51
|
Qie X, Chen W, Wu Y, Yang T, Wang Z, Zeng M, Chen J, Douglas Goff H, He Z. Entrapment of cyanidin-3-O-glucoside in β-conglycinin: From interaction to bioaccessibility and antioxidant activity under thermal treatment. Food Chem 2022; 398:133832. [DOI: 10.1016/j.foodchem.2022.133832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
|
52
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
53
|
Wang X, Wang S, Xu D, Peng J, Gao W, Cao Y. The Effect of Glycosylated Soy Protein Isolate on the Stability of Lutein and Their Interaction Characteristics. Front Nutr 2022; 9:887064. [PMID: 35685872 PMCID: PMC9172447 DOI: 10.3389/fnut.2022.887064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Lutein is a natural fat-soluble carotenoid with various physiological functions. However, its poor water solubility and stability restrict its application in functional foods. The present study sought to analyze the stability and interaction mechanism of the complex glycosylated soy protein isolate (SPI) prepared using SPI and inulin-type fructans and lutein. The results showed that glycosylation reduced the fluorescence intensity and surface hydrophobicity of SPI but improved the emulsification process and solubility. Fluorescence intensity and ultraviolet–visible (UV–Vis) absorption spectroscopy results showed that the fluorescence quenching of the glycosylated soybean protein isolate by lutein was static. Through thermodynamic parameter analysis, it was found that lutein and glycosylated SPI were bound spontaneously through hydrophobic interaction, and the binding stoichiometry was 1:1. The X-ray diffraction analysis results showed that lutein existed in the glycosylated soybean protein isolate in an amorphous form. The Fourier transform infrared spectroscopy analysis results revealed that lutein had no effect on the secondary structure of glycosylated soy protein isolate. Meanwhile, the combination of lutein and glycosylated SPI improved the water solubility of lutein and the stability of light and heat.
Collapse
Affiliation(s)
- Xia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jingwei Peng
- Chenguang Biotech Group Co., Ltd., Handan, China
| | - Wei Gao
- Chenguang Biotech Group Co., Ltd., Handan, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
54
|
Li H, Yang J, Qin A, Yang F, Liu D, Li H, Yu J. Milk protein hydrolysates obtained with immobilized alcalase and neutrase on magnetite nanoparticles: Characterization and antigenicity study. J Food Sci 2022; 87:3107-3116. [PMID: 35638323 DOI: 10.1111/1750-3841.16189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
Enzymatic hydrolysis is the most commonly used method to reduce the antigenicity of milk protein, but free protease is unstable and difficult to recycle after application. In this study, alcalase and neutrase were selected for immobilization on the modified magnetic Fe3 O4 nanoparticles. The reusability of the immobilized enzyme was 68.23% of the total starting activity after 5 recycling batches. The optimal hydrolysis conditions were an enzyme to substrate ratio of 6000 U/g and reaction at 50℃ and pH 8.5 for 3 h. Under these conditions, 22.76% hydrolysis of hydrolysate was achieved, and the antigenicity reduction rates of β-lactoglobulin and casein were 21.34% and 30.89%, respectively. In addition, 82.75% of the hydrolysate had a molecular weight less than 1 kDa, and free amino acids represented 13.65% of the sample. This result showed that the hydrolysis with immobilized enzyme was similar to that with free enzyme and the immobilized enzyme could be applied to produce hypoallergenic hydrolysate. PRACTICAL APPLICATION: Reduces milk protein allergenicity.
Collapse
Affiliation(s)
- Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jingjing Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Airong Qin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Dingkuo Liu
- Dingzheng Xinxing Biotechnology (Tianjin) Co., Ltd., Taifeng Road, TEDA, Tianjin, China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
55
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2022; 375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols are plant secondary metabolites, whose biological activity has been widely demonstrated. However, the research in this field is a bit reductive, as very frequently the effect of individual compound is investigated in different experimental models, neglecting more complex, but common, relationships that are established in the diet. This review summarizes the data that highlighted the interaction between polyphenols and other food components, especially macro- (lipids, proteins, carbohydrates and fibers) and micronutrients (minerals, vitamins and organic pigments), paying particular attention on their bioavailability, antioxidant capacity and chemical, physical, organoleptic and nutritional characteristics. The topic of food interaction has yet to be extensively studied because a greater knowledge of the food chemistry behind these interactions and the variables that modify their effects, could offer innovations and improvements in various fields ranging from organoleptic, nutritional to health and economic field.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Maria Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
56
|
Liao X, Wang S, Li Y, Michael Olajide T, Zhai X, Qian J, Miao S, Huang J. Effects of "nine steaming nine sun-drying" on proximate composition, protein structure and volatile compounds of black soybeans. Food Res Int 2022; 155:111070. [PMID: 35400448 DOI: 10.1016/j.foodres.2022.111070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
Nine steaming nine sun-drying is a traditional processing technology for food or medicinal materials. The dynamic changes of the proximate composition, protein structure and volatile compounds during nine-time steaming and sun-drying of black soybeans (BS) were studied. The proximate composition results showed that the content of protein, carbohydrate and fat of BS decreased after processing, whereas the relative content of amino acids remained basically unchanged. Protein structure was evaluated using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet absorption spectroscopy (UV) and Fluorescence spectroscopy. FT-IR result revealed that the relative contents of β-sheet and β-turn of the secondary structure of black soybean protein isolate (BSPI) decreased but the relative contents of α-helix and random coil increased after steaming and sun-drying. The results of UV and fluorescence spectroscopy confirmed changes in the protein conformation. In addition, SPME-GCMS analysis demonstrated that hydrocarbons, alcohols and aldehydes were the main volatile compounds. The relative contents of 1-octen-3-ol and hexanal, which are the main sources of beany flavor decreased significantly compared with raw BS. Principal component analysis (PCA) results showed that the volatile compounds of nine steamed and nine sun-dried BS could be well distinguished during the process. These findings may therefore provide a scientific basis for the application of nine-time steamed and sun-dried BS in food industry and contribute to the understanding of process-induced chemical transformations in this ancient processing technique.
