51
|
Fredsgaard M, Kaniki SEK, Antonopoulou I, Chaturvedi T, Thomsen MH. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023; 28:5312. [PMID: 37513186 PMCID: PMC10384198 DOI: 10.3390/molecules28145312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.
Collapse
Affiliation(s)
| | | | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | | | | |
Collapse
|
52
|
Martinović J, Lukinac J, Jukić M, Ambrus R, Planinić M, Šelo G, Klarić AM, Perković G, Bucić-Kojić A. In Vitro Bioaccessibility Assessment of Phenolic Compounds from Encapsulated Grape Pomace Extract by Ionic Gelation. Molecules 2023; 28:5285. [PMID: 37446946 DOI: 10.3390/molecules28135285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace extract (PRE) with sodium alginate (SA), a mixture of SA with gelatin (SA-GEL), and SA with chitosan (SA-CHIT) on the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was studied. A total of 27 individual phenolic compounds (IPCs) were quantified by UHPLC. The addition of a second coating to SA improved the encapsulation efficiency (EE), and the highest EE was obtained for SA-CHIT microbeads (56.25%). Encapsulation affected the physicochemical properties (size, shape and texture, morphology, crystallinity) of the produced microbeads, which influenced the delivery of phenolics to the intestine and their BI. Thus, SA-GEL microbeads had the largest size parameters, as confirmed by scanning electron microscopy (SEM), and the highest BI for total phenolic compounds and IPCs (gallic acid, 3,4-dihydroxybenzoic acid and o-coumaric acid, epicatechin, and gallocatechin gallate) ranged from 96.20 to 1011.3%. The results suggest that encapsulated PRE has great potential to be used as a functional ingredient in products for oral administration.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana-Marija Klarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
53
|
Gomez-Urios C, Kalaydzhiev H, Blesa J, Esteve MJ, Nacheva E, Iserliyska D, Tomlekova N. Green Assessment of Phenolic Acid Composition and Antioxidant Capacity of Advanced Potato Mutant Lines through UPLC-qTOF-MS/MS Quantification. Foods 2023; 12:2616. [PMID: 37444356 DOI: 10.3390/foods12132616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Potatoes are one of the most consumed crops worldwide. They contain a high amount of bioactive compounds such as phenolic compounds and vitamins with important antioxidant activities, which makes this crop of high biological value for human health. The goal of this research was to biochemically evaluate polyphenol levels and antioxidant capacities in parent and control genotypes compared to advanced mutant potato lines in the M1V8 generation. This will reveal the genetic changes that result from induced mutagenesis. The quantified compounds and the evaluated antioxidant activity boost the health benefits of consuming the improved mutant potatoes. In the present study, the phenolic composition and antioxidant activity of eighteen mutant and initial potato genotypes were analyzed by UPLC-qTOF-MS/MS and the ORAC method, respectively. In each of the hybrid combinations, mutant lines with an improved phenolic compound profile were observed. Representative samples from the third hybrid combination had notable increases in phenolic compound concentrations, as well as the presence of metabolites not found in the parental lines. With one exception, the remaining nine mutants showed significantly higher antioxidant capacities. The results will be used in future potato breeding programs, with participation of the valuable mutant lines containing new phenolic substances not present in the initial genotypes.
Collapse
Affiliation(s)
- Clara Gomez-Urios
- Nutrition and Food Science, Faculty of Pharmacy, University of Valencia, Avenida Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Hristo Kalaydzhiev
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies-Plovdiv, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Jesus Blesa
- Nutrition and Food Science, Faculty of Pharmacy, University of Valencia, Avenida Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Maria Jose Esteve
- Nutrition and Food Science, Faculty of Pharmacy, University of Valencia, Avenida Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Emiliya Nacheva
- Maritsa Vegetable Crops Research Institute, Agricultural Academy-Sofia, 32 Brezovsko shosse St, 4003 Plovdiv, Bulgaria
| | - Dida Iserliyska
- Institute of Food Preservation and Quality-Plovdiv, Agricultural Academy-Sofia, 154 Vasil Aprilov Blvd., 4003 Plovdiv, Bulgaria
| | - Nasya Tomlekova
- Maritsa Vegetable Crops Research Institute, Agricultural Academy-Sofia, 32 Brezovsko shosse St, 4003 Plovdiv, Bulgaria
| |
Collapse
|
54
|
Paiva YF, Figueirêdo RMFD, Queiroz AJDM, Amadeu LTS, Santos FSD, Reis CGD, Carvalho AJDBA, Lima MDS, Lima AGBD, Gomes JP, Moura RL, Moura HV, Silva ETDV. Physicochemical Aspects, Bioactive Compounds, Phenolic Profile and In Vitro Antioxidant Activity of Tropical Red Fruits and Their Blend. Molecules 2023; 28:4866. [PMID: 37375421 DOI: 10.3390/molecules28124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The combination of fruit pulps from different species, in addition to multiplying the offer of flavors, aromas and textures, favors the nutritional spectrum and the diversity of bioactive principles. The objective was to evaluate and compare the physicochemical characteristics, bioactive compounds, profile of phenolic compounds and in vitro antioxidant activity of pulps of three species of tropical red fruits (acerola, guava and pitanga) and of the blend produced from the combination. The pulps showed significant values of bioactive compounds, with emphasis on acerola, which had the highest levels in all parameters, except for lycopene, with the highest content in pitanga pulp. Nineteen phenolic compounds were identified, being phenolic acids, flavanols, anthocyanin and stilbene; of these, eighteen were quantified in acerola, nine in guava, twelve in pitanga and fourteen in the blend. The blend combined positive characteristics conferred by the individual pulps, with low pH favorable for conservation, high levels of total soluble solids and sugars, greater diversity of phenolic compounds and antioxidant activity close to that of acerola pulp. Pearson's correlation between antioxidant activity and ascorbic acid content, total phenolic compounds, flavonoids, anthocyanins and carotenoids for the samples were positive, indicating their use as a source of bioactive compounds.
