51
|
Feng T, Zhang M, Sun Q, Mujumdar AS, Yu D. Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7108-7125. [PMID: 35187995 DOI: 10.1080/10408398.2022.2040418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Berry fruits have attracted increasing more attention of the food processing industry as well as consumers due to their widely acclaimed advantages as highly effective anti-oxidant properties which may provide protection against some cancers as well as aging. However, the conventional extraction methods are inefficient and wasteful of solvent utilization. This paper presents a critical overview of some novel extraction methods applicable to berries, including pressurized-liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction as well as some combined extraction methods. When combined with conventional methods, the new technologies can be more efficient and environmentally friendly. Additionally, high quality processing of the functional extracts from berry fruits, such as refined processing technology, is introduced in this review. Finally, progress of applications of berry functional extracts in the food industry is described in detail; this should encourage further scientific research and industrial utilization.
Collapse
Affiliation(s)
- Tianlin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd, Qingdao, Shandong, China
| |
Collapse
|
52
|
Oluwajuyitan TD, Ijarotimi OS, Fagbemi TN. Plantain‐based dough meal: Nutritional property, antioxidant activity and dyslipidemia ameliorating potential in high‐fat‐induced rats. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | | | - Tayo Nathaniel Fagbemi
- Department of Food Science and Technology Federal University of Technology Akure Nigeria
| |
Collapse
|
53
|
Šuput D, Filipović V, Lončar B, Nićetin M, Knežević V, Lazarević J, Plavšić D, Popović S, Hromiš N. Influence of biopolymer coatings on the storage stability of osmotically dehydrated mushrooms. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-35821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The main aim of this research was to apply biopolymer coatings on osmotically dehydrated mushrooms and monitor their quality during storage. Mushrooms were osmotically dehydrated in sugar beet molasses (80% dry matter) under optimized conditions (45 °C for 5 hours), as previously reported elsewhere. Two different biopolymers were chosen: chitosan, a polysaccharide polymer, and zein, a protein polymer. A non-treated mushroom sample was chosen as a control sample. The mushroom samples were analysed for sugar and protein content, as well as water loss and microbiological profile. An increase in sugar content was the most noticeable in the osmotically dehydrated mushrooms compared to the control sample due to the use of molasses as a hypertonic solution. The contribution of used biopolymer coatings to the sugar and protein content of the coated and osmotically treated mushrooms was negligible. Chitosan coating contributed to better storage stability of treated mushrooms by lowering the moisture loss and microbial count. For this reason, chitosan treated sample was chosen for further examination related to the evaluation of its baking potential as a filling in a traditional stuffed pie-like layered bakery product - burek. Burek was stuffed with fresh mushrooms, osmotically treated mushrooms or osmotically treated mushrooms coated with chitosan. The sensorial assessment proved that control burek and burek samples with osmotically dehydrated mushrooms coated with chitosan were the most preferred groups based on odour and overall impression.
Collapse
|
54
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
55
|
Šuput D, Filipović V, Lončar B, Nićetin M, Knežević V, Lazarević J, Plavšić D, Popović S, Hromiš N. Influence of biopolymer coatings on the storage stability of osmotically dehydrated mushrooms. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-35821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The main aim of this research was to apply biopolymer coatings on osmotically dehydrated mushrooms and monitor their quality during storage. Mushrooms were osmotically dehydrated in sugar beet molasses (80% dry matter) under optimized conditions (45 °C for 5 hours), as previously reported elsewhere. Two different biopolymers were chosen: chitosan, a polysaccharide polymer, and zein, a protein polymer. A non-treated mushroom sample was chosen as a control sample. The mushroom samples were analysed for sugar and protein content, as well as water loss and microbiological profile. An increase in sugar content was the most noticeable in the osmotically dehydrated mushrooms compared to the control sample due to the use of molasses as a hypertonic solution. The contribution of used biopolymer coatings to the sugar and protein content of the coated and osmotically treated mushrooms was negligible. Chitosan coating contributed to better storage stability of treated mushrooms by lowering the moisture loss and microbial count. For this reason, chitosan treated sample was chosen for further examination related to the evaluation of its baking potential as a filling in a traditional stuffed pie-like layered bakery product-burek. Burek was stuffed with fresh mushrooms, osmotically treated mushrooms or osmotically treated mushrooms coated with chitosan. The sensorial assessment proved that control burek and burek samples with osmotically dehydrated mushrooms coated with chitosan were the most preferred groups based on odour and overall impression.
Collapse
|
56
|
Zhang X, Zhang M, Xu B, Mujumdar AS, Guo Z. Light-emitting diodes (below 700 nm): Improving the preservation of fresh foods during postharvest handling, storage, and transportation. Compr Rev Food Sci Food Saf 2021; 21:106-126. [PMID: 34967490 DOI: 10.1111/1541-4337.12887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
In order to maintain the original taste, flavors, and appearance, fresh foods usually do not go through complex processing prior to sale; this makes them prone to deterioration due to external factors. Light-emitting diodes (LEDs) have many unique advantages over traditional preservation technologies leading to their increasing application in the food industry. This paper reviews the luminescence principles of LED, the advantages of LED compared with traditional lighting equipment, and its possible preservation mechanism, and then critically summarizes the beneficial effects of LED irradiation on the ripening and aging process of various fruits and vegetables (climacteric and non-climacteric). The activity changes of many enzymes closely related to crop development and quality maintenance, and the variation of flavor components caused by LED irradiation are discussed. LED illumination with a specific spectrum also has the important effect of maintaining the original color and flavor of meat, seafood, and dairy products. For microorganisms attached to the surface of animal-derived food, both 400-460 nm LED irradiation based on photodynamic inactivation principle and UV-LED irradiation based on ultraviolet sterilization principle have high bactericidal efficacy. Although there is still a lack of useful standards for matching optimal LED irradiation dose with wavelength, perhaps in the near future, the improved LED irradiation system will be applied extensively in the food industry.