Collapse
Affiliation(s)
- Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shanshan Wang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingqiu Li
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | - Xiaolin Zhai
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiana Qian
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Song Miao
- Teagasc Food Research Centre Moorepark, Co. Cork, Ireland.
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
57
|
Zhao C, Miao Z, Yan J, Liu J, Chu Z, Yin H, Zheng M, Liu J. Ultrasound-induced red bean protein–lutein interactions and their effects on physicochemical properties, antioxidant activities and digestion behaviors of complexes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
58
|
Chemosensor Strip from Kepok Banana Bracts Extract (Musa paradisiaca L.) for Detection of Tuna Freshness. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.3.108-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anthocyanins as chemosensory compounds for amines have been tested in this study. Because anthocyanins are sensitive to pH changes, while amines have an alkaline nature, they can cause structural changes in anthocyanins, resulting in changes in the color of anthocyanins. The source of anthocyanins was the Kepok banana bracts (Musa paradisiaca L.), which were extracted using a mixture of ethanol:HCl 0.15% (3:2). The types of anthocyanin compounds were characterized using a UV-Vis spectrophotometer. The anthocyanin content obtained varied from 1.26 mg/100 g to 5.08 mg/100 g. The type of anthocyanin in the Kepok banana bracts was found as a cyanidin-3-rutinoside with maximum absorption at 513 nm at pH 1. The color of anthocyanin extract varied with changes in pH; it turned red in acid and faded in neutral solutions. The green color in the alkaline solution changes to brownish-yellow was associated with anthocyanin degradation. The color change at different pH indicates that banana bracts are regarded as a potential chemosensory compound to detect tuna freshness. The chemosensor was applied to a cellulose-based strip and exhibited a color change that corresponded to the increase in pH and was comparable to the results of the pH meter measurement. The structural changes of anthocyanin before and after the tuna freshness test were identified by the FTIR-ATR, indicating a change in the anthocyanin structure. Tuna freshness began to diminish after being stored for 12 and 24 hours at room temperature, marked by a color change of the paper strip to colorless and blackish gray.
Collapse
|
59
|
Effect of Soybean Protein Isolate-7s on Delphinidin-3- O-Glucoside from Purple Corn Stability and Their Interactional Characterization. Foods 2022; 11:foods11070895. [PMID: 35406982 PMCID: PMC9254744 DOI: 10.3390/foods11070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are abundant in purple corn and beneficial to human health. Soybean protein isolate-7s (SPI-7s) could enhance the stability of anthocyanins. The stable system of soybean protein isolate-7s and delphinidin-3-O-glucoside complex (SPI-7s-D3G) was optimized using the Box–Behnken design at pH 2.8 and pH 6.8. Under the condition of pH 2.8, SPI-7s effectively improved the sunlight-thermal stabilities of delphinidin-3-O-glucoside (D3G). The thermal degradation of D3G conformed to the first order kinetics within 100 min, the negative enthalpy value and positive entropy value indicated that interaction was caused by electrostatic interaction, and the negative Gibbs free energy value reflected a spontaneous interaction between SPI-7s and D3G. The interaction of SPI-7s-D3G was evaluated by ultraviolet visible spectroscopy, circular dichroism spectroscopy and fluorescence spectroscopy. The results showed that the maximum absorption peak was redshifted with increasing the α-helix content and decreasing the β-sheet contents, and D3G quenched the intrinsic fluorescence of SPI-7s by static quenching. There was one binding site in the SPI-7s and D3G stable system. The secondary structure of SPI-7s had changed and the complex was more stable. The stabilized SPI-7s-D3G will have broad application prospects in functional foods.
Collapse
|
60
|
Bochnak-Niedźwiecka J, Szymanowska U, Kapusta I, Świeca M. Antioxidant Content and Antioxidant Capacity of the Protein-Rich Powdered Beverages Enriched with Flax Seeds Gum. Antioxidants (Basel) 2022; 11:582. [PMID: 35326232 PMCID: PMC8945751 DOI: 10.3390/antiox11030582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Powdered beverages produced from dried fruit and vegetables are new products whose properties may be tailored by adding efficient nutrients and functional ingredients. The analyses of low-molecular antioxidants and antioxidant properties as well as nutrient content and digestibility were tested in beverages enriched with lentil proteins (AGF) and flaxseed gum (FSG). A replacement of sprouted lentil flour with the AGF deteriorated the phenolic content. As a main source of phenolics and vitamin C, lyophilized parsley leaves and broccoli sprouts were recognized. (There was no clear effect of the FGS.) The highest content of phenolics was determined in the beverages with these additives without the AGS (c.a. 125 μg/g). The AGF significantly improved the ability to quench ABTS radicals and reduce power. The best results were for the beverages without the FSG. (The effect was enhanced by lyophilized fruit and green vegetables.) The lowest chelating power and ability to quench hydroxyl radicals were in the beverages based on the AGF (improvement by the FSG and green vegetables). The tailoring of beverages' recipes significantly increased protein content and did not affect nutrient digestibility. The modifications allow obtaining the beverages exhibiting multidirectional antioxidant properties, being a source of easily bioaccessible starch and proteins.