Collapse
Affiliation(s)
- Yaroslávia Ferreira Paiva
- Science and Technology Center, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | | | | | | | | | - Carolaine Gomes Dos Reis
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina 56314-522, Brazil
| | | | - Josivanda Palmeira Gomes
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Rodrigo Leite Moura
- Science and Technology Center, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Henrique Valentim Moura
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | | |
Collapse
|
55
|
Wang Q, Qiu Z, Chen Y, Song Y, Zhou A, Cao Y, Xiao J, Xiao H, Song M. Review of recent advances on health benefits, microbial transformations, and authenticity identification of Citri reticulatae Pericarpium bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:10332-10360. [PMID: 37326362 DOI: 10.1080/10408398.2023.2222834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The extensive health-promoting effects of Citri Reticulatae Pericarpium (CRP) have attracted researchers' interest. The difference in storage time, varieties and origin of CRP are closely related to the content of bioactive compounds they contain. The consitituent transformation mediated by environmental microorganisms (bacteria and fungi) and the production of new bioactive components during the storage process may be the main reason for 'the older, the better' of CRP. In addition, the gap in price between different varieties can be as large as 8 times, while the difference due to age can even reach 20 times, making the 'marketing young-CRP as old-CRP and counterfeiting origin' flood the entire market, seriously harming consumers' interests. However, so far, the research on CRP is relatively decentralized. In particular, a summary of the microbial transformation and authenticity identification of CRP has not been reported. Therefore, this review systematically summarized the recent advances on the main bioactive compounds, the major biological activities, the microbial transformation process, the structure, and content changes of the active substances during the transformation process, and authenticity identification of CRP. Furthermore, challenges and perspectives concerning the future research on CRP were proposed.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenyuan Qiu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yuqing Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
56
|
Mehmood A, Zeb A, Ateeq MK. In vivo antidiabetic effects of phenolic compounds of spinach, mustard, and cabbage leaves in mice. Heliyon 2023; 9:e16616. [PMID: 37292279 PMCID: PMC10245046 DOI: 10.1016/j.heliyon.2023.e16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Leafy vegetables are considered to have health-promoting potentials, mainly attributed to bioactive phenolic compounds. The antidiabetic effects of spinach, mustard, and cabbage were studied by feeding their phenolic-rich aqueous extracts to alloxan-induced diabetic mice. The antioxidant, biochemical, histopathological, and hematological indices of the control, diabetic, and treated mice were studied. Phenolic compounds present in the extracts were identified and quantified using HPLC-DAD. Results showed ten, nineteen, and eleven phenolic compounds in spinach, mustard, and cabbage leave aqueous extracts, respectively. The body weight, tissue total glutathione (GSH) contents, fasting blood sugar, liver function tests, renal function tests, and lipid profile of the mice were affected by diabetes and were significantly improved by the extract treatments. Likewise, hematological indices and tissues histological studies also showed recovery from diabetic stress in treated mice. The study's findings highlight that the selected leafy vegetables potentially mitigate diabetic complications. Among the studied vegetables, cabbage extract was comparatively more active in ameliorating diabetic stress.
Collapse
Affiliation(s)
- Arif Mehmood
- Department of Biotechnology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khalil Ateeq
- Department of Basic Sciences, University of Veterinary and Animals Sciences, Lahore, Pakistan
| |
Collapse
|
57
|
Leitão DDSTC, Barbosa-Carvalho APP, de Siqueira FC, Sousa RPE, Lopes AS, Chisté RC. Extracts of Eryngium foetidum Leaves from the Amazonia Were Efficient Scavengers of ROS and RNS. Antioxidants (Basel) 2023; 12:antiox12051112. [PMID: 37237978 DOI: 10.3390/antiox12051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Eryngium foetidum L. is an edible plant widespread in Amazonian cuisine and its leaves have high levels of promising phenolic compounds for the production of extracts to be used as natural antioxidant additives. In this study, the in vitro scavenging capacity of three freeze-dried extracts of E. foetidum leaves, obtained by ultrasound-assisted extraction using green solvents [water (H2O), ethanol (EtOH), and ethanol/water (EtOH/H2O)], was investigated against the most common reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated in both physiological and food systems. Six phenolic compounds were identified, chlorogenic acid (2198, 1816 and 506 μg/g) being the major compound for EtOH/H2O, H2O, and EtOH extracts, respectively. All E. foetidum extracts were efficient in scavenging all the ROS and RNS (IC50 = 45-1000 µg/mL), especially ROS. The EtOH/H2O extract showed the highest contents of phenolic compounds (5781 μg/g) and showed the highest efficiency in scavenging all the reactive species, with high efficiency for O2•- (IC50 = 45 μg/mL), except for ROO•, for which EtOH extract was the most efficient. Therefore, E. foetidum leaf extracts, especially EtOH/H2O, showed high antioxidant potential to be used as natural antioxidants in food formulations and are promising for nutraceuticals products.
Collapse
Affiliation(s)
| | - Anna Paula Pereira Barbosa-Carvalho
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Francilia Campos de Siqueira
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Railson Pontes E Sousa
- Faculty of Biotechnology, Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| |
Collapse
|
58
|
Stanciauskaite M, Poskute M, Kurapkiene V, Marksa M, Jakstas V, Ivanauskas L, Kersiene M, Leskauskaite D, Ramanauskiene K. Optimization of Delivery and Bioavailability of Encapsulated Caffeic Acid. Foods 2023; 12:foods12101993. [PMID: 37238812 DOI: 10.3390/foods12101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Caffeic acid is a widely distributed phenolic acid. It is described in the scientific literature that caffeic acid has poor solubility. The aim of this study was to improve the solubility of caffeic acid for better dissolution kinetics when administered orally. During the study, oral capsules of different compositions were modeled. The results of the disintegration test revealed that the excipients affected the disintegration time of the capsules. The excipient hypromellose prolonged the disintegration time and dissolution time of caffeic acid. The dissolution kinetics of caffeic acid from capsules depend on the chosen excipients. P407 was more effective compared to other excipients and positively affected the dissolution kinetics of caffeic acid compared to other excipients. When the capsule contained 25 mg of β-cyclodextrin, 85% of the caffeic acid was released after 60 min. When the capsule contained 25-50 mg poloxamer 407, more than 85.0% of the caffeic acid was released from capsules after 30 min. The research results showed that in order to improve the dissolution kinetics of caffeic acid, one of the important steps is to improve its solubility.
Collapse
Affiliation(s)
- Monika Stanciauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Monika Poskute
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Vaida Kurapkiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Milda Kersiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Daiva Leskauskaite
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Kristina Ramanauskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
59
|
Boateng ID, Kumar R, Daubert CR, Flint-Garcia S, Mustapha A, Kuehnel L, Agliata J, Li Q, Wan C, Somavat P. Sonoprocessing improves phenolics profile, antioxidant capacity, structure, and product qualities of purple corn pericarp extract. ULTRASONICS SONOCHEMISTRY 2023; 95:106418. [PMID: 37094478 PMCID: PMC10149314 DOI: 10.1016/j.ultsonch.2023.106418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO 65211, United States of America.
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Lucas Kuehnel
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Qianwei Li
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America; Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
60
|
Liuzzi GM, Petraglia T, Latronico T, Crescenzi A, Rossano R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023; 15:nu15081913. [PMID: 37111131 PMCID: PMC10145943 DOI: 10.3390/nu15081913] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.