Collapse
Affiliation(s)
- Xijia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Zhimei Guo
- R&D Center, Wuxi Haihe Equipment Co., Wuxi, China
| |
Collapse
|
57
|
Inactivation of Zygosaccharomyces rouxii in organic intermediate moisture apricot and fig by microwave pasteurization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Rodriguez A, Soteras M, Campañone L. Review: Effect of the combined application of edible coatings and osmotic dehydration on the performance of the process and the quality of pear cubes. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anabel Rodriguez
- Instituto Nacional de Tecnología Agropecuaria (INTA)‐Instituto Tecnología de Alimentos Hurlingham Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | | | - Laura Campañone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA‐UNLP‐CONICET) La Plata Argentina
| |
Collapse
|
59
|
Oluwajuyitan TD, Ijarotimi OS, Fagbemi TN. Plantain based dough meal: nutritional property, antioxidant activity and dyslipidemia ameliorating potential in high-fat induced rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00327-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstracts
Background
Dyslipidemia is an aberrant rise in blood lipids due to diet and lifestyle. It has implicated as the major risk factor for developing hypertension among other diseases. This study was designed to evaluate plantain based dough meal nutritional property, antioxidant activity and dyslipidemia ameliorating potential in high-fat induced rats.
Methods
The flour blends, i.e., PSC (Plantain 70%, Soycake 30%), PSR (Plantain 65%, Soycake 30%, Rice-bran 5%), PSO (Plantain 65%, Soycake 30%, Oat-bran 5%), PSRO (Plantain 60%, Soycake 30%, Rice-bran 5%, Oat-bran 5%) and controls (100% Plantain flour & Cerolina) were evaluated for chemical, antioxidants and antihyperlipidemia.
Results
Protein, fiber and energy composition varied from 2.2–4.97 g/100 g, 16.44–19.59 g/100 g and 369.7–385.5 kcal/100 g, respectively. Essential amino acid index and predicted-biological values of the foods ranged from 68.31–76.31% and 62.19–71.48%, respectively. Phenolic profiles (mg/g) were gallic acid (25.33–31.26), caffeic acid (2.75–4.61), ferulic acid (5.16–12.73), luteolin (16.31–23.60), kaempferol (21.51–30.64), quercetin (24.28–37.13), chlorogenic acid (42.25–59.78), myricetin (28.41–38.41), 3,5-dicaffeoylquinic acid (27.17–41.59) and 4, 5-dicaffeoylquinic acid (39.96–51.28). The antioxidant activity of PSRO on ABTS, DPPH, FRAP, Fe2+ chelation and OH free radicals was higher than other foods. Atherogenic index, coronary risk index and log (TG/HDL-conc.) of rats fed on experimental foods were lower than recommended values.
Conclusion
The study established that PSRO had higher antioxidant and anti-hyperlipidemia properties; hence, it may be suitable as a functional food.
Collapse
|
60
|
Effect of Three Types of Drying on the Viability of Lactic Acid Bacteria in Foam-Mat Dried Yogurt. Processes (Basel) 2021. [DOI: 10.3390/pr9122123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this research, foaming technology was applied to obtain powdered yogurt from commercial yogurt at lower temperatures than the typical temperatures used during the dehydration process; the viability of lactic acid bacteria (LAB) was evaluated after the application of different drying techniques (conventional drying, freeze drying, and vacuum drying). Three different formulas (F1, F2, and F3) based on a foaming agent (albumen), stabilizers (guar gum), and prebiotics sources (inulin and agave syrup) were developed. Foam stability was evaluated at different pH values through optimum time of foam (OTF), medium drainage time (MDT), and drainage volume (DV). Foam expansion (FE) and foam density (FD) were measured. The OTF ranged from 6 to 10 min. The MDT ranged from 4.3 to 27.3 min, depending on pH, while the DV varied from 14.1 to 16.2 mL only in F1. No drainage was evidenced in F2 and F3, showing the best stability. The F2 and F3 produced the best FE and FD values. The dried yogurt with different techniques showed a survival rate (SR) of up to 85% Log-CFU/mL, even with the conventional drying method. Sensorial trials were carried out in reconstituted product, with the freeze-dried yogurt showing higher scores. The foam formulas developed demonstrate the efficacy of both the dehydration of yogurt and the preservation of LAB.
Collapse
|
61
|
Kim TK, Yong HI, Cha JY, Park SY, Jung S, Choi YS. Drying-induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein. Food Chem 2021; 373:131519. [PMID: 34776309 DOI: 10.1016/j.foodchem.2021.131519] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/05/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022]
Abstract
With an increasing consumer interest in meat analog products, various imitation products have been developed. Among conventional meat products, jerky-type foods are rich in proteins and exhibit a long shelf-life owing to their low water activity (<0.90). Restructured jerky is advantageous because it can be easily processed into uniform products. This study investigated the physicochemical and thermal properties of drying-induced restructured jerky analogs prepared by combining textured vegetable protein (TVP) and edible insect protein (EIP) in the following ratios: 100/0, 80/20, 60/40, 40/60, 20/80, and 0/100% (w/w), as well as the interactions between EIP and TVP. Furthermore, qualitative characteristics, color, pH, moisture content, water activity, shear force, and rehydration capacity of the analogs were investigated. In conclusion, restructured jerky analogs developed by combining TVP and EIP may provide a tender dried food with high nutritional value.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Sun-Young Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
62
|
Kowalska H, Marzec A, Domian E, Kowalska J, Ciurzyńska A, Galus S. Edible coatings as osmotic dehydration pretreatment in nutrient-enhanced fruit or vegetable snacks development: A review. Compr Rev Food Sci Food Saf 2021; 20:5641-5674. [PMID: 34698434 DOI: 10.1111/1541-4337.12837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
Edible coatings (ECs) are thin layers applied on food to protect it and improve quality. They are made from bio-based materials such as polysaccharides, proteins, lipids, or their composites. The incorporation of functional agents, such as bioactive compounds, vitamins, or antimicrobials into the EC, has been investigated to control the shelf life of many food products from horticulture ones to processed food. Osmotic dehydration (OD) as a mild technology may also positively impact the availability of innovative fruit snacks and consequently influence consumer health. Combination of the EC with the OD aims to remove water through the semipermeable membrane while limiting the transfer of solutes from the dehydrated tissue and in the opposite direction from the osmotic solution to the food. The development trend of the snack market is expanding, especially with health-promoting properties. Consumers pay increasing attention to quality of food and its beneficial effects on health. This review attempts to provide the advancement of recent studies on the application of the EC before the OD of different fresh or fresh-cut fruit and vegetables. A fundamental theory related to the methodology of creating the EC, their composition, and the influence on the physicochemical properties of products that are osmo-dehydrated to a medium water content or additionally dried to a low water content have been described. Efforts have been exerted to introduce hydrocolloids used in the production of the EC, including new sources of biopolymers such as agricultural waste and by-products. The perspectives of using ECs in the technology of producing pro-healthy snacks are emphasized.
