51
|
Gagliardi A, Paolino D, Costa N, Fresta M, Cosco D. Zein- vs PLGA-based nanoparticles containing rutin: A comparative investigation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111538. [DOI: 10.1016/j.msec.2020.111538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
|
52
|
Andrade RGD, Reis B, Costas B, Lima SAC, Reis S. Modulation of Macrophages M1/M2 Polarization Using Carbohydrate-Functionalized Polymeric Nanoparticles. Polymers (Basel) 2020; 13:polym13010088. [PMID: 33379389 PMCID: PMC7796279 DOI: 10.3390/polym13010088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Exploiting surface endocytosis receptors using carbohydrate-conjugated nanocarriers brings outstanding approaches to an efficient delivery towards a specific target. Macrophages are cells of innate immunity found throughout the body. Plasticity of macrophages is evidenced by alterations in phenotypic polarization in response to stimuli, and is associated with changes in effector molecules, receptor expression, and cytokine profile. M1-polarized macrophages are involved in pro-inflammatory responses while M2 macrophages are capable of anti-inflammatory response and tissue repair. Modulation of macrophages’ activation state is an effective approach for several disease therapies, mediated by carbohydrate-coated nanocarriers. In this review, polymeric nanocarriers targeting macrophages are described in terms of production methods and conjugation strategies, highlighting the role of mannose receptor in the polarization of macrophages, and targeting approaches for infectious diseases, cancer immunotherapy, and prevention. Translation of this nanomedicine approach still requires further elucidation of the interaction mechanism between nanocarriers and macrophages towards clinical applications.
Collapse
Affiliation(s)
- Raquel G. D. Andrade
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Bruno Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence:
| | - Salette Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
| |
Collapse
|
53
|
Influence of Various Model Compounds on the Rheological Properties of Zein-Based Gels. Molecules 2020; 25:molecules25143174. [PMID: 32664560 PMCID: PMC7397198 DOI: 10.3390/molecules25143174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
The controlled release of a compound entrapped in a biocompatible formulation is a sought-after goal in modern pharmaceutical technology. Zein is a hydrophobic protein which has several advantageous properties that make it suitable for use as a biocompatible and degradable material under physiological conditions. It is, therefore, proposed for different biomedical and pharmaceutical applications. In particular, due to its gelling properties, it can be used to form a polymeric network able to preserve biomolecules from harsh environments. The current study was designed to investigate the influence of different probes on the rheological properties of gels made up of zein, in order to characterize the systems as a function of the polymer concentration. Four model compounds characterized by different physico-chemical properties were entrapped in zein gels, and different behaviors (viscoelastic or pronounced solid-like characteristics) of the systems were observed. Zein-based gels showed various release profiles of the encapsulated compounds, suggesting that there are different interaction rates between the probes and the polymeric matrix.
Collapse
|
54
|
A new design for obtaining of white zein micro- and nanoparticles powder: antisolvent-dialysis method. Food Sci Biotechnol 2020; 29:619-629. [PMID: 32419960 DOI: 10.1007/s10068-019-00702-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
The objective of this work was propose antisolvent-dialysis as a new, easy, one-step and reproducible method for obtaining white zein micro- and nanoparticles powder. Firstly, the study by SEM of white zein powder predicted micro- and nanoparticles with spherical morphology and average diameters of 243.2 ± 94.5 nm for nanoparticles and 0.74 ± 0.2 μm for microparticles. UV-Vis predicted lower absorbance of 250-500 nm for white zein powder compared to commercial yellow zein powder. FT-IR showed shifting of the main bands to the right, due to changes in particle-shaped microstructure that acquires white zein powder compared to yellow zein powder. In TGA white zein powder showed a decomposition range from 214 to 400 °C, while yellow zein powder from 240 to 400 °C. Therefore, antisolvent-dialysis is new method to obtain white zein micro- and nanoparticles with potential applications such as polymer matrix and white natural coloring.