Collapse
Affiliation(s)
- Justyna Bochnak-Niedźwiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Urszula Szymanowska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszów University, Zelwerowicza Str. 4, 35-601 Rzeszow, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| |
Collapse
|
61
|
Rivera del Rio A, Boom RM, Janssen AEM. Effect of Fractionation and Processing Conditions on the Digestibility of Plant Proteins as Food Ingredients. Foods 2022; 11:870. [PMID: 35327292 PMCID: PMC8955167 DOI: 10.3390/foods11060870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Plant protein concentrates and isolates are used to produce alternatives to meat, dairy and eggs. Fractionation of ingredients and subsequent processing into food products modify the techno-functional and nutritional properties of proteins. The differences in composition and structure of plant proteins, in addition to the wide range of processing steps and conditions, can have ambivalent effects on protein digestibility. The objective of this review is to assess the current knowledge on the effect of processing of plant protein-rich ingredients on their digestibility. We obtained data on various fractionation conditions and processing after fractionation, including enzymatic hydrolysis, alkaline treatment, heating, high pressure, fermentation, complexation, extrusion, gelation, as well as oxidation and interactions with starch or fibre. We provide an overview of the effect of some processing steps for protein-rich ingredients from different crops, such as soybean, yellow pea, and lentil, among others. Some studies explored the effect of processing on the presence of antinutritional factors. A certain degree, and type, of processing can improve protein digestibility, while more extensive processing can be detrimental. We argue that processing, protein bioavailability and the digestibility of plant-based foods must be addressed in combination to truly improve the sustainability of the current food system.
Collapse
Affiliation(s)
| | | | - Anja E. M. Janssen
- Food Process Engineering, Wageningen University, 6700 AA Wageningen, The Netherlands; (A.R.d.R.); (R.M.B.)
| |
Collapse
|
62
|
Günal-Köroğlu D, Turan S, Capanoglu E. Interaction of lentil protein and onion skin phenolics: Effects on functional properties of proteins and in vitro gastrointestinal digestibility. Food Chem 2022; 372:130892. [PMID: 34607046 DOI: 10.1016/j.foodchem.2021.130892] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
The effect of protein-phenolic interactions on the functional properties of lentil protein and in vitro gastrointestinal digestibility in different systems (extract solution, protein-phenolic solution, and emulsion) was studied. The presence of phenolic compounds negatively affected the foaming and emulsion properties of lentil protein. During in vitro gastrointestinal digestion, total phenolic content (TPC) and antioxidant capacity of the samples were decreased with the presence of lentil protein at the initial phase, however, they were found to be the highest in emulsions at the intestinal phase. The amount of protocatechuic acid and phenolic acid derivative was increased at the intestinal phase, while that of other phenolic compounds was decreased. Quercetin was not detected at the intestinal phase in all systems, while its glycoside derivatives were determined, which were the highest in emulsions. Anthocyanins were also the highest in extract solution among all systems. Protein-phenolic interactions had a significant effect on functional properties of lentil proteins, and bioaccessibility or antioxidant capacity of phenolic compounds.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Semra Turan
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
63
|
Sun N, Sun B, Li C, Zhang J, Yang W. Effects of Different Pretreatment Methods and Dietary Factors on the Form and Bioavailability of Iodine in Laminaria japonica. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2021.2024313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nan Sun
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Bolun Sun
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
64
|
Ma Z, Cheng J, Jiao S, Jing P. Interaction of mulberry anthocyanins with soybean protein isolate: Effect on the stability of anthocyanins and protein
in vitro
digestion characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Jing Cheng
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
65
|
Wang Y, Zhang J, Zhang L. Anthocyanin-Dietary Proteins Interaction and Its Current Applications in Food Industry. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Zhang
- School of Food Science and Technology, The Food College of Shihezi University, Shihezi, Xinjiang, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
66
|
Huang X, Zhou X, Dai Q, Qin Z. Antibacterial, Antioxidation, UV-Blocking, and Biodegradable Soy Protein Isolate Food Packaging Film with Mangosteen Peel Extract and ZnO Nanoparticles. NANOMATERIALS 2021; 11:nano11123337. [PMID: 34947684 PMCID: PMC8707035 DOI: 10.3390/nano11123337] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
The objective of this study was to prepare a functional biodegradable soy protein isolate (SPI) food packaging film by introducing a natural antimicrobial agent, mangosteen peel extract (MPE, 10 wt% based on SPI), and different concentrations of functional modifiers, ZnO NPs, into the natural polymer SPI by solution casting method. The physical, antioxidant, antibacterial properties and chemical structures were also investigated. The composite film with 5% ZnO NPs had the maximum tensile strength of 8.84 MPa and the lowest water vapor transmission rate of 9.23 g mm/m2 h Pa. The composite film also exhibited excellent UV-blocking, antioxidant, and antibacterial properties against Escherichia coli and Staphylococcus aureus. The TGA results showed that the introduction of MPE and ZnO NPs improved the thermal stability of SPI films. The microstructure of the films was analyzed by SEM to determine the smooth surface of the composite films. ATR-FTIR and XPS analyses demonstrated the strong hydrogen bonding of SPI, MPE, and ZnO NPs in the films. The presence of ZnO NPs in the composite films was also proved by EDX and XRD. These results suggest that SPI/MPE/ZnO composite film is promising for food-active packaging to extend the shelf life of food products.