Collapse
Affiliation(s)
- Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Aniello Crescenzi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
61
|
Pantoja RK, Albuquerque CFB, do Nascimento RA, De Faria LJG, Maia JGS, Setzer WN, Gratieri T, da Silva JKR. Stability and Antioxidant Activity of Pouteria macrophylla Fruit Extract, a Natural Source of Gallic Acid. Molecules 2023; 28:molecules28083477. [PMID: 37110711 PMCID: PMC10144638 DOI: 10.3390/molecules28083477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Pouteria macrophylla (cutite) fruits are rich in phenolic acids, resulting in antioxidant and skin depigmenting activity. The aim of this study, then, is to evaluate the cutite extract stability under three variations of light, time, and temperature using a Box-Behnken experimental design to analyze through the surface response the variations of the total phenolic content (TPC), antioxidant activity (AA), and gallic acid content (GA). A colorimetric assay was also performed, and a decrease in the darkening index was noticed due to the high phenolic coloration in the presence of light, indicating less degradation to extract stability. The experimental planning showed variations in all responses, and second-order polynomial models were calculated and considered predictable, as well as the effects were significant. The TPC exhibited a variation in less concentrated samples (0.5% p/v) at higher temperatures (90 °C). In contrast, the temperature was the only influential variable for AA, where only higher temperatures (60-90 °C) were able to destabilize the fruit extract. Differently, GA showed only the concentration as the influential variable, exhibiting that neither temperature nor time of exposure could affect the gallic acid content stability of P. macrophylla extract. For this, P. macrophylla extract was shown to be highly stable, providing a great perspective on cosmetic application.
Collapse
Affiliation(s)
- Raioní K Pantoja
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Camila Fernanda B Albuquerque
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Rafael A do Nascimento
- Laboratório de Engenharia de Produtos Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Lênio José G De Faria
- Laboratório de Engenharia de Produtos Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | | | - Tais Gratieri
- Laboratory of Food, Drug and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Joyce Kelly R da Silva
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
62
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
63
|
Li Z, Zhang J, Meng Q, Yang L, Qiu M, Li Y, Yao S, Wei W, Yao C, Bi Q, Li J, Guo DA. The content and distribution of 18 phenolic compounds in 462 batches of edible flowers from 73 species commercially available in China. Food Res Int 2023; 166:112590. [PMID: 36914345 DOI: 10.1016/j.foodres.2023.112590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Phenolic compounds are widely distributed in plant flowers. The present study systematically analyzed 18 phenolic compounds, represented by 4 monocaffeoylquinic acids, 4 dicaffeoylquinic acids, 5 flavones and 5 other phenolic acids, in 73 species (462 batches of samples) of edible flowers by a new established and validated HPLC-UV (high-performance liquid chromatography ultraviolet) (327/217 nm) method. Among all the species analyzed, 59 species were demonstrated to contain at least one or more quantifiable phenolic compounds, especially in families of Composite, Rosaceae and Caprifoliaceae. 3-Caffeoylquinic acid was found to be the most ubiquitous phenolic compound (in 193 batches of 73 species with the content between 0.061 and 65.10 mg/g), followed by rutin and isoquercitrin. While sinapic acid, 1-Caffeoylquinic acid and 1,3-dicaffeoylquinic acid (only in 5 batches of 1 specie with the content between 0.069 and 0.12 mg/g) were the least ones both in ubiquity and concentration. Additionally, the distribution and abundances of phenolic compounds were compared between these flowers, which would be valuable for auxiliary authentication or other usages. This research covered almost all edible and medicinal flowers in the Chinese market with 18 phenolic compounds therein quantified, which delivered a bird view of phenolic compounds in a broad perspective of edible flowers.
Collapse
Affiliation(s)
- Ziqing Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Qian Meng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Lin Yang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Mingyang Qiu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Yun Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Shuai Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Wenlong Wei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Changliang Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Qirui Bi
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - Jiayuan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China
| | - De-An Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China; National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road (#)501, Shanghai 201203, China.
| |
Collapse
|
64
|
Zhang Y, Zhang T, Dong C, Zhao R, Zhang X, Wang C. Lycopene-loaded emulsions stabilized by whey protein covalently modified with pectin or/and chlorogenic acid: Enhanced physicochemical stability and reduced bio-accessibility. Food Chem 2023; 417:135879. [PMID: 36933434 DOI: 10.1016/j.foodchem.2023.135879] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Lycopene-loaded emulsions were formulated with whey protein isolate (WPI) covalently modified with high methoxylated pectin (HMP) or/and chlorogenic acid (CA) prepared by dry heating or/and alkali grafting. Covalent WPI products were confirmed by SDS-PAGE and degree of graft/CA binding equivalent values. The α-helix and β-sheet percentage, surface hydrophobicity and fluorescence intensity of WPI decreased significantly (p < 0.05) upon binding. Both binary and ternary complexes enhanced the stability of the emulsions, and lycopene retained more after UV irradiation, thermal treatment, storage, compared with emulsions stabilized by WPI, with the best protection by both ternary complexes. In vitro simulated digestion results showed that free fatty acids were released in the order of WPI > WPI-HMP > WPI-CA > WPI-HMP-CA ≈ WPI-CA-HMP. Bio-accessibility analysis showed the same trend as the fatty acid release rate. These results may provide a theoretical basis for applications of conjugating protein with polysaccharide or/and polyphenol emulsions.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China; School of Grains, Jilin Business and Technology College, Changchun, Jilin 130507, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoge Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
65
|
Hong C, Zhao YM, Zhou C, Guo Y, Ma H. Ultrasonic washing as an abiotic elicitor to increase the phenolic content in fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:785-808. [PMID: 36541199 DOI: 10.1111/1541-4337.13091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Ultrasonic washing has been widely applied to the postharvest storage of fruits and vegetables as a residue-free physical washing technology, which plays an important role in improving shelf-life, safety, and nutritional value. Phenolics are a large group of phytochemicals widespread in fruits and vegetables, and they have been considered potential protective factors against some diseases because of potent antioxidative properties. Previous studies have shown that ultrasonic washing can increase the phenolic content of fruits and vegetables immediately or during storage through the induction of plant stress responses, which is of great significance for improving the functional and nutritional value of fruits and vegetables. However, the mechanisms of ultrasound as an elicitor to improve the phenolic content remain controversial. Therefore, this review summarizes the applications of ultrasonic washing to increase the phenolic content in fruits and vegetables. Meanwhile, the corresponding physiological stress response mechanisms of the phenolic accumulation in terms of immediate stress responses (i.e., higher extractability of phenolics) and late stress responses (i.e., metabolism of phenolics) are expounded. Moreover, a hypothetical model is proposed to explain phenolic biosynthesis triggered by signaling molecules produced under ultrasound stress, including primary signal (i.e., extracellular adenosine triphosphate) and secondary signals (e.g., reactive oxygen species, Ca2+ , NO, jasmonates, and ethylene). Additionally, the techno-economic feasibility of ultrasonic washing technology is also discussed. Further, challenges and trends for further development of ultrasonic washing as an abiotic elicitor applied to the postharvest storage of fruits and vegetables are presented.