Collapse
Affiliation(s)
- Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
63
|
Liu D, Gu W, Wang L, Sun J. Photodynamic inactivation and its application in food preservation. Crit Rev Food Sci Nutr 2021; 63:2042-2056. [PMID: 34459290 DOI: 10.1080/10408398.2021.1969892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Food incidents caused by various foodborne pathogenic bacteria are posing a major threat to human health. The traditional thermal and chemical-based procedures applied for microbial control in the food industry cause adverse effects on food quality and bacterial resistance. As a new means of innovative sterilization technology, photodynamic inactivation (PDI) has gained significant attention due to excellent sterilization effect, environmental friendliness, safety, and low cost. This review analyses new developments in recent years for PDI systems applied to the food preservation. The fundamentals of photosensitization mechanism, the development of photosensitizers and light source selection are discussed. The application of PDI in food preservation are presented, with the main emphasis on the natural photosensitizers and its application to inactivate in vitro and in vivo microorganisms in food matrixes such as fresh vegetable, fruits, seafood, and poultry. The challenges and future research directions facing the application of this technology to food systems have been proposed. This review will provide reference for combating microbial contamination in food industry.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| |
Collapse
|
64
|
Hong-in P, Neimkhum W, Punyoyai C, Sriyab S, Chaiyana W. Enhancement of phenolics content and biological activities of longan (Dimocarpus longan Lour.) treated with thermal and ageing process. Sci Rep 2021; 11:15977. [PMID: 34354192 PMCID: PMC8342457 DOI: 10.1038/s41598-021-95605-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
This study is the first to compare the chemical compositions and biological activities of a conventional dried Dimocarpus longan with a novel black D. longan that underwent a thermal ageing process. Pericarp, aril, and seed of both D. longan were macerated in 95% v/v ethanol. Their chemical compositions were investigated using a Folin-Ciocalteu assay, aluminum chloride assay, and high-performance liquid chromatography. Antioxidant activities were evaluated in terms of radical scavenging and iron (III) reduction capacity. An enzyme inhibition assay was used to evaluate the hyaluronidase inhibition. Inflammatory cytokine secretion was evaluated with an enzyme-linked immunosorbent assay. After being exposed to a heating and ageing procedure, gallic acid and ellagic acid content were increased tenfold, while the corilagin content was doubled. Black D. longan seed extract was the most potent anti-hyaluronidase and antioxidant with the strongest free radical scavenging and reduction power, while black D. longan aril extract resulted in the highest inhibition of inflammatory cytokine secretion. Black D. longan contained more biologically active compounds and possessed more potent biological activities than conventional dried D. longan. Therefore, thermal ageing treatment is suggested for producing black D. longan, for which seed extract is suggested as a cosmeceutical active ingredient and aril extract for anti-inflammation.
Collapse
Affiliation(s)
- Preaploy Hong-in
- grid.7132.70000 0000 9039 7662Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Waranya Neimkhum
- grid.444151.10000 0001 0048 9553Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn, 10250 Thailand
| | - Chanun Punyoyai
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Suwannee Sriyab
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wantida Chaiyana
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
65
|
Burdo OG, Trishyn FA, Terziev SG, Gavrilov AV, Sirotyuk IV. Electrodynamic Processes as an Effective Solution of Food Industry Problems. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Vidal VAS, Paglarini CS, Lorenzo JM, Munekata PE, Pollonio MAR. Salted Meat Products: Nutritional Characteristics, Processing and Strategies for Sodium Reduction. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1949342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vitor A. S. Vidal
- Faculdade De Engenharia De Alimentos, Universidade Estadual De Campinas, Campinas, São Paulo, Brazil
- Departament De Nutrició, Ciències De l’Alimentació I Gastronomia, Facultat De Farmàcia I Ciències De l’Alimentació, Universitat De Barcelona, Santa Coloma De Gramenet, Spain
| | - Camila S. Paglarini
- Faculdade De Engenharia De Alimentos, Universidade Estadual De Campinas, Campinas, São Paulo, Brazil
| | - Jose M. Lorenzo
- Centro Tecnológico da Carne de Galícia, Parque Tecnológico de Galícia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultat de Vigo, 32004, Ourense, Spain
| | - Paulo E.S. Munekata
- Centro Tecnológico da Carne de Galícia, Parque Tecnológico de Galícia, Ourense, Spain
| | - Marise A. R. Pollonio
- Faculdade De Engenharia De Alimentos, Universidade Estadual De Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
67
|
High hydrostatic pressure combined with moisture regulators improves the tenderness and quality of beef jerky. Meat Sci 2021; 181:108617. [PMID: 34229234 DOI: 10.1016/j.meatsci.2021.108617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
The influence of high hydrostatic pressure (HHP) at different pressure levels (0.1, 100, 200, and 300 MPa) combined with moisture regulators (MR) on the tenderness, water content, and quality of beef jerky was investigated. HHP treatment reduced the shear force (SF) of beef jerky (P < 0.05). The beef jerky treated with MR+HHP exhibited higher tenderness than the beef jerky treated only with HHP (P < 0.05). The MR+HHP samples had significantly higher moisture content than the HHP samples (P > 0.05) when the water activity was maintained at approximately 0.7. MR+HHP contributed to a shorter T21 value and a higher P21 value, which indicated an improvement in the water-binding ability of the beef muscle. Analysis of the microstructure showed that MR+HHP led to the fracture of the Z-line and destruction of the sarcomere structure. Sensory analysis showed that MR+HHP-200 samples had significantly higher tenderness and overall acceptable scores than other samples (P < 0.05).
