51
|
Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem 2020; 80:108360. [PMID: 32163821 PMCID: PMC7242157 DOI: 10.1016/j.jnutbio.2020.108360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
The metabolism of macro- and micronutrients is a complex and highly regulated biological process. An imbalance in the metabolites and their signaling networks can lead to nonresolving inflammation and consequently to the development of chronic inflammatory-associated diseases. Therefore, identifying the accumulated metabolites and altered pathways during inflammatory disorders would not only serve as "real-time" markers but also help in the development of nutritional therapeutics. In this review, we explore recent research that has delved into elucidating the effects of carbohydrate/calorie restriction, protein malnutrition, lipid emulsions and micronutrient deficiencies on metabolic health and inflammation. Moreover, we describe the integrated stress response in terms of amino acid starvation and lipemia and how this modulates new age diseases such as inflammatory bowel disease and atherosclerosis. Lastly, we explain the latest research on metaflammation and inflammaging. This review focuses on multiple signaling pathways, including, but not limited to, the FGF21-β-hydroxybutryate-NLRP3 axis, the GCN2-eIF2α-ATF4 pathway, the von Hippel-Lindau/hypoxia-inducible transcription factor pathway and the TMAO-PERK-FoxO1 axis. Additionally, throughout the review, we explain how the gut microbiota responds to altered nutrient status and also how antimicrobial peptides generated from nutrient-based signaling pathways can modulate the gut microbiota. Collectively, it must be emphasized that metabolic starvation and inflammation are strongly regulated by both environmental (i.e., nutrition, gut microbiome) and nonenvironmental (i.e., genetics) factors, which can influence the susceptibility to inflammatory disorders.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Abokor
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614.
| |
Collapse
|
52
|
da Silva TF, Casarotti SN, de Oliveira GLV, Penna ALB. The impact of probiotics, prebiotics, and synbiotics on the biochemical, clinical, and immunological markers, as well as on the gut microbiota of obese hosts. Crit Rev Food Sci Nutr 2020; 61:337-355. [PMID: 32156153 DOI: 10.1080/10408398.2020.1733483] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is currently considered a global epidemic and it leads to several alterations on the human body and its metabolism. There are evidences showing that the intestinal microbiota can influence on the pathogenesis of obesity. Microbiota plays a vital role not only in the digestion and absorption of nutrients, but also in the homeostatic maintenance of host immunity, metabolism, and gut barrier. Its dietary alteration is an important target in the treatment of obesity. Emerging evidence suggests that modifying the composition of the gut microbiota through probiotic, prebiotic, and synbiotic supplementation may be a viable adjuvant treatment option for obese individuals. In this review, the impact of probiotics, prebiotics, and synbiotics on the anthropometric profile, biochemical regulation, clinical, and immunological markers, as well as on the gut microbiota of obese hosts is described. It also emphasizes how changes in the composition and/or metabolic activity of the gut microbiota through the administration of nutrients with probiotic, prebiotic, or synbiotic properties can modulate the host's gene expression and metabolism, and thereby positively influence on the host's adipose tissue development and related metabolic disorders. The beneficial effects on the host's metabolism promoted by prebiotics, probiotics, and synbiotics have been successfully demonstrated by several studies. However, further investigation is needed to fully explain the cellular mechanisms of action of probiotics and prebiotics on human health, and also to elucidate the relationship between microbiota and obesity etiology, using well-designed, long-term, and large-scale clinical interventions.