Collapse
Affiliation(s)
- Chen Hong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi-Ming Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
66
|
Wang H, Zhang M, Wang E, Xiao R, Zhang S, Guo M. Agrobacterium fabrum gene atu1420 regulates the pathogenicity by affecting the degradation of growth- and virulence-associated phenols. Res Microbiol 2023; 174:104011. [PMID: 36455782 DOI: 10.1016/j.resmic.2022.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Agrobacterium fabrum is a phytopathogen that causes the crown gall disease. Some plant-derived molecules, e.g. phenols, directly affect A. fabrum-plant interactions. Here, we characterize a phenolic catabolism-related gene, atu1420, that affects the pathogenicity of A. fabrum. Atu1420 is predicted to be an O-demethylase with high structural homology to Sphingomonas paucimobilis LigM. The HPLC-UV analysis showed that atu1420 affected the degradation of acetosyringone (AS). The deletion of atu1420 gene significantly enhanced the AS-induced virulence (vir) gene expression. atu1420 was shown to relieve the inhibitory effect of vanillic acid on the AS-induced vir gene expression and the growth of A. fabrum. The expression of atu1420 and the degradation of AS in A. fabrum C58 was up-regulated by the addition of indole acetic acid (IAA). The inhibitory effect of IAA on the AS-induced vir gene expression was partially relieved by the deletion of atu1420 gene, indicating that accelerating the degradation of AS is one of the ways that IAA inhibits vir genes induction. Furthermore, atu1420 mutant produced more pronounced tumors on kalanchoe leaves than the wild-type strain. These findings reveal the role of atu1420 in A. fabrum-host interactions and will broaden our understanding of the regulatory network of the interactions.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Mengqi Zhang
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Erya Wang
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Ruoxuan Xiao
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Shuhang Zhang
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Minliang Guo
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
67
|
Modulating Inflammation-Mediated Diseases via Natural Phenolic Compounds Loaded in Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15020699. [PMID: 36840021 PMCID: PMC9964760 DOI: 10.3390/pharmaceutics15020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The global increase and prevalence of inflammatory-mediated diseases have been a great menace to human welfare. Several works have demonstrated the anti-inflammatory potentials of natural polyphenolic compounds, including flavonoid derivatives (EGCG, rutin, apigenin, naringenin) and phenolic acids (GA, CA, etc.), among others (resveratrol, curcumin, etc.). In order to improve the stability and bioavailability of these natural polyphenolic compounds, their recent loading applications in both organic (liposomes, micelles, dendrimers, etc.) and inorganic (mesoporous silica, heavy metals, etc.) nanocarrier technologies are being employed. A great number of studies have highlighted that, apart from improving their stability and bioavailability, nanocarrier systems also enhance their target delivery, while reducing drug toxicity and adverse effects. This review article, therefore, covers the recent advances in the drug delivery of anti-inflammatory agents loaded with natural polyphenolics by the application of both organic and inorganic nanocarriers. Even though nanocarrier technology offers a variety of possible anti-inflammatory advantages to naturally occurring polyphenols, the complexes' inherent properties and mechanisms of action have not yet been fully investigated. Thus, expanding the quest on novel natural polyphenolic-loaded delivery systems, together with the optimization of complexes' activity toward inflammation, will be a new direction of future efforts.
Collapse
|
68
|
Lyalina T, Shagdarova B, Zhuikova Y, Il’ina A, Lunkov A, Varlamov V. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce ( Lactuca sativa) Growth Parameters. Molecules 2023; 28:1915. [PMID: 36838903 PMCID: PMC9959803 DOI: 10.3390/molecules28041915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Seed priming increases germination, yield, and resistance to abiotic factors and phytopathogens. Chitosan is considered an ecofriendly growth stimulant and crop protection agent. Chitosan hydrolysate (CH) is an unfractionated product of hydrolysis of high-molecular-weight crab shell chitosan with a molecular weight of 1040 kDa and a degree of deacetylation of 85% with nitric acid. The average molecular weight of the main fraction in CH was 39 kDa. Lettuce seeds were soaked in 0.01-1 mg/mL CH for 6 h before sowing. The effects of CH on seed germination, plant morphology, and biochemical indicators at different growth stages were evaluated. Under the 0.1 mg/mL CH treatment, earlier seed germination was detected compared to the control. Increased root branching was observed, along with 100% and 67% increases in fresh weight (FW) at the 24th and 38th days after sowing (DAS), respectively. An increase in the shoot FW was found in CH-treated plants (33% and 4% at the 24th and 38th DAS, respectively). Significant increases in chlorophyll and carotenoid content compared to the control were observed at the 10th DAS. There were no significant differences in the activity of phenylalanine ammonia-lyase, polyphenol oxidase, β-1,3-glucanase, and chitinase at the 24th and 38th DAS. Seed priming with CH could increase the yield and uniformity of plants within the group. This effect is important for commercial vegetable production.