Collapse
Affiliation(s)
- Xi Huang
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
| | - Xin Zhou
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
| | - Qingyin Dai
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
| | - Zhiyong Qin
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Nanning 530000, China
- Correspondence: ; Tel.: +86-182-7710-5246
| |
Collapse
|
67
|
Cui Q, Dong Y, Zhang A, Wang X, Zhao XH. Multiple spectra analysis and calculation of the interaction between Anthocyanins and whey protein isolate. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Zhang Q, Cheng Z, Chen R, Wang Y, Miao S, Li Z, Wang S, Fu L. Covalent and non-covalent interactions of cyanidin-3- O-glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food Funct 2021; 12:10107-10120. [PMID: 34522929 DOI: 10.1039/d1fo01946e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, there is a need to explore the effects of different types of protein-anthocyanin complexations, as well as the possible changes in the nutrition and allergenicity of the formed complexes. Here, we systematically investigated the covalent and non-covalent interactions between cyanidin-3-O-glucoside (C3G) and two major milk proteins, α-casein (α-CN) and β-lactoglobulin (β-LG). Fluorescence quenching data showed that, under non-covalent conditions, C3G quenched the fluorescence of the two proteins via a static process, with the interaction forces being revealed; for covalent products, decreased fluorescence intensities were observed with red shifts in the λmax. Multiple spectroscopic analyses implied that C3G-addition induced protein structural unfolding through transitions between the random coil and ordered secondary components. With a two-stage simulated gastrointestinal (GI) digestion model, it was seen that covalent complexes, not their non-covalent counterparts, showed reduced protein digestibility, ascribed to structural changes resulting in the unavailability of enzyme cleaving sites. The GI digests displayed prominent 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation-scavenging abilities (3.8-11.1 mM Trolox equivalents per mL digest), in contrast to the markedly reduced 1,1-diphenyl-2-picrylhydrazyl radical-scavenging capacities. Additionally, covalent protein-C3G complexes, but not their non-covalent counterparts, showed lower IgE-binding levels in comparison to the native control. This study provides new understanding for the development of anthocyanin-milk protein systems as functional ingredients with health-beneficial properties.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Ruyan Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| | - Song Miao
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenxing Li
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, 266003, P.R. China
| | - Shunyu Wang
- Zhejiang Li Zi Yuan Food Co., LTD, Jinhua, 321031, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China.
| |
Collapse
|
69
|
Zhou X, Dai Q, Huang X, Qin Z. Preparation and characterizations of antibacterial–antioxidant film from soy protein isolate incorporated with mangosteen peel extract. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The mangosteen peel extract (MPE) was used to obtain soy protein isolate (SPI) films. The results show that MPE exhibited a high content of total phenolics and antioxidant activity. Moreover, the MPE can enhance the antibacterial–antioxidant properties, UV-visible light barrier properties, and water-resistant properties of the SPI films. The presence of MPE resulted in an increase in water vapor permeability and hydrophobicity. The extract addition also reduced the film’s crystallinity along with a decrease in the mechanical property and lowering of the maximum degradation temperature. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the polyphenols in MPE could interact with SPI through hydrogen bonds and hydrophobic interactions, and the addition of MPE changed the secondary structure of SPI with a decrease in β-sheets and an increase in β-turns and random coils. Scanning electron microscopy showed that all the films exhibited smooth and homogenous morphology on the surface and on some layers through cross-sectional images. Our results suggested that the MPE would be a promising ingredient to make SPI films used as an active packaging material.
Collapse
Affiliation(s)
- Xin Zhou
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Qingyin Dai
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Xi Huang
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| |
Collapse
|
70
|
Yan X, Zhang G, Zhao J, Ma M, Bao X, Zeng Z, Gong X, Yu P, Wen X, Gong D. Influence of phenolic compounds on the structural characteristics, functional properties and antioxidant activities of Alcalase-hydrolyzed protein isolate from Cinnamomum camphora seed kernel. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Wen-Qiong W, Jie-Long Z, Qian Y, Ji-Yang Z, Mao-Lin L, Rui-Xia G, Yujun H. Structural and compositional changes of whey protein and blueberry juice fermented using Lactobacillus plantarum or Lactobacillus casei during fermentation. RSC Adv 2021; 11:26291-26302. [PMID: 35479425 PMCID: PMC9037347 DOI: 10.1039/d1ra04140a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to improve the stability of the anthocyanins and phenolic acids of blueberry by forming hydrogen bonds or hydrophobic interactions with whey protein using lactic acid fermentation. The effects of the initial pH on the characteristics of the whey protein and blueberry juice system fermented using Lactobacillus plantarum and Lactobacillus casei were investigated. The color and total phenol and anthocyanin contents of the blueberry juice and whey protein system became stable after fermentation using Lactobacillus plantarum and Lactobacillus casei. Fluorescence measurements and Fourier transform infrared spectroscopy (FTIR) analysis reveal that the characteristics of whey protein and blueberry juice changed significantly after fermentation using Lactobacillus plantarum and Lactobacillus casei indicating the binding of anthocyanins or phenolic hydroxyl groups of blueberry to N-H, C-N and C[double bond, length as m-dash]O groups of whey protein. The α-helix content of whey protein and blueberry fermented using Lactobacillus plantarum alone decreased by 18% and β-sheet content increased by approximately 27% compared to whey protein fermented using Lactobacillus plantarum.