Collapse
Affiliation(s)
- Tatiane Ferreira da Silva
- Departamento de Engenharia e Tecnologia de Alimentos, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Sabrina Neves Casarotti
- Instituto de Ciências Naturais e Exatas, Universidade Federal de Rondonópolis (UFR), Rondonópolis, Brazil
| | | | - Ana Lúcia Barretto Penna
- Departamento de Engenharia e Tecnologia de Alimentos, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| |
Collapse
|
53
|
Henrique-Bana FC, Wang X, Costa GN, Spinosa WA, Miglioranza LH, Scorletti E, Calder PC, Byrne CD, Gibson GR. In vitro effects of Bifidobacterium lactis-based synbiotics on human faecal bacteria. Food Res Int 2020; 128:108776. [DOI: 10.1016/j.foodres.2019.108776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022]
|
54
|
Nogacka AM, Salazar N, Arboleya S, Ruas-Madiedo P, Mancabelli L, Suarez A, Martinez-Faedo C, Ventura M, Tochio T, Hirano K, Endo A, G. de los Reyes-Gavilán C, Gueimonde M. In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. Int J Mol Sci 2020; 21:E906. [PMID: 32019174 PMCID: PMC7038051 DOI: 10.3390/ijms21030906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota remains relatively stable during adulthood; however, certain intrinsic and environmental factors can lead to microbiota dysbiosis. Its restoration towards a healthy condition using best-suited prebiotics requires previous development of in vitro models for evaluating their functionality. Herein, we carried out fecal cultures with microbiota from healthy normal-weight and morbid obese adults. Cultures were supplemented with different inulin-type fructans (1-kestose, Actilight, P95, Synergy1 and Inulin) and a galactooligosaccharide. Their impact on the gut microbiota was assessed by monitoring gas production and evaluating changes in the microbiota composition (qPCR and 16S rRNA gene profiling) and metabolic activity (gas chromatography). Additionally, the effect on the bifidobacterial species was assessed (ITS-sequencing). Moreover, the functionality of the microbiota before and after prebiotic-modulation was determined in an in vitro model of interaction with an intestinal cell line. In general, 1-kestose was the compound showing the largest effects. The modulation with prebiotics led to significant increases in the Bacteroides group and Faecalibacterium in obese subjects, whereas in normal-weight individuals, substantial rises in Bifidobacterium and Faecalibacterium were appreciated. Notably, the results obtained showed differences in the responses among the tested compounds but also among the studied human populations, indicating the need for developing population-specific products.
Collapse
Affiliation(s)
- Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, 43121 Parma, Italy; (L.M.); (M.V.)
| | - Adolfo Suarez
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - Ceferino Martinez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain;
- Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, 43121 Parma, Italy; (L.M.); (M.V.)
| | - Takumi Tochio
- β-Food Sciences Co., Chita 478-0046, Japan; (T.T.); (K.H.)
| | | | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of Agriculture, Abashiri 099-2493, Japan;
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
55
|
Zhang C, Abdulaziz Abbod Abdo A, Kaddour B, Wu Q, Xin L, Li X, Fan G, Teng C. Xylan-oligosaccharides ameliorate high fat diet induced obesity and glucose intolerance and modulate plasma lipid profile and gut microbiota in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
56
|
Gao J, Azad MAK, Han H, Wan D, Li T. Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Curr Pharm Des 2020; 26:2630-2641. [PMID: 32066357 DOI: 10.2174/1381612826666200211121916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.
Collapse
Affiliation(s)
- Jing Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Md A K Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - TieJun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
The prebiotic properties of Hibiscus sabdariffa extract contribute to the beneficial effects in diet-induced obesity in mice. Food Res Int 2020; 127:108722. [DOI: 10.1016/j.foodres.2019.108722] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/23/2022]
|
58
|
Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients 2019; 11:nu11122862. [PMID: 31766592 PMCID: PMC6950569 DOI: 10.3390/nu11122862] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
The human gut is inhabited by trillions of microorganisms composing a dynamic ecosystem implicated in health and disease. The composition of the gut microbiota is unique to each individual and tends to remain relatively stable throughout life, yet daily transient fluctuations are observed. Diet is a key modifiable factor influencing the composition of the gut microbiota, indicating the potential for therapeutic dietary strategies to manipulate microbial diversity, composition, and stability. While diet can induce a shift in the gut microbiota, these changes appear to be temporary. Whether prolonged dietary changes can induce permanent alterations in the gut microbiota is unknown, mainly due to a lack of long-term human dietary interventions, or long-term follow-ups of short-term dietary interventions. It is possible that habitual diets have a greater influence on the gut microbiota than acute dietary strategies. This review presents the current knowledge around the response of the gut microbiota to short-term and long-term dietary interventions and identifies major factors that contribute to microbiota response to diet. Overall, further research on long-term diets that include health and microbiome measures is required before clinical recommendations can be made for dietary modulation of the gut microbiota for health.