Collapse
|
55
|
Liu Q, Chen J, Qin Y, Jiang B, Zhang T. Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostilbene: Preparation, characterization, physicochemical stability, and formation mechanism. Int J Biol Macromol 2020; 158:461-470. [PMID: 32348858 DOI: 10.1016/j.ijbiomac.2020.04.128] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/05/2020] [Accepted: 04/18/2020] [Indexed: 12/21/2022]
Abstract
The objective of this work is to fabricate zein/fucoidan composite nanoparticles for the delivery of pterostilbene, a hydrophobic nutraceutical with diverse beneficial biological activities. Pterostilbene-encapsulated zein/fucoidan composite nanoparticles were prepared using an anti-solvent precipitation method. The fucoidan levels affected the physicochemical properties of the composite nanoparticles. When the zein to fucoidan mass ratio was 10:1, 5:1, 2:1, or 1:1, the prepared zein/fucoidan nanoparticles were stable, and these nanoparticles showed higher pterostilbene encapsulation efficiency than did zein nanoparticles. Fucoidan-stabilized zein nanoparticles exhibited globular structure with average diameters of 120-150 nm. Fourier-transform infrared spectroscopy, X-ray diffraction, and fluorescence spectrum analysis confirmed that the formation of composite nanoparticles was mainly driven by electrostatic, hydrogen-bonding, and hydrophobic interactions between pterostilbene, zein, and fucoidan. Furthermore, the photochemical stability of pterostilbene encapsulated in zein/fucoidan nanoparticles was markedly better than that of pterostilbene loaded in zein nanoparticles or unencapsulated pterostilbene. Zein/fucoidan nanoparticles provided a better controlled release of pterostilbene than did zein nanoparticles under simulated gastrointestinal conditions. Moreover, the cytotoxicity assay demonstrated that zein/fucoidan nanoparticles were nontoxic to Caco-2, HK-2, and L-02 cells. Based on our results, the zein/fucoidan nanoparticles may be a promising delivery carrier for the encapsulation, protection, and release of pterostilbene.
Collapse
Affiliation(s)
- Qianyuan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
56
|
Zein Beta-Cyclodextrin Micropowders for Iron Bisglycinate Delivery. Pharmaceutics 2020; 12:pharmaceutics12010060. [PMID: 31940787 PMCID: PMC7023128 DOI: 10.3390/pharmaceutics12010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Given the limited number of materials available to design delivery platforms for nutrients, the rational combination of raw materials already approved as food ingredients and their processing through nano-micro technology can offer a unique tool for innovation. Here, we propose a nano-in-micro strategy to produce powders based on the hydrophobic protein zein, useful for the oral delivery of a hydrophilic iron source (iron bisglycinate) in anaemic patients. Iron-loaded powders were prepared through a two-step strategy consisting in the formation of a zein pseudolatex followed by a spray-drying step. To extend the manipulation space for zein and entrap iron bisglycinate, β-cyclodextrin (βCD) was selected as helping excipient. Addition of βCD allowed iron loading in the pseudolatex and greatly increased product yields after the drying process as compared to zein alone. Iron-loaded micro-sized powders were characterised by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the role of βCD as a compatibilizer for the zein-iron system. Remarkably, micropowders released only 20% of FeBIS in a simulated gastric fluid, whereas release in a simulated intestinal fluid was almost completed in 7 h. In summary, βCD association to zein is a novel strategy to expand applications in the oral delivery of iron bisglycinate and, prospectively, to micronutrient chelates.
Collapse
|
57
|
Bautista GFM, Vidallon MLP, Salamanez KC, Rodriguez EB. Nanodelivery system based on zein-alginate complexes enhances in vitro chemopreventive activity and bioavailability of pomelo [Citrus maxima (Burm.) Merr.] seed limonoids. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
58
|
Singh BG, Das RP, Kunwar A. Protein: a versatile biopolymer for the fabrication of smart materials for drug delivery. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1671-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
59
|
Rodríguez-Félix F, Del-Toro-Sánchez CL, Javier Cinco-Moroyoqui F, Juárez J, Ruiz-Cruz S, López-Ahumada GA, Carvajal-Millan E, Castro-Enríquez DD, Barreras-Urbina CG, Tapia-Hernández JA. Preparation and Characterization of Quercetin-Loaded Zein Nanoparticles by Electrospraying and Study of In Vitro Bioavailability. J Food Sci 2019; 84:2883-2897. [PMID: 31553062 DOI: 10.1111/1750-3841.14803] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Quercetin is a hydrophobic flavonoid with high antioxidant activity. However, for biological applications, the bioavailability of quercetin is low due to physiological barriers. For this reason, an alternative is the protection of quercetin in matrices of biopolymers as zein. The objective of this work was to prepare and characterize quercetin-loaded zein nanoparticles by electrospraying and its study of in vitro bioavailability. The physicochemical parameters such as viscosity, density, and electrical conductivity of zein solutions showed a dependence of the ethanol concentration. In addition, rheological parameters demonstrated that solutions of zein in aqueous ethanol present Newtonian behavior, rebounding in the formation of nanoparticles by electrospraying, providing spherical, homogeneous, and compact morphologies, mainly at a concentration of 80% (v/v) of ethanol and of 5% (w/v) of zein. The size and shape of quercetin-loaded zein nanoparticles were studied by transmission electron microscopy (TEM), observing that it was entrapped, distributed throughout the nanoparticle of zein. Analysis by Fourier transform-infrared (FT-IR) of zein nanoparticles loaded with quercetin revealed interactions via hydrogen bonds. The efficacy of zein nanoparticles to entrap quercetin was particularly high for all quercetin concentration evaluated in this work (87.9 ± 1.5% to 93.0 ± 2.6%). The in vitro gastrointestinal release of trapped quercetin after 240 min was 79.1%, while that for free quercetin was 99.2%. The in vitro bioavailability was higher for trapped quercetin (5.9%) compared to free quercetin (1.9%), than of gastrointestinal digestion. It is concluded, that the electrospraying technique made possible the obtention of quercitin-loaded zein nanoparticles increasing their bioavailability. PRACTICAL APPLICATION: This type of nanosystems can be used in the food and pharmaceutical industry. Quercetin-loaded zein nanoparticles for its improvement compared to free quercetin can be used to decrease the prevalence of chronic degenerative diseases by increasing of the bioavailability of quercetin in the bloodstream. Other application can be as an antioxidant system in functional foods or oils to increase shelf life.