Collapse
Affiliation(s)
- Wang Wen-Qiong
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China +86-13951434088 +86-19895320620 +86-18752540896 +86-514-87986305 +86-514-87978128 +86-17372713301 +86-17755853963
- Weiwei Food & Beverage Co., Ltd Xuzhou 221114 Jiangsu China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University Yangzhou Jiangsu China
| | - Zhang Jie-Long
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China +86-13951434088 +86-19895320620 +86-18752540896 +86-514-87986305 +86-514-87978128 +86-17372713301 +86-17755853963
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Yu Qian
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China +86-13951434088 +86-19895320620 +86-18752540896 +86-514-87986305 +86-514-87978128 +86-17372713301 +86-17755853963
| | - Zhou Ji-Yang
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China +86-13951434088 +86-19895320620 +86-18752540896 +86-514-87986305 +86-514-87978128 +86-17372713301 +86-17755853963
| | - Lu Mao-Lin
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China +86-13951434088 +86-19895320620 +86-18752540896 +86-514-87986305 +86-514-87978128 +86-17372713301 +86-17755853963
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University Yangzhou Jiangsu China
| | - Gu Rui-Xia
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China +86-13951434088 +86-19895320620 +86-18752540896 +86-514-87986305 +86-514-87978128 +86-17372713301 +86-17755853963
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University Yangzhou Jiangsu China
| | - Huang Yujun
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China +86-13951434088 +86-19895320620 +86-18752540896 +86-514-87986305 +86-514-87978128 +86-17372713301 +86-17755853963
| |
Collapse
|
72
|
Li T, Wang L, Zhang X, Yu P, Chen Z. Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization. Food Chem 2021; 363:130367. [PMID: 34198143 DOI: 10.1016/j.foodchem.2021.130367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/03/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022]
Abstract
The complexation of rice glutelin fibrils (RGFs) with cyanidin-3-O-glucoside (C3G) at acidic condition was investigated. The RGFs at pH 3.5 had a greatest protective effect on the thermal stability of C3G. The binding of C3G for RGFs was exothermic and driven by hydrophobic and electrostatic interactions. The RGFs exhibited a stronger binding interaction with C3G than rice glutelin (RG), resulting from the exposure of hydrophobic groups and positive charges on the fibrils surface, and thus RGFs exhibited better protective effect on C3G. The interaction with C3G resulted in the rearrangement of polypeptide chain, thereby reducing the β-sheet content. The larger aggregates were observed in RG/RGFs-C3G complexes due to protein-polyphenols aggregation. It was noteworthy that the pre-formed RGFs were restructured into entangled aggregates due to the interaction. This study proposed a novel protein fibril to protect anthocyanins, expanding the application of anthocyanins as stable and functional ingredients in acidic food systems.
Collapse
Affiliation(s)
- Ting Li
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Xinxia Zhang
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Peibin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhengxing Chen
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
73
|
Wu D, Tang L, Duan R, Hu X, Geng F, Zhang Y, Peng L, Li H. Interaction mechanisms and structure-affinity relationships between hyperoside and soybean β-conglycinin and glycinin. Food Chem 2021; 347:129052. [PMID: 33482484 DOI: 10.1016/j.foodchem.2021.129052] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022]
Abstract
Hyperoside (HYP) is an important natural product that is widely distributed in fruits and whole grasses of various plants. It is also used by consumers as a healthy ingredient. This work explored the interaction mechanisms between HYP and two main soy proteins, namely, β-conglycinin (7S) and glycinin (11S), using computational simulation and multi-spectroscopic technology. In this study, the docking and dynamic simulation showed that HYP was stable in the hydrophobic pockets of the proteins. The conformation and microenvironment of 7S/11S also changed after binding to HYP. The binding of HYP to 7S/11S was a state quenching with a good affinity at 4 °C. This result was determined from the binding constant values of (1.995 ± 0.170) × 107 M-1 and (2.951 ± 0.109) × 107 M-1, respectively. The 7S/11S-HYP complex delineated here will provide a novel idea to construct an embedding and delivery system in improving the benefits of HYP for the development of high value-added food products.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China.
| | - Lan Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Ran Duan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Xia Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
74
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
75
|
Bing J, Xiao X, McClements DJ, Biao Y, Chongjiang C. Protein corona formation around inorganic nanoparticles: Food plant proteins-TiO2 nanoparticle interactions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106594] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
Shen Y, Zhao S, Liu Q, Jiang Y, Dong H, Feng W, Liu T, Xu H, Shao M. Investigation on the interaction of acrylamide with soy protein isolate: Exploring the binding mechanism in vitro. J Food Sci 2021; 86:2766-2777. [PMID: 33931852 DOI: 10.1111/1750-3841.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
Acrylamide (AA), which is a carcinogen in humans, has been a research focus in terms of food risk assessment. However, few published studies have explored protein strategies to reduce the health risks of AA. The objective of this study was to investigate the binding of AA with soy protein isolate (SPI) and elucidate the binding mechanism. The results showed that AA could bind with nontreated, heat-treated, high-pressure homogenization-treated, and ultrasound-treated SPI in vitro. Fourier-transform infrared spectroscopy suggested that secondary structure of SPI changed significantly after binding with AA in the nontreated and different treated groups. Moreover, fluorescence quenching experiments suggested that the quenching of SPI by AA was static quenching and hydrogen bonds, hydrophobic interactions, and van der Waals forces were involved in this process. PRACTICAL APPLICATION: The study of SPI and AA binding could provide a new perspective for reducing the bioaccessibility of AA in human body by using protein. The results showed that SPI could potentially be used as a novel health strategy to reduce the harm of AA in the human body.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sijia Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingbo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Heliang Dong
- Heilongjiang Institute of Quality Supervision and Testing, Harbin, China
| | - Wenxiao Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Tianxu Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Honghua Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Meili Shao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
77
|
Zahir M, Fogliano V, Capuano E. Soybean germination limits the role of cell wall integrity in controlling protein physicochemical changes during cooking and improves protein digestibility. Food Res Int 2021; 143:110254. [PMID: 33992360 DOI: 10.1016/j.foodres.2021.110254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Previous studies showed that in vitro digestibility of proteins in cooked beans is modulated by heat treatment and that the effect may be different whether proteins are heated in intact cotyledon or in a bean flour. In this study, germinated and non-germinated soybean cotyledons and flour were boiled at 100 °C for varying times (30, 90, or 180 min). After grinding, the level of trypsin inhibitors, protein aggregation, surface hydrophobicity, the secondary structure, and in vitro digestibility were studied. The presence of an intact cell wall during cooking increased protein denaturation temperature by about 10% and reduced the denaturation of trypsin inhibitors, and induced distinct changes in protein surface hydrophobicity and secondary structure. These physicochemical properties translated into an increment in protein degree of hydrolysis (DH, 72%) of protein cooked for 30 min as flour compared to proteins cooked in intact soybean tissues (64%). Increase in cooking times (90 and 180 min) resulted in limited improvement in the protein digestibility and changes in protein physicochemical properties for both boiled cotyledons and flour. Soybean germination resulted in distinct changes in protein physicochemical properties and higher protein DH% of raw soybean (61%) compared to non-germinated raw soybean (36%). An increase in protein digestibility of germinated soybean was also observed after boiling for both cotyledon and flour. However, significant differences in DH% were not observed between proteins boiled in intact cotyledon and in a flour. This work provides extra knowledge of the role of cellular integrity on protein properties in plant foods and suggests that germination or grinding before cooking may increase protein digestibility.