Collapse
|
59
|
Huang K, Yu W, Li S, Guan X, Liu J, Song H, Liu D, Duan R. Effect of embryo-remaining oat rice on the lipid profile and intestinal microbiota in high-fat diet fed rats. Food Res Int 2019; 129:108816. [PMID: 32036900 DOI: 10.1016/j.foodres.2019.108816] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023]
Abstract
Embryo-remaining oat rice (EROR), as a newly developed oat product, is popular in China for its good taste, but little is known about its healthy functions. In this study, the effects of EROR on lipid metabolism regulation were investigated in in vitro and in vivo models. The results showed that the oat ethanol extracts significantly alleviated lipid accumulation, total cholesterol and triglyceride levels in HepG2 cells. EROR supplementation dramatically improved the lipid profile in the serum and liver and downregulated the expression levels of HMGCR, SREBP-1C and FAS, which are related to lipid metabolic disorder in high-fat diet (HFD) fed rats. A HFD decreases the production of short-chain fatty acids (SCFAs) in the cecum, which are related to intestinal microbiota dysbiosis. The intake of EROR significantly increased the total SCFAs, acetate and propionate and promoted the abundance of SCFA-producing bacteria. Furthermore, the intake of EROR led to abundant increases in Bifidobacterium and Akkermansia and decreases of Rombutsia, Fusicatenibacter, Holdemanella and Turicibacter, which were negatively and positively correlated with the lipid metabolism-related indices. These results provide evidence that EROR is a good functional food candidate to ameliorate lipid metabolic disorder and hyperlipidemia.
Collapse
Affiliation(s)
- Kai Huang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Wenwen Yu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Sen Li
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Jing Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 200135, PR China
| | - Hongdong Song
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Dandan Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Ruiqian Duan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
60
|
|
61
|
James A, Wang Y. Characterization, health benefits and applications of fruits and vegetable probiotics. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1652693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Armachius James
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
62
|
Hu TG, Wen P, Shen WZ, Liu F, Li Q, Li EN, Liao ST, Wu H, Zou YX. Effect of 1-Deoxynojirimycin Isolated from Mulberry Leaves on Glucose Metabolism and Gut Microbiota in a Streptozotocin-Induced Diabetic Mouse Model. JOURNAL OF NATURAL PRODUCTS 2019; 82:2189-2200. [PMID: 31393724 DOI: 10.1021/acs.jnatprod.9b00205] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
1-Deoxynojirimycin (DNJ) exerts hypoglycemic effects. However, the traditional method for DNJ extraction is inefficient, and the hypoglycemic mechanism of DNJ remains unclear. In this study, the mixed fermentation by Lactobacillus fermentum and Saccharomyces cerevisiae was used to enhance DNJ extraction efficiency. It was found that this strategy was more efficient than the traditional method as the yield improved from the original 3.24 mg/g to 5.97 mg/g. The purified DNJ significantly decreased serum glucose (P < 0.01) and insulin levels (P < 0.05), improved serum lipid levels (P < 0.05), and reversed insulin resistance (P < 0.05) in diabetic mice. These changes were caused by up-regulating the protein expression of insulin receptor and glycolysis enzymes (GK, PK, and PFK) (P < 0.05) and down-regulating the protein expression of insulin receptor substrate-1 and gluconeogenesis enzymes (PCB, PEPCK, FBPase, and G-6-Pase) (P < 0.05), thus alleviating glucose tolerance. Additionally, DNJ treatment relieved gut dysbiosis in diabetic mice by promoting the growth of Lactobacillus, Lachnospiraceae NK4A136 group, Oscillibacter, norank Lachnospiraceae, Alistipes, and Bifidobacterium (P < 0.05) and suppressing the growth of Ruminococcaceae UCG-014, Weissella, Ruminococcus, Prevotellaceae Ga6A1 group, Anaerostipes, Klebsiella, Prevotellaceae UCG-001, and Bacteroidales S24-7 group (P < 0.05).
Collapse
Affiliation(s)
- Teng-Gen Hu
- School of Food Science and Engineering , South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Peng Wen
- School of Food Science and Engineering , South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Wei-Zhi Shen
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Fan Liu
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Qian Li
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Er-Na Li
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Sen-Tai Liao
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Hong Wu
- School of Food Science and Engineering , South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Yu-Xiao Zou
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| |
Collapse
|
63
|
Liu Y, Zong S, Li J. Attenuation Effects of Bulk and Nanosized ZnO on Glucose, Lipid Level, and Inflammation Profile in Obese Mice. Appl Biochem Biotechnol 2019; 190:475-486. [PMID: 31385191 DOI: 10.1007/s12010-019-03115-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
ZnO and ZnO nanoparticles (ZnO NPs) are widely used in food packaging, food preservation, cosmetic preparation, and animal feed. ZnO is alleged showing multiple bioactivities including antimicrobial and anti-inflammation. It is hypothesized in this study that bulk ZnO and ZnO NPs could attenuate symptoms associated with high-fat-diet-induced obesity. Bulk ZnO and ZnO NPs with diameters of 30 and 90 nm were administered to high-fat-diet (HFD)-induced obese mice. Body weight, liver and fat tissue indices of ZnO-treated mice were decreased compared with those of obese mice (MOD). Blood glucose levels in oral glucose tolerant test and insulin tolerant test of ZnO-treated mice were lower than those of MOD. Serum lipid profile of ZnO-treated mice was ameliorated with lower total cholesterol, total triglyceride, and low-density lipoprotein cholesterol levels compared with that of MOD. In addition, the levels of serum IL-1β and LPS-binding protein were also decreased by ZnO treatment. Both bulk and nanosized ZnO could attenuate HFD-induced phenotypes related with obesity, but ZnO NP is more efficient to lower the fat index and bulk ZnO is better to restore the disturbed serum lipid profile.