Collapse
|
68
|
Yang Y, Qiu W, Tao N, Jin Y, Feng Y, Jin Y. Effect of ratio of oil to sample on the quality of fried fish (
Pseudorasbora parva
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yaochong Yang
- Engineering Research Center of Food Thermal‐processing Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqiang Qiu
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Ningping Tao
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yingshan Jin
- College of Bioscience and Technology Yangzhou University Yangzhou China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd. Jilin China
| | - Yinzhe Jin
- Engineering Research Center of Food Thermal‐processing Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| |
Collapse
|
69
|
Aaliya B, Valiyapeediyekkal Sunooj K, Navaf M, Parambil Akhila P, Sudheesh C, Ahmad Mir S, Sabu S, Sasidharan A, Theingi Hlaing M, George J. Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques. Food Res Int 2021; 147:110514. [PMID: 34399492 DOI: 10.1016/j.foodres.2021.110514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023]
Abstract
Researchers are continuously discovering varied technologies for microbial control to ensure worldwide food safety from farm-to-fork. The microbial load and virulence of spoilage causing microorganisms, including bacteria, fungi, yeasts, virus, and protozoa, determines the extent of microbial contamination in a food product. Certain pathogenic microbes can cause food poisoning and foodborne diseases, and adversely affect consumers' health. To erade such food safety-related problems, various traditional and novel food processing methods have been adopted for decades. However, some decontamination techniques bring undesirable changes in food products by affecting their organoleptic and nutritional properties. Combining various thermal and non-thermal food processing methods is an effective way to impart a synergistic effect against food spoilage microorganisms and can be used as an alternative way to combat certain limitations of food processing technologies. The combination of different techniques as hurdles put the microorganisms in a hostile environment and disturbs the homeostasis of microorganisms in food temporarily or permanently. Optimization and globalization of these hurdle combinations is an emerging field in the food processing sector. This review gives an overview of recent inventions in hurdle technology for bacterial decontamination, combining different thermal and non-thermal processing techniques in various food products.
Collapse
Affiliation(s)
- Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Shabir Ahmad Mir
- Department of Food Science and Technology, Government College for Women, M. A. Road, Srinagar, Jammu and Kashmir 190001, India
| | - Sarasan Sabu
- School of Industrial Fisheries, Cochin University of Science and Technology, Kochi 682016, India
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kochi 682506, India
| | | | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Mysore 570011, India
| |
Collapse
|
70
|
Cossu M, Ledda L, Cossu A. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Res Int 2021; 144:110358. [PMID: 34053551 DOI: 10.1016/j.foodres.2021.110358] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
The food and drink manufacturing industry is constantly seeking for alternative sanitation and disinfection systems that may achieve the same antimicrobial efficiency of conventional chemical sanitisers and at the same time be convenient in terms of energy and water savings. A candidate technology for this purpose is the use of light in combination with photosensitisers (PS) to generate a bioactive effect against microbial agents in a process defined as photodynamic inactivation (PDI). This technology can be applied to the food processing of different food matrices to reduce the microbial load of foodborne pathogens such as bacteria, fungi, viruses and protozoa. Also, the PDI can be exploited to increase the shelf-life period of food by inactivation of spoiling microbes. This review analyses new developments in the last five years for PDI systems applied to the food decontamination from foodborne pathogens. The photosensitisation mechanisms and methods are reported to introduce the applied technology against microbial targets in food matrices. Recent blue light emitting diodes (LED) lamp systems for the PDI mediated by endogenous PS are discussed as well PDI technologies with the use of exogenous PS from plant sources such as curcumin and porphyrin-based molecules. The updated overview of the most recent developments in the PDI technology both in wavelengths and employed PS will provide further points of analysis for the advancement of the research on new competitive and effective disinfection systems in the food industry.
Collapse
Affiliation(s)
- Marco Cossu
- Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Luigi Ledda
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Andrea Cossu
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, United Kingdom.
| |
Collapse
|
71
|
Fong K, Wong CW, Wang S, Delaquis P. How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:83-91. [PMID: 36148040 PMCID: PMC9041489 DOI: 10.1089/phage.2020.0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel bacteriophages (phages) possessing a broad host range are consistently and routinely reported, yet there is presently no consensus on the definition of "broad host range." As phages are increasingly being used in the development of methods for the detection and biocontrol of human pathogens, it is important to address the limitations associated with the host range. For instance, unanticipated host range breadth may result in the detection of nonpathogenic targets, thereby increasing the false-positive rate. Moreover, a broad host range is generally favored in biocontrol applications despite the risk of undesirable ancillary effects against nontarget species. Here, we discuss the research progress, applications, and implications of broad host range phages with a focus on tailed broad host range phages infecting human pathogens of concern in the Agri-Food sector.
Collapse
Affiliation(s)
- Karen Fong
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Pascal Delaquis
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| |
Collapse
|
72
|
Kim SM, Kim TK, Kim HW, Jung S, Yong HI, Choi YS. Quality Characteristics of Semi-Dried Restructured Jerky Processed Using Super-Heated Steam. Foods 2021; 10:foods10040762. [PMID: 33918496 PMCID: PMC8066036 DOI: 10.3390/foods10040762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Moisture content and water activity play important roles in extending the shelf life of dried meat products, such as jerky. However, the commonly used hot air drying process is time-consuming, costly, and adversely affects the quality of dried meat products, warranting the development of an advanced and economical drying method. This study investigated the effect of super-heated steam (SHS) drying on the quality characteristics of semi-dried restructured jerky as a measure to prevent the excessive quality deterioration of meat products during drying. The control sample was dried using hot air, and the treatment samples were dried using SHS at different temperatures (200, 250, and 300 °C) and for different durations (90, 105, and 120 min). With increasing SHS temperature and duration, the moisture content, water activity, and residual nitrite content of the jerky were reduced. The shear force values for treatments at 200 and 250 °C were lower than those for the control. With a non-significant difference in lipid oxidation compared with the control, the overall acceptability score was the highest for the treatment at 250 °C for 120 min. In conclusion, SHS (250 °C for 120 min) drying has a potential industrial value to replace the hot air drying method.
