Spain
- Nutrition and Bromatology Group, CITACA, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
- Correspondence: or
| |
Collapse
|
100
|
Dobrinčić A, Pedisić S, Zorić Z, Jurin M, Roje M, Čož-Rakovac R, Dragović-Uzelac V. Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata. Foods 2021; 10:foods10071481. [PMID: 34202221 PMCID: PMC8307558 DOI: 10.3390/foods10071481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Sulfated polysaccharide fucoidan isolated from brown algae shows a wide range of biological activities that are significantly dependent on its chemical composition, which is closely related to the applied technique and extraction parameters. Therefore, the objective of this study was to evaluate the influence of microwave assisted extraction (MAE) and pressurized liquid extraction (PLE) parameters (solvent, temperature, time, and number of cycles) on the Fucus virsoides and Cystoseira barbata polysaccharide yield (%PS) and chemical composition (total sugar, fucose, and sulfate group). The optimal MAE parameters that resulted in the highest polysaccharide extraction from F. virsoides and C. barbata were 0.1 M H2SO4 for 10 min at 80 °C, while the optimal PLE parameters were 0.1 M H2SO4, for two cycles of 15 min at 140 °C. Furthermore, the %PS, chemical structure, molecular properties, and antioxidant activity of the F. virsoides and C. barbata polysaccharide extracts obtained with MAE, PLE, and conventional extraction (CE) performed under previously determinate optimal conditions were compared. PLE resulted in a significantly higher %PS from F. virsoides, while for C. barbata, a similar yield was achieved with CE and PLE, as well as CE and MAE, for both algae. Furthermore, the polysaccharides obtained using PLE had the highest polydispersity index, fucose, and sulfate group content, and the lowest uronic acid content; however their antioxidant activity was lower.
Collapse
Affiliation(s)
- Ana Dobrinčić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.D.); (S.P.); (Z.Z.); (V.D.-U.)
| | - Sandra Pedisić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.D.); (S.P.); (Z.Z.); (V.D.-U.)
| | - Zoran Zorić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.D.); (S.P.); (Z.Z.); (V.D.-U.)
| | - Mladenka Jurin
- Ruđer Bošković Institute, Biljenička cesta, 10 000 Zagreb, Croatia; (M.J.); (R.Č.-R.)
| | - Marin Roje
- Ruđer Bošković Institute, Biljenička cesta, 10 000 Zagreb, Croatia; (M.J.); (R.Č.-R.)
- Correspondence: ; Tel.: +385-1-456-1029
| | | | - Verica Dragović-Uzelac
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (A.D.); (S.P.); (Z.Z.); (V.D.-U.)
| |
Collapse
|