Collapse
Affiliation(s)
- Mostafa Zahir
- Food Quality and Design Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
78
|
Sui X, Zhang T, Jiang L. Soy Protein: Molecular Structure Revisited and Recent Advances in Processing Technologies. Annu Rev Food Sci Technol 2021; 12:119-147. [PMID: 33317319 DOI: 10.1146/annurev-food-062220-104405] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rising health concerns and increasing obesity levels in human society have led some consumers to cut back on animal protein consumption and switch to plant-based proteins as an alternative. Soy protein is a versatile protein supplement and contains well-balanced amino acids, making it comparable to animal protein. With sufficient processing and modification, the quality of soy protein can be improved above that of animal-derived proteins, if desired. The modern food industry is undergoing a dynamic change, with advanced processing technologies that can produce a multitude of foods and ingredients with functional properties from soy proteins, providing consumers with a wide variety of foods. This review highlights recent progress in soy protein processing technologies. Using the current literature, the processing-induced structural changes in soy protein are also explored. Furthermore, the molecular structure of soy protein, particularly the crystal structures of β-conglycinin and glycinin, is comprehensively revisited.
Collapse
Affiliation(s)
- Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| |
Collapse
|
79
|
Wang J, Wang J, Kranthi Vanga S, Raghavan V. Influence of high-intensity ultrasound on the IgE binding capacity of Act d 2 allergen, secondary structure, and In-vitro digestibility of kiwifruit proteins. ULTRASONICS SONOCHEMISTRY 2021; 71:105409. [PMID: 33341536 PMCID: PMC8187882 DOI: 10.1016/j.ultsonch.2020.105409] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 05/02/2023]
Abstract
Kiwifruit can trigger allergic reactions that can lead to death, causing public health concerns worldwide. In the present study, we treated kiwifruit samples with high-intensity ultrasound (20 kHz, 400 W, 50% duty cycle) for 0 to 16 min to evaluate its effect on the IgE binding capacity of kiwifruit allergen Act d 2, secondary structure and in-vitro digestibility of kiwifruit proteins. The changes in the protein solubility and microstructures of kiwifruit were also analyzed. The results showed that treatment with powerful ultrasound caused a significant disruption in the microstructure of kiwifruit tissues, leading to the changes in the secondary structures of proteins, including a loss of alpha-helixes and an increase in beta-sheet structures. These structural changes were due to the ultrasound treatment, especially 16 min of treatment, resulted in a 50% reduction in Act d 2 allergen content and significantly improved in-vitro digestibility up to 62% from the initial level of 35%. Furthermore, the solubility of the total proteins present in kiwifruit samples was significantly decreased by 20% after 16-min ultrasound processing. The results of this work showed that high-intensity ultrasound treatment has a potential application in reducing the allergenicity of kiwifruit or related products.
Collapse
Affiliation(s)
- Jin Wang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Sai Kranthi Vanga
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
80
|
Guo Y, Bao YH, Sun KF, Chang C, Liu WF. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
81
|
Ou JLS, Yang D, Liu MH. Effects of Anthocyanins in Composite Meals on Cardiometabolic Outcomes-A Systematic Review of Randomized Controlled Feeding Trials. Nutrients 2020; 12:E3781. [PMID: 33317160 PMCID: PMC7763924 DOI: 10.3390/nu12123781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating epidemiological evidence suggests that anthocyanin intake is associated with reduced risks of cardiometabolic disorders, highlighting the importance of incorporating the phytochemical in our diets. Numerous food-based intervention studies have examined, in controlled meal settings, the role of anthocyanin on cardiometabolic health; but their effects have not been systematically summarized. This study aims to systematically review and summarize the effects of anthocyanin consumption with composite meals on cardiometabolic health from randomized controlled feeding trials. A systematic literature search for relevant human nutritional intervention studies was performed using PubMed, Embase, Cochrane Library, CINAHL Plus with Full Text, and Scopus databases. The Cochrane Risk of Bias tool was used to assess the study quality. Eighteen articles involving 371 participants were included in this review. Consistent improvements from anthocyanin intake were found in glycemic, gastric inhibitory peptide (GIP), interleukin-6 (IL-6), and oxygen radical absorbance capacity (ORAC) responses. Anthocyanin intake did not significantly affect other markers of energy metabolism, vascular functions, oxidative stress and antioxidant status, as well as inflammatory responses. Inconsistencies in successful outcomes between epidemiological studies and included interventions were largely attributed to matrix effects, which may impede the bioaccessibility of anthocyanins and consequently, limiting its health benefits when co-delivered with some foods.
Collapse
Affiliation(s)
- Jun Leong Sean Ou
- Division of Endocrinology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (J.L.S.O.); (D.Y.)
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| | - Dimeng Yang
- Division of Endocrinology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (J.L.S.O.); (D.Y.)