Collapse
Affiliation(s)
- Se-Myung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
| | - Hyun-Wook Kim
- Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea;
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
- Correspondence: ; Tel.: +82-63-219-9387; Fax: +82-63-219-9076
| |
Collapse
|
73
|
Chitrakar B, Zhang M, Bhandari B. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 2021; 125:108010. [PMID: 33679006 PMCID: PMC7914018 DOI: 10.1016/j.foodcont.2021.108010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a contagious disease caused by a novel corona virus (SARS-CoV-2). No medical intervention has yet succeeded, though vaccine success is expected soon. However, it may take months or years to reach the vaccine to the whole population of the world. Therefore, the technological preparedness is worth to discuss for the smooth running of food processing activities. We have explained the impact of the COVID-19 pandemic on the food supply chain (FSC) and then discussed the technological interventions to overcome these impacts. The novel and smart technologies during food processing to minimize human-to-human and human-to-food contact were compiled. The potential virus-decontamination technologies were also discussed. Finally, we concluded that these technologies would make food processing activities smarter, which would ultimately help to run the FSC smoothly during COVID-19 pandemic.
Collapse
Affiliation(s)
- Bimal Chitrakar
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
74
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
75
|
Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ultrasound (US) is a promising technology, which can be used to improve the efficacy of the processes in food technology and the quality of final product. US technique is used, e.g., to support mass and heat transfer processes, such as osmotic dehydration, drying and freezing, as well as extraction, crystallization, emulsification, filtration, etc. Osmotic dehydration (OD) is a well-known process applied in food processing; however, improvements are required due to the long duration of the process. Therefore, many recent studies focus on the development of OD combined with sonication as a pretreatment method and support during the OD process. The article describes the mechanism of the OD process as well as those of US and changes in microstructure caused by sonication. Furthermore, it focuses on current applications of US in fruits and vegetables OD processes, comparison of ultrasound-assisted osmotic dehydration to sonication treatment and synergic effect of US and other innovative technics/treatments in OD (such as innovative osmotic solutions, blanching, pulsed electric field, reduced pressure and edible coatings). Additionally, the physical and functional properties of tissue subjected to ultrasound pretreatment before OD as well as ultrasound-assisted osmotic dehydration are described.
Collapse
|
76
|
Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non-Thermal Methods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09276-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
77
|
Zhu Z, Li T, Sun DW. Pressure-related cooling and freezing techniques for the food industry: fundamentals and applications. Crit Rev Food Sci Nutr 2020; 61:2793-2808. [PMID: 33146020 DOI: 10.1080/10408398.2020.1841729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cooling and freezing are two widely used methods for food preservation. Conventional cooling and freezing techniques are usually with low efficiency and prone to damage foodstuffs. In order to increase cooling and freezing efficiencies and ensure better food quality, many efforts have been performed. As effective solutions, pressure-related techniques such as vacuum cooling (VC), vacuum film cooling (VFC), vacuum spray cooling (VSC), pressure shift freezing (PSF) and isochoric freezing (ICF) have attracted a lot of interests. The current review intends to provide an overview of pressure-related cooling and freezing techniques for the food industry. In the review, the fundamentals including principles, experimental systems, thermodynamic and kinetic mechanisms and their relevant mathematical models are presented, latest applications of these techniques in the food industry are summarized, and future trends concerning technological development and industrialization are highlighted. Pressure plays an important role in improving the cooling and freezing processes and ensuring food qualities, and mathematical modeling is an effective tool for understanding the thermodynamic and kinetic mechanisms of these processes. However, the latest researches showed that despite many merits of these pressure-related processes, limitations still exist in applying some of the techniques in the food industry. For achieving technological development and industrialization of the pressure-related processes, further researches should focus on improving model performance, integrating multiple technologies, and cost control.
Collapse
Affiliation(s)
- Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Tian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
78
|
Zhang J, Liu D, Liu Y, Yu Y, Hemar Y, Regenstein JM, Zhou P. Effects of particle size and aging of milk protein concentrate on the biophysical properties of an intermediate-moisture model food system. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
79
|
Furtado MM, Silva BS, Faviero C, Alvarenga VO, Sant’Ana AS. Impact of carrier agents and temperature during storage of dry inocula of Salmonella enterica: A contribution to the validation of low water activity foods processing interventions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
80
|
Kim SM, Kim TK, Ku SK, Kim MJ, Jung S, Yong HI, Choi YS. Quality characteristics of semi-dried restructured jerky: combined effects of duck skin gelatin and carrageenan. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:553-564. [PMID: 32803187 PMCID: PMC7416162 DOI: 10.5187/jast.2020.62.4.553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
Abstract
The present study investigated the effects of duck skin gelatin and carrageenan
on the quality of semi-dried restructured jerky. Restructured jerky was prepared
as follows: G0 (control, without duck skin gelatin and carrageenan), G0C (0.3%
carrageenan), G0.5 (0.5% duck skin gelatin), G0.5C (0.5% duck skin gelatin and
0.3% carrageenan), G1 (1.0% duck skin gelatin), and G1C (1.0% duck skin gelatin
and 0.3% carrageenan). The moisture content was the highest for the semi-dried
restructured jerky from G0.5C and G1C groups, which showed the lowest for shear
force value (p < 0.05). The processing yield of
semi-dried restructured jerky with carrageenan was higher compared to that of
the control group (p < 0.05). The rehydration capacities
of G0.5, G0.5C, and G1C groups were significantly higher than the rehydration
capacity of the control group (p < 0.05). Water
activity, lightness, yellowness, flavor score, texture score, and overall
acceptability were the highest (p < 0.05) for the
semi-dried restructured jerky from the G1C group. No significant
(p > 0.05) difference was observed in appearance
score among restructured jerky prepared from duck skin gelatin and carrageenan.