Collapse
Affiliation(s)
- Yuting Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuai Zong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
64
|
Mirzanajafi-Zanjani M, Yousefi M, Ehsani A. Challenges and approaches for production of a healthy and functional mayonnaise sauce. Food Sci Nutr 2019; 7:2471-2484. [PMID: 31428335 PMCID: PMC6694423 DOI: 10.1002/fsn3.1132] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022] Open
Abstract
Mayonnaise is a semisolid oil-in-water (O/W) emulsion which is made through the careful blending of oil, vinegar, egg yolk, and spices (especially mustard). In addition, mayonnaise traditionally contains 70%-80% oil, and egg yolk is a key ingredient contributing to its stability. Despite concerns about high cholesterol level in egg yolk, it is yet the most widely utilized emulsifying agent owing to its high emulsifying capacity. Today, the public knowledge about diet and health has been incremented, compelling the people to consume foodstuffs containing functional features. Thus, consumers, aware of the considerable influence of the diet on their health, demand nutritious and healthier food. Mayonnaise is usually cited by health-related issues due to its high cholesterol and fat content. Many researchers have tried to replace fat, as well as egg yolk completely or partially; however, low-fat mayonnaises require extra ingredients to keep the stability. In other words, each ingredient plays a specific role in textural and oxidative stability, and using alternative emulsifiers and fat replacers may affect the sensorial, textural, and antioxidant features of mayonnaise. Furthermore, mayonnaise, like other high-fat foodstuffs, is vulnerable to auto-oxidation. In addition to using fat replacers, mayonnaise is accompanied with bioactive ingredients to produce a healthy system. Therefore in this review, we gathered a quick summary of the ideas, including lowering the cholesterol and fat and using natural antioxidants, prebiotics, and probiotics in order to produce a healthy and functional mayonnaise sauce.
Collapse
Affiliation(s)
- Mina Mirzanajafi-Zanjani
- Student Research Committee, Department of Food Science and TechnologyTabriz University of Medical SciencesTabrizIran
| | - Mohammad Yousefi
- Student Research Committee, Department of Food Science and TechnologyTabriz University of Medical SciencesTabrizIran
| | - Ali Ehsani
- Department of Food Science and Technology, Food and Drug Safety Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
65
|
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019; 11:E1591. [PMID: 31337060 PMCID: PMC6683253 DOI: 10.3390/nu11071591] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Preserving the efficacy of probiotic bacteria exhibits paramount challenges that need to be addressed during the development of functional food products. Several factors have been claimed to be responsible for reducing the viability of probiotics including matrix acidity, level of oxygen in products, presence of other lactic acid bacteria, and sensitivity to metabolites produced by other competing bacteria. Several approaches are undertaken to improve and sustain microbial cell viability, like strain selection, immobilization technologies, synbiotics development etc. Among them, cell immobilization in various carriers, including composite carrier matrix systems has recently attracted interest targeting to protect probiotics from different types of environmental stress (e.g., pH and heat treatments). Likewise, to successfully deliver the probiotics in the large intestine, cells must survive food processing and storage, and withstand the stress conditions encountered in the upper gastrointestinal tract. Hence, the appropriate selection of probiotics and their effective delivery remains a technological challenge with special focus on sustaining the viability of the probiotic culture in the formulated product. Development of synbiotic combinations exhibits another approach of functional food to stimulate the growth of probiotics. The aim of the current review is to summarize the strategies and the novel techniques adopted to enhance the viability of probiotics.