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
82
|
Khalifa I, Zhu W, Nawaz A, Li K, Li C. Microencapsulated mulberry anthocyanins promote the in vitro-digestibility of whey proteins in glycated energy-ball models. Food Chem 2020; 345:128805. [PMID: 33310260 DOI: 10.1016/j.foodchem.2020.128805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
The effects of mulberry anthocyanins (MAs) on the digestibility of whey proteins (WP) in freshly-prepared and stored energy balls were studied. Results showed that MAs increased digestibility of the energy balls by increasing their hydrolysis-degree, soluble peptides-fractions, and decreasing their particle's size and agglomeration. To understand the mechanism of the promoting and/or inhibiting digestive effects of MAs, secondary structure alterations and binding of WP-MAs-mixtures were therefore measured. Results revealed that MAs could noncovalently/covalently interact with WP and form WP-MAs-adducts. This interaction seemed to be responsible for the alterations in the secondary structure of WP which could promote the digestibility of the energy balls subsequently. MAs also partially unfolded the structure of digested-WP through fluctuating their α-helix and β-sheet. It was concluded that the unfolding in WP-structure induced by MAs-interactions might increase accessibility of the peptide bonds to the digestive enzymes and consequentially facilitate the protein's digestibility in the energy balls.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, 13736, Moshtohor, Benha University, Egypt
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
83
|
Lan T, Dong Y, Zheng M, Jiang L, Zhang Y, Sui X. Complexation between soy peptides and epigallocatechin-3-gallate (EGCG): Formation mechanism and morphological characterization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
84
|
Functional properties and structural changes of rice proteins with anthocyanins complexation. Food Chem 2020; 331:127336. [DOI: 10.1016/j.foodchem.2020.127336] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023]
|
85
|
Li J, Wang B, He Y, Wen L, Nan H, Zheng F, Liu H, Lu S, Wu M, Zhang H. A review of the interaction between anthocyanins and proteins. FOOD SCI TECHNOL INT 2020; 27:470-482. [PMID: 33059464 DOI: 10.1177/1082013220962613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anthocyanins have good physiological functions, but they are unstable. The interaction between anthocyanins and proteins can improve the stability, nutritional and functional properties of the complex. This paper reviews the structural changes of complex of anthocyanins interacting with proteins from different sources. By circular dichroism (CD) spectroscopy, it was found that the contents of α-helix (from 15.90%-42.40% to 17.60%-52.80%) or β-sheet (from 29.00%-50.00% to 29.40%-57.00%) of the anthocyanins-proteins complex increased. Fourier transform infrared spectroscopy showed that the regions of amide I (from 1627.87-1641.41 cm-1 to 1643.34-1651.02 cm-1) and amide II (from 1537.00-1540.25 cm-1 to 1539.00-1543.75 cm-1) of anthocyanins-proteins complex were shifted. Fluorescence spectroscopy showed that the fluorescence intensity of the complex decreased from 150-5100 to 40-3900 a.u. The thermodynamic analysis showed that there were hydrophobic interactions, electrostatic and hydrogen bonding interactions between anthocyanins and proteins. The kinetic analysis showed that the half-life and activation energy of the complex increased. The stability, antioxidant, digestion, absorption, and emulsification of the complex were improved. This provides a reference for the study and application of anthocyanins and proteins interactions.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bixiang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Hailong Nan
- Vitis amurensis Rupr, Industry Service Center of Liuhe County, Tonghua, China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Siyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Manyu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Haoran Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
86
|
Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
87
|
Cong J, Cui J, Zhang H, Dzah CS, He Y, Duan Y. Binding affinity, antioxidative capacity and in vitro digestion of complexes of grape seed procyanidins and pork, chicken and fish protein. Food Res Int 2020; 136:109530. [PMID: 32846594 DOI: 10.1016/j.foodres.2020.109530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
Studies have reported that procyanidins can interact with proteins, thereby affecting their structure, function, and bioaccessibility. In this paper, we investigated the interaction between grape seeds procyanidins (GSP) and animal source protein (from pig, chicken and fish), and the effects on the protein structure, antioxidant capacity and bioaccessibility of GSP. Fluorescence results showed that the binding constant of GSP-protein complex was 10-104 M-1, and the main forces were van der Waals force, hydrogen bonds and hydrophobic interactions. The antioxidant capacity of GSP was masked by GSP-protein complexes formed. The circular dichroism indicated that GSP had an effect on the content of α-helix and β-sheet in the secondary structure of pork and chicken proteins, but had little effect on the secondary structure of fish protein. The results showed that the protein can bind to GSP and affect its antioxidant activity and bioaccessibility. This study can provide reference for further study on the digestion and absorption of the complexes and offer health guidance in the preparation of diets.
Collapse
Affiliation(s)
- Jingli Cong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiemei Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Courage Sedem Dzah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanqing He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
88
|
Zhang Q, Cheng Z, Wang Y, Fu L. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit Rev Food Sci Nutr 2020; 61:3589-3615. [DOI: 10.1080/10408398.2020.1803199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
89
|
Stübler AS, Lesmes U, Juadjur A, Heinz V, Rauh C, Shpigelman A, Aganovic K. Impact of pilot-scale processing (thermal, PEF, HPP) on the stability and bioaccessibility of polyphenols and proteins in mixed protein- and polyphenol-rich juice systems. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
90
|
Effects of β-cyclodextrin, whey protein, and soy protein on the thermal and storage stability of anthocyanins obtained from purple-fleshed sweet potatoes. Food Chem 2020; 320:126655. [DOI: 10.1016/j.foodchem.2020.126655] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
|
91
|
Fabrication and characterization of water-soluble phytosterol ester nanodispersion by emulsification-evaporation combined ultrasonic method. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
92
|
Ju M, Zhu G, Huang G, Shen X, Zhang Y, Jiang L, Sui X. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105329] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
93
|
A Study of Structural Change During In Vitro Digestion of Heated Soy Protein Isolates. Foods 2019; 8:foods8120594. [PMID: 31756907 PMCID: PMC6963817 DOI: 10.3390/foods8120594] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Use of soy protein isolate (SPI) as the encapsulating material in emulsions is uncommon due to its low solubility and emulsification potential. The aim of this study was to improve these properties of SPI via heat treatment-induced modifications. We modified SPI under various heating conditions and demonstrated the relationship between structure and in vitro digestibility in simulated gastric fluid by means of Sodium Dodecyl Sulphide-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Raman spectroscopy. It was found that the degree of hydrolysis (DH) of SPI increased and then decreased upon increasing exposure to heat. Different subunits of conglycinin were digested and degraded by pepsin. Heat treatment improved digestion characteristics that would reduce e the unnecessary loss of protein, offering potential for the efficient delivery of nutrients in nanoemulsions. These results could have significant relevance for research groups that are interested in the biological interactions and activity of functional SPI.