Collapse
Affiliation(s)
- Francisco Rodríguez-Félix
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Francisco Javier Cinco-Moroyoqui
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Josué Juárez
- Dept. of Physics, Univ. of Sonora, Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Saúl Ruiz-Cruz
- Dept. of Biotechnology and Food Science, Inst. Technology of Sonora, 5 de febrero #818 sur, Colonia Centro, 85000, Ciudad Obregón, Sonora, Mexico
| | - Guadalupe Amanda López-Ahumada
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development A.C., Carretera a La Victoria KM 0.6, 83304, Hermosillo, Sonora, México
| | - Daniela Denisse Castro-Enríquez
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - Carlos Gregorio Barreras-Urbina
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| | - José Agustín Tapia-Hernández
- Dept. of Research and Posgraduate in Food (DIPA), Univ. of Sonora. Blvd. Luis Encinas y Rosales, S/N, Colonia Centro, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
60
|
Tran PHL, Duan W, Lee BJ, Tran TTD. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int J Pharm 2019; 569:118614. [PMID: 31415877 DOI: 10.1016/j.ijpharm.2019.118614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
In recent years, various oral dosage forms using biomaterials have been developed to deliver drugs to the colon for therapy due to the advantages of local treatment and its ideal location for drug delivery. To achieve site-specific delivery, the complete drug should be released in the colon, while the drug must be protected or their delivery minimized in the stomach and small intestine. The use of natural or synthetic polymers has been reported for these purposes. The roles of zein in drug delivery have been identified with various types of formulations for improving bioavailability, controlled drug release and targeted delivery. Although zein has been demonstrated as a potential material for pharmaceutical applications, a review of zein in the gastrointestinal tract for stabilizing drug- and colon-specific delivery is still missing. In the present review, we aim to provide typical strategies for using zein in formulations to minimize drug release/ensure drug protection in the upper part of the gastrointestinal tract. Furthermore, effective fabrications or modifications for drug release in the colon will be highlighted. This primary resource of related methods of using zein in the gastrointestinal tract will advance technologies for using it as a natural polymer for drug delivery.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Wei Duan
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
61
|
Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
62
|
Tran PH, Duan W, Lee BJ, Tran TT. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566:557-564. [DOI: 10.1016/j.ijpharm.2019.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|
63
|
Ngo HV, Tran PH, Lee BJ, Tran TT. The roles of a surfactant in zein-HPMC blend solid dispersions for improving drug delivery. Int J Pharm 2019; 563:169-173. [DOI: 10.1016/j.ijpharm.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
|
64
|
Antioxidant and Anti-Diabetic Activities of Polysaccharides from Guava Leaves. Molecules 2019; 24:molecules24071343. [PMID: 30959759 PMCID: PMC6479919 DOI: 10.3390/molecules24071343] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Guava (Psidium guajava L., Myrtaceae) leaves have been used as a folk herbal tea to treat diabetes for a long time in Asia and North America. In this study, we isolated polysaccharides from guava leaves (GLP), and evaluated its antioxidant activity in vitro and anti-diabetic effects on diabetic mice induced by streptozotocin combined with high-fat diet. The results indicated that GLP exhibited good DPPH, OH, and ABTS free-radical scavenging abilities, and significantly lowered fasting blood sugar, total cholesterol, total triglycerides, glycated serum protein, creatinine, and malonaldehyde. Meanwhile, it significantly increased the total antioxidant activity and superoxide dismutase (SOD) enzyme activity in diabetic mice, as well as ameliorated the damage of liver, kidney, and pancreas. Thus, polysaccharides from guava leaves could be explored as a potential antioxidant or anti-diabetic agents for functional foods or complementary medicine.