Thus, the addition of 1.0% duck skin gelatin and 0.3% carrageenan to semi-dried
restructured jerky formulations results in the optimization of quality
characteristics.
Collapse
Affiliation(s)
- Se-Myung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Su-Kyung Ku
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Min Jung Kim
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
81
|
Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products during Traditional Processing Processes: Reconciling Novelty and Tradition. Processes (Basel) 2020. [DOI: 10.3390/pr8080988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the most recent advances in monitoring changes induced in fish and other seafood, and meat and meat products, following the application of traditional processing processes by means of conventional and emerging advanced techniques. Selected examples from the literature covering relevant applications of spectroscopic methods (i.e., visible and near infrared (VIS/NIR), mid-infrared (MIR), Raman, nuclear magnetic resonance (NMR), and fluorescence) will be used to illustrate the topics covered in this review. Although a general reluctance toward using and adopting new technologies in traditional production sectors causes a relatively low interest in spectroscopic techniques, the recently published studies have pointed out that these techniques could be a powerful tool for the non-destructive monitoring and process optimization during the production of muscle food products.
Collapse
|
82
|
Sawicki T, Wiczkowski W, Hrynkiewicz M, Bączek N, Hornowski A, Honke J, Topolska J. Characterization of the phenolic acid profile and
in vitro
bioactive properties of white beetroot products. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition Faculty of Food Sciences University of Warmia and Mazury in Olsztyn Słoneczna 45F Olsztyn10‐719Poland
- Institute of Animal Reproduction and Food Research Polish Academy of Science Tuwima 10 Olsztyn10‐748Poland
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research Polish Academy of Science Tuwima 10 Olsztyn10‐748Poland
| | - Monika Hrynkiewicz
- Faculty of Food Science Chair of Food Biochemistry University of Warmia and Mazury in Olsztyn Pl. Cieszyński 1, Kortowo Olsztyn10‑726Poland
| | - Natalia Bączek
- Institute of Animal Reproduction and Food Research Polish Academy of Science Tuwima 10 Olsztyn10‐748Poland
| | - Andrzej Hornowski
- TORSEED S.A. – Garden Seed and Nursery Stock Company in Toruń Żółkiewskiego Toruń87‐100Poland
| | - Joanna Honke
- Institute of Animal Reproduction and Food Research Polish Academy of Science Tuwima 10 Olsztyn10‐748Poland
| | - Joanna Topolska
- Institute of Animal Reproduction and Food Research Polish Academy of Science Tuwima 10 Olsztyn10‐748Poland
| |
Collapse
|
83
|
Hellebois T, Tsevdou M, Soukoulis C. Functionalizing and bio-preserving processed food products via probiotic and synbiotic edible films and coatings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:161-221. [PMID: 32892833 DOI: 10.1016/bs.afnr.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Edible films and coatings constitute an appealing concept of innovative, cost-effective, sustainable and eco-friendly packaging solution for food industry applications. Edible packaging needs to comply with several technological pre-requisites such as mechanical durability, low permeability to water vapor and gases, good optical properties, low susceptibility to chemical or microbiological alterations and neutral sensory profile. Over the past few years, functionalization of edible films and coatings via the inclusion of bioactive compounds (antioxidants, micronutrients, antimicrobials, natural coloring and pigmentation agents) and beneficial living microorganisms has received much attention. As for living microorganisms, probiotic bacterial cells, primarily belonging to the Lactobacilli or Bifidobacteria genera, have been exploited to impart bespoke health and biopreservation benefits to processed food. Given that the health benefit conferring and biopreservation potential of probiotics is dependent on several extrinsic and intrinsic parameters, the development of probiotic and synbiotic edible packaging concepts is a quite challenging task. In the present chapter, we aimed at a timely overview of the technological advances in the field of probiotic, symbiotic and synbiotic edible films and coatings. The individual or combined effects of intrinsic (matrix composition and physical state, pH, dissolved oxygen, water activity, presence of growth stimulants or inhibitors) and extrinsic (film forming method, food processing, storage time and conditions, exposure to gastrointestinal conditions) factors on maintaining the biological activity of probiotic cells were addressed. Moreover, the impact of living cells inclusion on the mechanical, physicochemical and barrier properties of the edible packaging material as well as on the shelf-life and quality of the coated or wrapped food products, were duly discussed.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg; Université de Lorraine, LIBio, Nancy, France
| | - Maria Tsevdou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
84
|
Kumar SS, Arya M, Chauhan AS, Giridhar P. Basella rubra
fruit juice betalains as a colorant in food model systems and shelf‐life studies to determine their realistic usability. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sandopu Sravan Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Plant Cell Biotechnology Department CSIR–Central Food Technological Research Institute Mysore India
| | - Monisha Arya
- Plant Cell Biotechnology Department CSIR–Central Food Technological Research Institute Mysore India
| | - Attar Singh Chauhan
- Fruit and Vegetable Technology Department CSIR–Central Food Technological Research Institute Mysore India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Plant Cell Biotechnology Department CSIR–Central Food Technological Research Institute Mysore India
| |
Collapse
|
85
|
Cai HL, Yang S, Jin L, Chen ZG. A cost-effective method for wet potato starch preservation based on hurdle technology. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
86
|
Centineo A, Brandani S. Measurement of water vapor adsorption isotherms in mesoporous materials using the zero length column technique. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Uranga J, Etxabide A, Cabezudo S, de la Caba K, Guerrero P. Valorization of marine-derived biowaste to develop chitin/fish gelatin products as bioactive carriers and moisture scavengers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135747. [PMID: 31806316 DOI: 10.1016/j.scitotenv.2019.135747] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Marine-derived biowaste was valorized to develop chitin/fish gelatin porous materials with the aim of being used as moisture scavengers and bioactive carriers. Chitin was extracted from squid pens, abundant and available biowastes from fishery industry, through a sustainable process and the environmental assessment was carried out. Besides the valorization of biowaste, it is worth noting that the use of this specific biowaste allows the avoidance of discoloration and demineralization processes to extract chitin and, thus, a lower consumption of resources, both chemicals and energy, in comparison to the conventional chitin extraction from crustacean shells. Consequently, this alternative source of chitin brings economic and environmental benefits. In addition to the reduction of food waste disposal, the incorporation of squid pen-extracted chitin into fish gelatin formulations led to the conversion of a biowaste into a value-added product. In this regard, chitin was employed as a reinforcing agent in order to improve the mechanical behavior of fish gelatin materials. It is worth noting that good compatibility between gelatin and chitin was achieved since no chitin aggregation was observed. Furthermore, more defined pores were obtained after chitin addition. Additionally, tetrahydrocurcumin was incorporated into the formulation as a bioactive and its release was analyzed during three days. It was observed that samples prepared with chitin and THC showed potential as active porous materials for bioactive delivery.