Collapse
Affiliation(s)
- Antonia Terpou
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Loulouda A Bosnea
- Hellenic Agricultural Organization DEMETER, Institute of Technology of Agricultural Products, Dairy Department, Katsikas, 45221 Ioannina, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
66
|
Golonka R, Yeoh BS, Vijay-Kumar M. Dietary Additives and Supplements Revisited: The Fewer, the Safer for Liver and Gut Health. ACTA ACUST UNITED AC 2019; 5:303-316. [PMID: 32864300 DOI: 10.1007/s40495-019-00187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review The supplementation of dietary additives into processed foods has exponentially increased in the past few decades. Similarly, the incidence rates of various diseases, including metabolic syndrome, gut dysbiosis and hepatocarcinogenesis, have been elevating. Current research reveals that there is a positive association between food additives and these pathophysiological diseases. This review highlights the research published within the past 5 years that elucidate and update the effects of dietary supplements on liver and intestinal health. Recent Findings Some of the key findings include: enterocyte dysfunction of fructose clearance causes non-alcoholic fatty liver disease (NAFLD); non-caloric sweeteners are hepatotoxic; dietary emulsifiers instigate gut dysbiosis and hepatocarcinogenesis; and certain prebiotics can induce cholestatic hepatocellular carcinoma (HCC) in gut dysbiotic mice. Overall, multiple reports suggest that the administration of purified, dietary supplements could cause functional damage to both the liver and gut. Summary The extraction of bioactive components from natural resources was considered a brilliant method to modulate human health. However, current research highlights that such purified components may negatively affect individuals with microbiotal dysbiosis, resulting in a deeper break of the symbiotic relationship between the host and gut microbiota, which can lead to repercussions on gut and liver health. Therefore, ingestion of these dietary additives should not go without some caution!
Collapse
Affiliation(s)
- Rachel Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.,Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
67
|
Bis-Souza CV, Barba FJ, Lorenzo JM, Penna ALB, Barretto ACS. New strategies for the development of innovative fermented meat products: a review regarding the incorporation of probiotics and dietary fibers. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1584816] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C. V. Bis-Souza
- Department of Food Technology and Engineering, UNESP – São Paulo State University, São José do Rio Preto, SP, Brazil
| | - F. J. Barba
- Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Universitat de València, València, Spain
| | - J. M. Lorenzo
- Department of Chromatographic, Centro Tecnológico de la Carne de Galicia, San Ciprián de Viñas, Ourense, Spain
| | - A. L. B Penna
- Department of Food Technology and Engineering, UNESP – São Paulo State University, São José do Rio Preto, SP, Brazil
| | - A. C. S. Barretto
- Department of Food Technology and Engineering, UNESP – São Paulo State University, São José do Rio Preto, SP, Brazil
| |
Collapse
|
68
|
Esmaeilnejad Moghadam B, Keivaninahr F, Fouladi M, Rezaei Mokarram R, Nazemi A. Inulin addition to yoghurt: Prebiotic activity, health effects and sensory properties. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Fatemeh Keivaninahr
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| | - Masoumeh Fouladi
- Department of Chemical Engineering University of Sistan and Baluchestan Zahedan Iran
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| | - Aylar Nazemi
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| |
Collapse
|
69
|
Hou A, Xiao Y, Li Z. Effects of 1, 3-dioleoyl-2-palmitoylglycerol and its plant-oil formula on the toddler fecal microbiota during in vitro fermentation. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1648555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Aixiang Hou
- Department of Food Microbiology, College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu Xiao
- Department of Food Microbiology, College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zongjun Li
- Department of Food Microbiology, College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
70
|
Characterization and Prebiotic Potential of Longan Juice Obtained by Enzymatic Conversion of Constituent Sucrose into Fructo-Oligosaccharides. Molecules 2018; 23:molecules23102596. [PMID: 30309034 PMCID: PMC6222641 DOI: 10.3390/molecules23102596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/21/2022] Open
Abstract
The prebiotic potential of longan juice obtained by a commercial Viscozyme L for conversion of constituent sucrose to fructo-oligosaccharide was investigated. The physicochemical properties and carbohydrate composition of the longan juice was evaluated before and after enzymatic treatment. The stimulation effects of the treated longan juice on probiotic bacteria growth were also studied in vitro. The results showed that total soluble solids, yield and clarity of longan juice were all significantly improved after enzyme treatment. The water-soluble polysaccharide content, including pectin, was significantly increased. Compared with the natural longan pulp, the enzyme treated juice showed a significant decrease in sucrose content. Substantial fructo-oligosaccharides including 1-kestose and nystose were synthesized after enzyme treatment. The molecular weight distribution and the monosaccharide composition of the water-soluble polysaccharide were significantly changed by enzyme treatment. The treated longan juice and its ethanol-soluble sugar fraction promoted the growth of Streptococus thermophiles, Lactobacillus acidophilus and Lactobacillus delbrueckii, showing a good potential of the treated longan juice for producing functional foods and nutraceuticals.
Collapse
|