Collapse
|
65
|
Tapia‐Hernández JA, Del‐Toro‐Sánchez CL, Cinco‐Moroyoqui FJ, Ruiz‐Cruz S, Juárez J, Castro‐Enríquez DD, Barreras‐Urbina CG, López‐Ahumada GA, Rodríguez‐Félix F. Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process. J Food Sci 2019; 84:818-831. [DOI: 10.1111/1750-3841.14486] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- José Agustín Tapia‐Hernández
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Carmen Lizette Del‐Toro‐Sánchez
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Francisco Javier Cinco‐Moroyoqui
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Saúl Ruiz‐Cruz
- Dept. of Biotechnology and Food ScienceInst. Technol. of Sonora 5 de febrero #818 sur, Colonia Centro 85000 Ciudad Obregón Sonora Mexico
| | - Josué Juárez
- Dept. of PhysicsUniv. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Daniela Denisse Castro‐Enríquez
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Carlos Gregorio Barreras‐Urbina
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Guadalupe Amanda López‐Ahumada
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Francisco Rodríguez‐Félix
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| |
Collapse
|
66
|
Vozza G, Khalid M, Byrne HJ, Ryan SM, Frias JM. Nutraceutical formulation, characterisation, and in-vitro evaluation of methylselenocysteine and selenocystine using food derived chitosan:zein nanoparticles. Food Res Int 2019; 120:295-304. [PMID: 31000242 DOI: 10.1016/j.foodres.2019.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/18/2022]
Abstract
Selenoamino acids (SeAAs) have been shown to possess antioxidant and anticancer properties. However, their bioaccessibility is low and they may be toxic above the recommended nutritional intake level, thus improved targeted oral delivery methods are desirable. In this work, the SeAAs, Methylselenocysteine (MSC) and selenocystine (SeCys2) were encapsulated into nanoparticles (NPs) using the mucoadhesive polymer chitosan (Cs), via ionotropic gelation with tripolyphosphate (TPP) and the NPs produced were then coated with zein (a maize derived prolamine rich protein). NPs with optimized physicochemical properties for oral delivery were obtained at a 6: 1 ratio of Cs:TPP, with a 1:0.75 mass ratio of Cs:zein coating (diameter ~260 nm, polydispersivity index ~0.2, zeta potential >30 mV). Scanning Electron Microscopy (SEM) analysis showed that spheroidal, well distributed particles were obtained. Encapsulation Efficiencies of 80.7% and 78.9% were achieved, respectively, for MSC and SeCys2 loaded NPs. Cytotoxicity studies of MSC loaded NPs showed no decrease in cellular viability in either Caco-2 (intestine) or HepG2 (liver) cells after 4 and 72 h exposures. For SeCys2 loaded NPs, although no cytotoxicity was observed in Caco-2 cells after 4 h, a significant reduction in cytotoxicity was observed, compared to pure SeCys2, across all test concentrations in HepG2 after 72 h exposure. Accelerated thermal stability testing of both loaded NPs indicated good stability under normal storage conditions. Lastly, after 6 h exposure to simulated gastrointestinal tract environments, the sustained release profile of the formulation showed that 62 ± 8% and 69 ± 4% of MSC and SeCys2, had been released from the NPs respectively.
Collapse
Affiliation(s)
- Giuliana Vozza
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Minna Khalid
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Sinéad M Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 7, Ireland
| | - Jesus M Frias
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| |
Collapse
|
67
|
Jampilek J, Kos J, Kralova K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E296. [PMID: 30791492 PMCID: PMC6409737 DOI: 10.3390/nano9020296] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Dietary supplements and foods for special medical purposes are special medical products classified according to the legal basis. They are regulated, for example, by the European Food Safety Authority and the U.S. Food and Drug Administration, as well as by various national regulations issued most frequently by the Ministry of Health and/or the Ministry of Agriculture of particular countries around the world. They constitute a concentrated source of vitamins, minerals, polyunsaturated fatty acids and antioxidants or other compounds with a nutritional or physiological effect contained in the food/feed, alone or in combination, intended for direct consumption in small measured amounts. As nanotechnology provides "a new dimension" accompanied with new or modified properties conferred to many current materials, it is widely used for the production of a new generation of drug formulations, and it is also used in the food industry and even in various types of nutritional supplements. These nanoformulations of supplements are being prepared especially with the purpose to improve bioavailability, protect active ingredients against degradation, or reduce side effects. This contribution comprehensively summarizes the current state of the research focused on nanoformulated human and veterinary dietary supplements, nutraceuticals, and functional foods for special medical purposes, their particular applications in various food products and drinks as well as the most important related guidelines, regulations and directives.
Collapse
Affiliation(s)
- Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia.
| | - Jiri Kos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia.
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|