Collapse
Affiliation(s)
- Tatiana Lyalina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| | | | | | | | | | - Valery Varlamov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| |
Collapse
|
69
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
70
|
Li J, Gong Y, Li J, Fan L. Hydrothermal treatment improves xanthine oxidase inhibitory activity and affects the polyphenol profile of Flos Sophorae Immaturus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1205-1215. [PMID: 36086816 DOI: 10.1002/jsfa.12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flos Sophorae Immaturus (FSI) is rich in polyphenols and a potential uric acid-lowering food. However, the processing of FSI is greatly restricted due to the heat sensitivity and low solubility of polyphenols. In this study, hydrothermal treatment - an effective strategy - was applied to FSI processing. The variation of xanthine oxidase (XO) inhibitory effect and polyphenol composition of FSI during hydrothermal treatment were recorded. RESULTS The XO inhibition rate of FSI increased from 32.42% to 89.00% after hydrothermal treatment at 220 °C for 30 min, as well as total polyphenols (from 0.66 to 1.11 mg mL-1 ) and flavonoids (from 1.21 to 1.58 mg mL-1 ). However, high thermal temperature (>160 °C) and extended thermal time (>90 min) caused the degradation of polyphenols. Rutin, kaempferol-3-O-rutinoside and narcissoside rapidly degraded and converted to quercetin, kaempferol and isorhamnetin when the temperature exceeded 160 °C. The maximum yields of quercetin, kaempferol and isorhamnetin were at 220 °C for 30 min, 90 min and 90 min, respectively. Meanwhile, the conversion kinetics conformed to the first-order model. Interestingly, these newly formed polyphenols possessed better XO inhibitory effects than their derivatives with 3-O-rutinoside. CONCLUSION Polyphenol conversion during hydrothermal treatment was the main reason for enhancing XO inhibitory activity. Therefore, hydrothermal treatment is an appropriate method for improving the XO inhibitory effect of FSI. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Li
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yuhong Gong
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
71
|
Zhang D, Liu H, Wang S, Liu Y, Ji H. Wheat bran fermented by Lactobacillus regulated the bacteria-fungi composition and reduced fecal heavy metals concentrations in growing pigs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159828. [PMID: 36368386 DOI: 10.1016/j.scitotenv.2022.159828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Lactobacillus fermentation can increase the value of wheat bran, but the benefits of fermented wheat bran for pig production are poorly understood. We evaluated the phenolic acid content of wheat bran fermented with Lactobacillus. The bacterial and fungal compositions, short-chain fatty acids, and heavy metals concentrations in the feces of growing pigs were determined, and the correlations between the bacterial and fungal compositions and short-chain fatty acid and heavy metals concentrations were also assessed. The concentrations of phenolic acids (caffeic acid, catechinic acid, and gallic acid) were higher in fermented bran than in control wheat bran. The diversity of feces bacterial species was significantly higher, whereas the diversity of fungi was lower in fermented wheat bran treatment than those in the control group, and pigs consuming fermented and control wheat bran with different bacterial and fungal compositions had different growth rates. The abundance of genera in fungi that were less abundant in the fermented group samples than in the control samples (including Wallemia, Trichosporon, Candida, Aspergillus, and unclassified_f__Microascaceae) was positively correlated with heavy metals concentrations in pig feces, and the abundances of these fungi were negatively correlated with caffeic acid, catechinic acid, and gallic acid concentrations. Metagenomic function predictions indicated that larger amounts of secondary metabolites were synthesized in the fermented group than in the control group. The results provide new insights into the roles of bacterial-fungal interactions in the growth and decreasing environmental pollution of pigs consuming fermented wheat bran.
Collapse
Affiliation(s)
- Dongyan Zhang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Liu
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sixin Wang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yajuan Liu
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, China
| | - Haifeng Ji
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
72
|
Contribution of Phenolics and Free Amino Acids on the Antioxidant Profile of Commercial Lemon Verbena Infusions. Antioxidants (Basel) 2023; 12:antiox12020251. [PMID: 36829811 PMCID: PMC9952217 DOI: 10.3390/antiox12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Lemon verbena infusions are widely appreciated due to their agreeable lemony flavor and medicinal properties. In this study, the antioxidant potential, phenolic profile, and free amino acid profile of lemon verbena infusions from different commercial brands were studied. Characterization by UHPLC-QTOF-HRMS allowed the identification of 34 phenolics. The free amino acid profile (by RP-HPLC-FLD) was assessed for the first time, allowing the quantification of 16 amino acids. Furthermore, the infusions showed high antioxidant activity by different assays (ferric reducing antioxidant power, DPPH• scavenging, and oxygen radical absorbance capacity assays), which in turn were significantly correlated with total phenolics and total flavonoid contents. Notwithstanding, phenylalanine seemed to have also an impact on the antioxidant activity of the infusions, with significant correlations found. Finally, significant differences were found in all the evaluated parameters for one of the four commercial brands herein studied, which was possibly related to the different geographical origins of this sample. Overall, these lemon verbena infusions proved to be rich in a huge variety of bioactive compounds that can provide therapeutic potential.
Collapse
|
73
|
Gaur G, Gänzle MG. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 2023; 6:100448. [PMID: 36713641 PMCID: PMC9876838 DOI: 10.1016/j.crfs.2023.100448] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Lactobacillaceae are among the major fermentation organisms in most food fermentations but the metabolic pathways for conversion of (poly)phenolic compounds by lactobacilli have been elucidated only in the past two decades. Hydroxycinnamic and hydroxybenzoic acids are metabolized by separate enzymes which include multiple esterases, decarboxylases and hydroxycinnamic acid reductases. Glycosides of phenolic compounds including flavonoids are metabolized by glycosidases, some of which are dedicated to glycosides of plant phytochemicals rather than oligosaccharides. Metabolism of phenolic compounds in food fermentations often differs from metabolism in vitro, likely reflecting the diversity of phenolic compounds and the unknown stimuli that induce expression of metabolic genes. Current knowledge will facilitate fermentation strategies to achieve improved food quality by targeted conversion of phenolic compounds.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
74
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
75
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
76
|
Integrated Analysis of Widely Targeted Metabolomics and Transcriptomics Reveals the Effects of Transcription Factor NOR-like1 on Alkaloids, Phenolic Acids, and Flavonoids in Tomato at Different Ripening Stages. Metabolites 2022; 12:metabo12121296. [PMID: 36557334 PMCID: PMC9853326 DOI: 10.3390/metabo12121296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Tomato is abundant in alkaloids, phenolic acids, and flavonoids; however, the effect of transcription factor NOR-like1 on these metabolites in tomato is unclear. We used a combination of widely targeted metabolomics and transcriptomics to analyze wild-type tomatoes and CR-NOR-like1 tomatoes. A total of 83 alkaloids, 85 phenolic acids, and 96 flavonoids were detected with significant changes. Combined with a KEGG enrichment analysis, we revealed 16 differentially expressed genes (DEGs) in alkaloid-related arginine and proline metabolism, 60 DEGs were identified in the phenolic acid-related phenylpropane biosynthesis, and 30 DEGs were identified in the flavonoid-related biosynthesis pathway. In addition, some highly correlated differential-expression genes with differential metabolites were further identified by correlation analysis. The present research provides a preliminary view of the effects of NOR-like1 transcription factor on alkaloid, phenolic acid, and flavonoid accumulation in tomatoes at different ripening stages based on widely targeted metabolomics and transcriptomics in plants, laying the foundation for extending fruit longevity and shelf life as well as cultivating stress-resistant plants.