Collapse
Affiliation(s)
- Jone Uranga
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Alaitz Etxabide
- ALITEC, Public University of Navarra, Department of Agronomy, Biotechnology and Food, Campus Arrosadia s/n, 31006 Pamplona, Spain
| | - Sara Cabezudo
- BIOMAT research group, University of the Basque Country (UPV/EHU), Department of Business Management, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
88
|
Meijer GW, Lähteenmäki L, Stadler RH, Weiss J. Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Crit Rev Food Sci Nutr 2020; 61:97-115. [PMID: 32003225 DOI: 10.1080/10408398.2020.1718597] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purpose of food processing today is to make food safer, more nutritious and tastier, and to increase storage life. Consumers have a lack of trust in the way food is produced, formulated and processed, particularly with possible contaminants or chemical residues from production. Food manufacturers are not seen as being highly trusted sources. This may partly result from manufacturers' reluctance to share all information and to protect intellectual property via patents and thus maintain a competitive edge. There is a need to inform the consumer better about what operations the involved ingredients are subjected to and why. Various ways of food processing are reviewed. New food processing technologies face challenges when introduced and factors influencing consumers' and other stakeholders' acceptance should be part of decision-making process when adopting new technologies. Consumers' perception of risks is not the same as the risk assessment made by experts. A few specific cases are being discussed to further highlight the multiplicity of factors that may contribute to the development of a certain consumer perception about a product or a class of products. This is also linked to the emergence of certain terminologies that are associated with an increasingly negative perception of the processing of foods. We recommend more transparency on food formulation and food processing to restore consumer trust, which enables to take the advantage of the benefits different processing methods offer. Food manufacturers must make an effort to let consumers know how their food is being processed within the walls of the factory and highlight the benefits vis-à-vis preparing foods in a domestic environment.
Collapse
Affiliation(s)
- Gert W Meijer
- Research & Development, Société des Produits Nestlé S.A, Vevey, Switzerland.,Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Richard H Stadler
- Research & Development, Société des Produits Nestlé S.A, Vevey, Switzerland
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
89
|
Jo HG, Kim MJ, Moon BY, Sin YS, Lee KS, Cheong SH. Physicochemical, nutritional, and quality parameters of salted semidried mullet ( Chelon haematocheilus) prepared with different processing methods. Food Sci Nutr 2019; 7:4045-4062. [PMID: 31890185 PMCID: PMC6924332 DOI: 10.1002/fsn3.1270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/14/2022] Open
Abstract
The mullet (Chelon haematocheilus) is a cosmopolitan coastal species. It is often consumed as a sliced raw fish in Korea and as a dried and salted fish roe in several countries, including the southeastern United States and Japan. In this study, to optimize traditional processing of salted semidried mullet (SSDM) for the development of high-quality products, nine different types of traditional process were applied, and quality changes including physicochemical, nutritional, and sanitary properties were observed. The approximate composition of SSDM was as follows: moisture, 66.1% to 71.8%; ash, 1.65% to 3.75%; crude protein, 16.12% to 18.09%; and crude lipid, 1.11% to 2.07%. The salinity, water activity (Aw), color parameters, peroxide value (POV), acid value (AV), thiobarbituric acid (TBA), and the total volatile basic nitrogen (TVB-N) contents in fresh mullet (FM) and different SSDM groups were affected by different processing techniques including salt concentration and drying methods. In particular, the salinity was significantly increased, whereas the Aw was significantly decreased in all SSDM groups compared to those of FM group. In both FM and SSDM groups, the AV, POV, and TBA values gradually increased with prolonged storage and crude fat content; however, they were not affected by salinity. The amino and fatty acid content also varied depending on the processing method; however, the composition and protein patterns were similar among the groups. The total aerobic bacterial numbers of all SSDM groups were also influenced by different processing methods. The microbial numbers in the mullet after salted semidried treatment were markedly lower than in the FM group during refrigerated storage for 14 days. Therefore, salted semidried treatment for mullet show extended shelf life and improved microbiological safety and biochemical parameters during refrigerated storage.