Collapse
|
94
|
Study on condition of ultrasound-assisted thermo-alkali-modified peanut protein embedding curcumin for nanoparticles. Journal of Food Science and Technology 2019; 57:1049-1060. [PMID: 32123426 DOI: 10.1007/s13197-019-04139-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
This study investigated the effects of ultrasound-assisted thermo-alkali modification on the molecular structure of peanut protein. Further, the preparation conditions involved in embedding curcumin by the modified pea protein were also studied. It was found that within the pH range of 7 < pH < 11, with an increase in pH, the content of free sulfhydryl group in peanut protein isolate gradually increased from 10.35 ± 0.63 μmol/g (pH = 7) to 18.26 ± 0.93 μmol/g (pH = 10); and the content of disulfide bonds decreased from 44.62 ± 0.48 μmol/g (pH = 7) to 34.26 ± 2.03 μmol/g (pH = 11). In the ultrasonic power range (P < 300 W), with an increase in power, the content of free mercapto group in peanut protein isolate gradually increased from 12.44 ± 0.73 μmol/g to 19.46 ± 0.24 μmol/g (P = 250 W); and the content of disulfide bonds decreased from 42.29 ± 1.24 μmol/g to 33.28 ± 0.64 μmol/g (P = 300 W). Within the temperature range of 70 °C < T < 90 °C, with an increase in temperature, the content of free sulfhydryl group in peanut protein isolate gradually increased from 10.35 ± 0.94 μmol/g (T = 70 °C) to 19.67 ± 0.68 μmol/g (T = 90 °C), and the content of disulfide bonds decreased from 45.02 ± 2.84 μmol/g (T = 70 °C) to 34.26 ± 2.03 μmol/g (T = 90 °C). Response surface test was used to optimize the preparation conditions of nanoparticles from curcumin. The results showed that the optimum parameters of ultrasonic-assisted modification of peanut protein embedding curcumin were pH = 9.8, heating temperature T = 90 °C, ultrasonic power Q = 225 W, and heating time S = 21 min. Under these conditions, the embedding rate of curcumin reached 83.27 + 1.06%, the ABTS+ scavenging activity generally decreases with time over the 2 days period measured in PPI solution and PPI nanoparticles (PPN), the ABTS+ scavenging activity decreased from 40.8%, 52.2% and 67.3% to 27.1%, 39.0% and 60.5%, respectively. Compared with pure curcumin, the antioxidant activity was increased at presence of PPI.
Collapse
|
95
|
Wang C, Xie Y. Interaction of Protein Isolate with Anthocyanin Extracted from Black Soybean and Its Effect on the Anthocyanin Stability. J Food Sci 2019; 84:3140-3146. [PMID: 31613008 DOI: 10.1111/1750-3841.14816] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
The interactions between black soybean protein isolate (B-SPI) and cyanidin 3-O-glucoside (C3G), anthocyanin extracted from black soybean coat was investigated under neutral conditions. The fluorescence spectra showed that C3G had fluorescence quenching effects on B-SPI. Thermodynamic parameters showed that ∆G < 0, which demonstrated that the binding was a spontaneous reaction. Since ΔH > 0 and ΔS > 0, the interactions between C3G and B-SPI was mainly hydrophobic interactions. Fourier infrared spectroscopy results suggested that the contents of α-helix and β-sheet structure showed an increasing trend, whereas the β-angle content displayed a decreasing trend. The degradation of C3G followed first-order kinetics at 85 °C and 100 °C. After the interactions with B-SPI, the degradation rate constant was decreased and the half-life of C3G was prolonged from 70.25 ± 0.90 min to 175.64 ± 38.04 min at 85 °C, from 62.68 ± 1.1 min to 72.51 ± 2.5 min at 100 °C (p < 0.05). The results indicated that the interactions of B-SPI and C3G improved the thermal stability of C3G under heating conditions.
Collapse
Affiliation(s)
- Chen Wang
- School of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, Henan, 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, People's Republic of China
| | - Yanli Xie
- School of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, Henan, 450001, People's Republic of China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
96
|
Lang Y, Li E, Meng X, Tian J, Ran X, Zhang Y, Zang Z, Wang W, Li B. Protective effects of bovine serum albumin on blueberry anthocyanins under illumination conditions and their mechanism analysis. Food Res Int 2019; 122:487-495. [DOI: 10.1016/j.foodres.2019.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 01/08/2023]
|
97
|
Ren C, Xiong W, Li J, Li B. Comparison of binding interactions of cyanidin-3-O-glucoside to β-conglycinin and glycinin using multi-spectroscopic and thermodynamic methods. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
98
|
Jiang L, Liu Y, Li L, Qi B, Ju M, Xu Y, Zhang Y, Sui X. Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate. Food Res Int 2019; 120:603-609. [DOI: 10.1016/j.foodres.2018.11.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/30/2022]
|
99
|
Ma Z, Prasanna G, Jiang L, Jing P. Molecular interaction of cyanidin-3-O-glucoside with ovalbumin: insights from spectroscopic, molecular docking and in vitro digestive studies. J Biomol Struct Dyn 2019; 38:1858-1867. [DOI: 10.1080/07391102.2019.1618735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhen Ma
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linlei Jiang
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|