Collapse
|
77
|
El Gaamouch F, Chen F, Ho L, Lin HY, Yuan C, Wong J, Wang J. Benefits of dietary polyphenols in Alzheimer's disease. Front Aging Neurosci 2022; 14:1019942. [PMID: 36583187 PMCID: PMC9792677 DOI: 10.3389/fnagi.2022.1019942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disease affecting approximately 50 million people worldwide. It is estimated to reach 152 million by the year 2050. AD is the fifth leading cause of death among Americans age 65 and older. In spite of the significant burden the disease imposes upon patients, their families, our society, and our healthcare system, there is currently no cure for AD. The existing approved therapies only temporarily alleviate some of the disease's symptoms, but are unable to modulate the onset and/or progression of the disease. Our failure in developing a cure for AD is attributable, in part, to the multifactorial complexity underlying AD pathophysiology. Nonetheless, the lack of successful pharmacological approaches has led to the consideration of alternative strategies that may help delay the onset and progression of AD. There is increasing recognition that certain dietary and nutrition factors may play important roles in protecting against select key AD pathologies. Consistent with this, select nutraceuticals and phytochemical compounds have demonstrated anti-amyloidogenic, antioxidative, anti-inflammatory, and neurotrophic properties and as such, could serve as lead candidates for further novel AD therapeutic developments. Here we summarize some of the more promising dietary phytochemicals, particularly polyphenols that have been shown to positively modulate some of the important AD pathogenesis aspects, such as reducing β-amyloid plaques and neurofibrillary tangles formation, AD-induced oxidative stress, neuroinflammation, and synapse loss. We also discuss the recent development of potential contribution of gut microbiome in dietary polyphenol function.
Collapse
Affiliation(s)
- Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States
| | - Fiona Chen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lap Ho
- Department of Genetics and Genomic sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hsiao-Yun Lin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States
| | - Chongzhen Yuan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States
| | - Jean Wong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Geriatric Research, Education and Clinical Center, James J Peters VA Medical Center, Research & Development, Bronx, NY, United States,*Correspondence: Jun Wang,
| |
Collapse
|
78
|
Güler E. Polyphenols, organic acids, and their relationships in red grapes of Vitis vinifera and Isabella (Vitis labrusca) under arid conditions. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
79
|
Asyakina L, Atuchin V, Drozdova M, Kozlova O, Prosekov A. Ex Vivo and In Vitro Antiaging and Antioxidant Extract Activity of the Amelanchier ovalis from Siberia. Int J Mol Sci 2022; 23:ijms232315156. [PMID: 36499480 PMCID: PMC9738774 DOI: 10.3390/ijms232315156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Phenolic acids are biologically active substances that prevent aging and age-related diseases, e.g., cancer, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, etc. Cellular senescence is related to oxidative stress. The Siberian Federal District is rich in medicinal plants whose extracts contain phenolic acids. These plants can serve as raw materials for antiaging, antioxidant food supplements, and Amelanchier ovalis is one of them. In the present research, we tested the phytochemical profile of its extract for phenolic acids. Its geroprotective and antioxidant properties were studied both ex vivo and in vitro using Saccharomyces cerevisiae Y-564 as a model organism. The chromotographic analysis revealed gallic, p-hydroxybenzoic, and protocatechuic acids, as well as derivatives of chlorogenic and gallic acids. The research involved 0.25, 0.5, and 1.0 mg/mL extracts of Amelanchier ovalis, all of which increased the growth and lifespan of yeast cells. In addition, the extracts increased the survival rate of yeast under oxidative stress. An in vitro experiment also demonstrated the antioxidant potential of Amelanchier ovalis against ABTS radicals. Therefore, the Amelanchier ovalis berry extract proved to be an excellent source of phenolic acids and may be recommended as a raw material for use in antioxidant and geroprotective food supplements.
Collapse
Affiliation(s)
- Lyudmila Asyakina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650000 Kemerovo, Russia
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
- Correspondence:
| | - Margarita Drozdova
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650000 Kemerovo, Russia
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650000 Kemerovo, Russia
| | - Alexander Prosekov
- Department of Bionanotechnology, Kemerovo State University, 650000 Kemerovo, Russia
| |
Collapse
|
80
|
Drying Kinetic and Bioactive Compounds of Okara Dried in Microwave-Assisted Rotating-Pulsed Fluidized Bed Dryer. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
81
|
Wu H, Bak KH, Goran GV, Tatiyaborworntham N. Inhibitory mechanisms of polyphenols on heme protein-mediated lipid oxidation in muscle food: New insights and advances. Crit Rev Food Sci Nutr 2022; 64:4921-4939. [PMID: 36448306 DOI: 10.1080/10408398.2022.2146654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lipid oxidation is a major cause of quality deterioration that decreases the shelf-life of muscle-based foods (red meat, poultry, and fish), in which heme proteins, particularly hemoglobin and myoglobin, are the primary pro-oxidants. Due to increasing consumer concerns over synthetic chemicals, extensive research has been carried out on natural antioxidants, especially plant polyphenols. The conventional opinion suggests that polyphenols inhibit lipid oxidation of muscle foods primarily owing to their strong hydrogen-donating and transition metal-chelating activities. Recent developments in analytical techniques (e.g., protein crystallography, nuclear magnetic resonance spectroscopy, fluorescence anisotropy, and molecular docking simulation) allow deeper understanding of the molecular interaction of polyphenols with heme proteins, phospholipid membrane, reactive oxygen species, and reactive carbonyl species; hence, novel hypotheses regarding their antioxidant mechanisms have been formulated. In this review, we summarize five direct and three indirect pathways by which polyphenols inhibit heme protein-mediated lipid oxidation in muscle foods. We also discuss the relation between chemical structures and functions of polyphenols as antioxidants.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Kathrine H Bak
- Department of Food Technology and Vetefrinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gheorghe V Goran
- Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, University of Agricultural, Bucharest, Romania
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| |
Collapse
|
82
|
Mardani M, Badakné K, Farmani J, Shahidi F. Enzymatic lipophilization of bioactive compounds with high antioxidant activity: a review. Crit Rev Food Sci Nutr 2022; 64:4977-4994. [PMID: 36419380 DOI: 10.1080/10408398.2022.2147268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food products contain bioactive compounds such as phenolic and polyphenolic compounds and vitamins, resulting in a myriad of biological characteristics such as antimicrobial, anticarcinogenic, and antioxidant activities. However, their application is often restricted because of their relatively low solubility and stability in emulsions and oil-based products. Therefore, chemical, enzymatic, or chemoenzymatic lipophilization of these compounds can be achieved by grafting a non-polar moiety onto their polar structures. Among different methods, enzymatic modification is considered environmentally friendly and may require only minor downstream processing and purification steps. In recent years, different systems have been suggested to design the synthetic reaction of these novel products. This review presents the new trends in this area by summarizing the essential enzymatic modifications in the last decade that led to the synthesis of bioactive compounds with attractive antioxidative properties for the food industry by emphasizing on optimization of the reaction conditions to maximize the production yields. Lastly, recent developments regarding characterization, potential applications, emerging research areas, and needs are highlighted.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
83
|
Veras KS, Fachel FNS, Bassani VL, Teixeira HF, Koester LS. Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability-A Review. Pharmaceutics 2022; 14:pharmaceutics14112530. [PMID: 36432720 PMCID: PMC9699215 DOI: 10.3390/pharmaceutics14112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) are a subclass of phenolic acids presenting caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA), and rosmarinic acid (RA) as the major representants, being broadly distributed into vegetal species and showing a range of biological potentials. Due to the low oral bioavailability of the HCAs, the development of delivery systems to promote better administration by the oral route is demanding. Among the systems, cyclodextrin (CD)-based delivery systems emerge as an important technology to solve this issue. Regarding these aspects, in this review, CD-based delivery systems containing HCAs are displayed, described, and discussed concerning the degree of interaction and their effects on crucial parameters that affect the oral bioavailability of HCAs.