Collapse
Affiliation(s)
- Hee Geun Jo
- Department of Marine Bio Food ScienceCollege of Fisheries and Ocean ScienceChonnam National UniversityYeosuKorea
| | - Min Ji Kim
- Department of Marine Bio Food ScienceCollege of Fisheries and Ocean ScienceChonnam National UniversityYeosuKorea
| | - Bo Yeong Moon
- Department of Marine Bio Food ScienceCollege of Fisheries and Ocean ScienceChonnam National UniversityYeosuKorea
| | - Yong Sik Sin
- Department of Environmental Engineering & BiotechnologyMokpo National Maritime UniversityMokpoKorea
| | - Kyoung Seon Lee
- Department of Environmental Engineering & BiotechnologyMokpo National Maritime UniversityMokpoKorea
| | - Sun Hee Cheong
- Department of Marine Bio Food ScienceCollege of Fisheries and Ocean ScienceChonnam National UniversityYeosuKorea
| |
Collapse
|
90
|
Dos Anjos HA, Luna S, Hernández-Macedo ML, López JA. Antimicrobial and Antioxidant Active Food Packaging: Technological and Scientific Prospection. Recent Pat Biotechnol 2019; 14:99-111. [PMID: 31584383 DOI: 10.2174/1872208313666191004113756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial and antioxidant packaging play an important role in the food industry by ensuring food quality and prolonging the product's shelf life. Therefore, this scientific survey covers the technological domain in the active food packaging development processes and types of packaging. METHODS This paper aims to provide a review of patents and scientific publications on active packaging with antimicrobial and antioxidant properties in order to show technological advances in this field of knowledge and its applicability in the food industry. RESULTS The patent review indicates an increase in the number of documents deposited in recent decades regarding various types of packaging formulations, particularly active packaging to preserve foods and their shelf life. In the last few decades, the scientific publication also includes several studies concerning the development of active food packaging using natural products with antimicrobial and antioxidant proprieties. Overall, the results show the advantages of incorporating natural products into polymer matrices to develop industrial packaging, providing a safe and high-quality food product to the consumer. On the other hand, the review also highlighted lack of cooperation between inventors and companies of active packaging development. CONCLUSION Further study in this regard would help provide data form research and patents on the active food-packaging field as well as economic issues, indicating the global development scenario of this innovative area.
Collapse
Affiliation(s)
- Heriberto A Dos Anjos
- Postgraduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
| | - Saionara Luna
- Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Bahia (UFBA), Salvador, Brazil
| | - María L Hernández-Macedo
- Postgraduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil.,Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Jorge A López
- Postgraduate Program in Industrial Biotechnology, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil.,Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| |
Collapse
|
91
|
Filippov AN, Shkirskaya SA. Approbation of the Cell Model of a Cation-Exchange Membrane on 1 : 1 Electrolytes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619050020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
92
|
WITHDRAWN: Measurement of water vapor adsorption isotherms in mesoporous materials using the zero length column technique. CHEMICAL ENGINEERING SCIENCE: X 2019. [DOI: 10.1016/j.cesx.2019.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
93
|
Filippov AN, Shkirskaya SA. Verification of the Cell (Heterogeneous) Model of an Ion-Exchange Membrane and Its Comparison with the Homogeneous Model. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19050041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
94
|
Kwon T, Chandimali N, Lee DH, Son Y, Yoon SB, Lee JR, Lee S, Kim KJ, Lee SY, Kim SY, Jo YJ, Kim M, Park BJ, Lee JK, Jeong DK, Kim JS. Potential Applications of Non-thermal Plasma in Animal Husbandry to Improve Infrastructure. In Vivo 2019; 33:999-1010. [PMID: 31280188 PMCID: PMC6689345 DOI: 10.21873/invivo.11569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
Infrastructure in animal husbandry refers to fundamental facilities and services necessary for better living conditions of animals and its economy to function through better productivity. Mainly, infrastructure can be divided into two categories: hard infrastructure and soft infrastructure. Physical infrastructure, such as buildings, roads, and water supplying systems, belongs to hard infrastructure. Soft infrastructure includes services which are required to maintain economic, health, cultural and social standards of animal husbandry. Therefore, the proper management of infrastructure in animal husbandry is necessary for animal welfare and its economy. Among various technologies to improve the quality of infrastructure, non-thermal plasma (NTP) technology is an effectively applicable technology in different stages of animal husbandry. NTP is mainly helpful in maintaining better health conditions of animals in several ways via decontamination from microorganisms present in air, water, food, instruments and surfaces of animal farming systems. Furthermore, NTP is used in the treatment of waste water, vaccine production, wound healing in animals, odor-free ventilation, and packaging of animal food or animal products. This review summarizes the recent studies of NTP which can be related to the infrastructure in animal husbandry.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Nisansala Chandimali
- Immunotherapy Convergence Research Center,Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yeonghoon Son
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ja-Rang Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sangil Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Ki Jin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Sang-Yong Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Se-Yong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Minseong Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Byoung-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Jun-Ki Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| |
Collapse
|
95
|
Gonda M, Rufo C, Cecchetto G, Vero S. Evaluation of different hurdles on Penicillium crustosum growth in sponge cakes by means of a specific real time PCR. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2195-2204. [PMID: 30996453 PMCID: PMC6443749 DOI: 10.1007/s13197-019-03702-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Limited shelf life of bakery products, caused by microbial deterioration, is a concern for industries due to economic losses. Fungal spoilage of sponge cakes industrially produced in Montevideo was caused mainly by Penicillium species, in particular by Penicillium crustosum. The combination of different hurdles was studied to inhibit P. crustosum growth in sponge cakes. A full factorial design was performed to study the effect of the concentration of potassium sorbate, pH, packaging atmosphere and storage time. The results showed that packaging atmosphere and storage time were the significant factors in the ranges tested. No growth was detected in cakes stored in modified atmosphere packaging (MAP) (N2:CO2 50:50) at room temperature (25 °C) for 15 days. The effect of MAP on P. crustosum growth in cakes at room temperature was compared with the effect of air-packaging and storage at low temperature (4 °C) for 30 days. P. crustosum growth was not detected in cakes packaged in MAP, whereas it was detected after 20 days in cakes packaged in air and stored at 4 °C. This growth was quantified by a specific real time PCR developed in this work. Specific primers were designed using the sequence of β-tubulin gene of P. crustosum as a target and PCR conditions were adjusted to ensure specificity. PCR efficiency was 107%, with a detection limit of 0.0014 ng of DNA. The qPCR method presented here, resulted specific and sensitive enough to detect the growth of P. crustosum even before biodeterioration signs were visible.
Collapse
Affiliation(s)
- Mariana Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo, 11800 Uruguay
| | - Caterina Rufo
- Alimentos y Nutrición, Instituto Polo Tecnológico, Facultad de Química, Universidad de la República, By Pass Ruta 8 s/n, Pando, Canelones Uruguay
| | - Gianna Cecchetto
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo, 11800 Uruguay
- Microbiología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo, 11800 Uruguay
| |
Collapse
|