Collapse
|
84
|
Preparation and Characterization of Phenolic Acid-Chitosan Derivatives as an Edible Coating for Enhanced Preservation of Saimaiti Apricots. Foods 2022; 11:foods11223548. [PMID: 36429144 PMCID: PMC9689608 DOI: 10.3390/foods11223548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, caffeic acid (CA) and chlorogenic acid (CGA) were incorporated onto chitosan (CS) using free radical grafting initiated by a hydrogen peroxide/ascorbic acid (H2O2/Vc) redox system. The structural properties of the CA (CA-g-CS) and CGA (CGA-g-CS) derivatives were characterized by UV-Vis absorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermal stability analysis. Then, the antioxidant and antibacterial properties were evaluated, and the effect of CGA-g-CS on the postharvest quality of Saimaiti apricot was studied. It proved that phenolic acids were successfully grafted onto the CS. The grafting ratios of CA-g-CS and CGA-g-CS were 126.21 mg CAE/g and 148.94 mg CGAE/g. The antioxidation and antibacterial activities of CGA-g-CS were better than those of CA-g-CS. The MICs of CGA-g-CS against E. coli, S. aureus, and B. subtilis were 2, 1, and 2 mg/mL. The inhibitory zones of 20 mg/mL CGA-g-CS against the three bacteria were 19.16 ± 0.35, 16.33 ± 0.91, and 16.24 ± 0.05 mm. The inhibitory effects of 0.5% CGA-g-CS on the firmness, weight loss, SSC, TA, relative conductivity, and respiration rate of the apricot were superior. Our results suggest that CGA-g-CS can be potentially used as an edible coating material to preserve apricots.
Collapse
|
85
|
de Brito VP, de Souza Ribeiro MM, Viganó J, de Moraes MA, Veggi PC. Silk Fibroin Hydrogels Incorporated with the Antioxidant Extract of Stryphnodendron adstringens Bark. Polymers (Basel) 2022; 14:polym14224806. [PMID: 36432933 PMCID: PMC9698373 DOI: 10.3390/polym14224806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Barbatimão (Stryphnodendron adstringens) is a Brazilian medicinal plant known for its pharmacological properties, including healing activity related to its phenolic composition, which is chiefly given by tannins. In order to preserve its stability and bioactivity, barbatimão extracts can be incorporated into (bio-)polymeric matrixes, of which silk fibroin stands out due to its versatility and tunable properties. This work aimed to obtain barbatimão bark extract rich in phenolic compounds and evaluate its incorporation in fibroin hydrogels. From the extraction process, it was observed that the PG (propylene glycol) extract presented a higher global yield (X0) and phenolic compounds (TPC) than the ET (ethanol) extract. Furthermore, the antioxidant activity (ORAC and FRAP) was similar between both extracts. Regarding the hydrogels, morphological, chemical, thermal, and mechanical characterizations were performed to understand the influence of the barbatimão extract and the solvent on the fibroin hydrogel properties. As a result, the hydrogels containing the barbatimão PG extract (BT/PG hydrogels) showed the better physical-chemical and structural performance. Therefore, these hydrogels should be further investigated regarding their potential in medical and pharmaceutical applications, especially in wound healing.
Collapse
Affiliation(s)
- Vivian P. de Brito
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Maurício M. de Souza Ribeiro
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Juliane Viganó
- Nature Science Center, Federal University of São Carlos, Rod. Lauri Simões de Barros, Km. 12-SP 189, Buri 18290-000, SP, Brazil
| | - Mariana A. de Moraes
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Priscilla C. Veggi
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
- Correspondence: ; Tel.: +55-11-4044-0500 (ext. 3550)
| |
Collapse
|
86
|
Hong C, Zhou HC, Zhao YM, Ma H. Ultrasonic washing as an abiotic elicitor to induce the accumulation of phenolics of fresh-cut red cabbages: Effects on storage quality and microbial safety. Front Nutr 2022; 9:1006440. [PMID: 36407509 PMCID: PMC9670152 DOI: 10.3389/fnut.2022.1006440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 03/30/2024] Open
Abstract
Ultrasonic washing has been proved to be an abiotic elicitor to induce the accumulation of phenolics in some fruit and vegetables. However, the feasibility of ultrasonic washing on the accumulation of phenolics in fresh-cut red cabbages has not yet been reported. Therefore, the effects of ultrasonic washing on the phenolics and related phenolic metabolism enzymes of fresh-cut red cabbages, as well as quality and microbial safety during cold storage, were investigated. Firstly, the single-factor tests were used to optimize the ultrasonic processing parameters, including frequency mode, frequency amplitude, power density, frequency cycle time, and ultrasonic washing. Then the activities of the enzymes related to phenolic metabolisms after optimal ultrasound treatment were investigated, including phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD). Additionally, the quality and microbial safety of fresh-cut red cabbages stored at 4°C under the optimal ultrasound treatment were evaluated. The results showed that the content of soluble phenolics (SPs) in fresh-cut red cabbages increased significantly during storage under the optimal conditions (28 ± 2 kHz, 60 W/L, 400 ms, and 20 min) compared with the control (P < 0.05). The PAL activity was activated and the PPO and POD activities were inhibited after ultrasonic washing, which contributed to the increase in the content of SPs. Meanwhile, the storage quality and microbial safety of fresh-cut red cabbages were improved. Ultrasonic washing reduced the weight loss and respiration rate and improved the color and texture characteristics. Additionally, the fresh-cut red cabbages after ultrasonic washing showed more retention of ascorbic acid (AA), total soluble proteins (TSPs), total soluble sugars (TSSs), and total soluble solids (SSs) compared with the control. Finally, ultrasonic washing effectively inhibited the growth of bacteria, molds and yeasts, which is beneficial to the extension of the shelf-life of fresh-cut red cabbages. Therefore, ultrasonic washing can be used as a tool to increase the content of SPs in fresh-cut red cabbages while retaining quality attributes and microbial safety.
Collapse
Affiliation(s)
- Chen Hong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hong-Chang Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yi-Ming Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
87
|
Li J, Gong Y, Li J, Fan L. Improving the xanthine oxidase and adenosine deaminase inhibitory activities of Flos Sophorae Immaturus by ultrasound-assisted heating treatments. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
88
|
Wang Y, Xu Y, Liu Z. A review of plant antipathogenic constituents: Source, activity and mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105225. [PMID: 36464345 DOI: 10.1016/j.pestbp.2022.105225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Green prevention and control of plant pathogens is a development direction of sustainable and low-carbon agriculture given the limitation of traditional chemicals. Plant-derived antipathogenic constituents (PAPCs) exhibit the advantages of being environmental benign and a broad spectrum of target pathogens over traditional chemicals. Here, we review the research advances on plant sources, chemical compositions, activities of antipathogenic constituents in the past 20 years. Reported PAPCs are classified into categories of phenols, flavonoids, terpenoids, alkaloids and antimicrobial peptides. Angiosperms, gymnosperms and some lower plants are the main plant source of detected PAPCs. The PAPCs act on pathogens through multiple pathways including destroying cell structures, blocking key composition synthesis and inhibiting cell metabolism. The development trends of PAPCs are finally prospected. This review serves as a comprehensive review on the study of plant antipathogenic constituents and a key reference for forecasting the source, characteristic and activity of PAPC.
Collapse
Affiliation(s)
- Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
89
|
Pan Y, Qin R, Hou M, Xue J, Zhou M, Xu L, Zhang Y. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
90
|
Rodrigues MJ, Custódio L, Mecha D, Zengin G, Cziáky Z, Sotkó G, Pereira CG. Nutritional and Phyto-Therapeutic Value of the Halophyte Cladium mariscus L. (Pohl.): A Special Focus on Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2910. [PMID: 36365362 PMCID: PMC9657221 DOI: 10.3390/plants11212910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This work searched for the phyto-therapeutic potential and nutritional value of seeds from the halophyte Cladium mariscus L. (Pohl.), aiming at its use as a source of bioactive ingredients for the food industry. Hence, the nutritional profile, including minerals, of seeds biomass was determined; food-grade samples were prepared, and their phytochemical fingerprinting assessed. Extracts were evaluated for in vitro antioxidant potential, inhibitory capacity towards enzymes related to neuroprotection, diabetes, and hyperpigmentation, and anti-inflammatory properties, along with a toxicological assessment. Sawgrass seeds can be considered a proper nutritional source with a good supply of minerals. All extracts had a high level of total phenolics (65.3−394.4 mg GAE/g DW) and showed a chemically rich and diverse profile of metabolites that have several biological properties described (e.g., antioxidant, anti-inflammatory). Extracts had no significant toxicity (cell viabilities > 80%) and were overall strong antioxidants (particularly at radical scavenging and reducing iron), effective tyrosinase inhibitors (55−71 mg KAE/g DW), showed anti-inflammatory properties (30−60% NO decrease), and had moderate capacity to inhibit enzymes related to neuroprotection (AChE 3.7−4.2, BChE 4.3−6.0 mg GALE/g DW) and diabetes (α-glucosidase 1.0−1.1, α-amylase 0.8−1.1 mmol ACAE/g). Altogether, results suggest that sawgrass seeds have the potential to be exploited as a new food product and are a reservoir of bioactive molecules with prospective applications as ingredients for value-added, functional, and/or preservative food products.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Débora Mecha
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary
| | - Gyula Sotkó
- Sotiva Seed Ltd., 4440 Tiszavasvári, Hungary
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
91
|
Wang W, Zhang C, Shang M, Lv H, Liang B, Li J, Zhou W. Hydrogen peroxide regulates the biosynthesis of phenolic compounds and antioxidant quality enhancement in lettuce under low nitrogen condition. Food Chem X 2022; 16:100481. [PMID: 36299865 PMCID: PMC9589012 DOI: 10.1016/j.fochx.2022.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022] Open
Abstract
Reduced nitrogen availability is an efficient strategy for increasing the accumulation of phenolic compounds in vegetables, but related mechanisms remain unknown. Here, the production of hydrogen peroxide (H2O2) and its potential roles in regulating phenolic biosynthesis and enhancing the antioxidant quality of lettuce under low nitrogen (LN) conditions were investigated. The LN treatment caused a rapid production of H2O2, which effectively increased lettuce quality by enhancing the levels of phenolic compounds and other nutrients such as ascorbic acid, glutathione, soluble sugar, and soluble protein. The increased phenolic content was related to the higher expression levels of phenolic biosynthesis genes, including PAL, CHS, DFR, F35H, and UFGT, and higher photosynthetic capacity after H2O2 addition under LN conditions. However, these positive effects were suppressed by dimethylthiourea (DMTU), a scavenger of H2O2. These results suggest that H2O2 as an important signal molecular mediates the LN-caused phenolic accumulation and antioxidant quality enhancement in lettuce.
Collapse
|
92
|
Jiang S, Yu M, Jiang P, Nakamura Y, Qi H. Effects of Domestic Cooking Methods on Physichochemical Properties, Bioactive Compounds and Antioxidant Activities of Vegetables: A Mini-Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2132261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shan Jiang
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Meiqi Yu
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hang Qi
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
93
|
Gogoi NG, Rahman A, Saikia J, Dutta P, Baruah A, Handique JG. Enhanced biological activity of Curcumin Cinnamates: an experimental and computational analysis. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
94
|
Capozzi A, Saucier C, Bisbal C, Lambert K. Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196594. [PMID: 36235130 PMCID: PMC9573747 DOI: 10.3390/molecules27196594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Today, inactivity and high-calorie diets contribute to the development of obesity and premature aging. In addition, the population of elderly people is growing due to improvements in healthcare management. Obesity and aging are together key risk factors for non-communicable diseases associated with several co-morbidities and increased mortality, with a major impact on skeletal muscle defect and/or poor muscle mass quality. Skeletal muscles contribute to multiple body functions and play a vital role throughout the day, in all our activities. In our society, limiting skeletal muscle deterioration, frailty and dependence is not only a major public health challenge but also a major socio-economic issue. Specific diet supplementation with natural chemical compounds such as grape polyphenols had shown to play a relevant and direct role in regulating metabolic and molecular pathways involved in the prevention and treatment of obesity and aging and their related muscle comorbidities in cell culture and animal studies. However, clinical studies aiming to restore skeletal muscle mass and function with nutritional grape polyphenols supplementation are still very scarce. There is an urgent need for clinical studies to validate the very encouraging results observed in animal models.
Collapse
Affiliation(s)
- Adriana Capozzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Cédric Saucier
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| |
Collapse
|
95
|
Yasar B, Kutlu G, Tornuk F. Edible flowers as sources of bioactive compounds: Determination of phenolic extraction conditions. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
96
|
Jia W, Ma R, Zhang R, Fan Z, Shi L. Synthetic-free compounds as the potential glycation inhibitors performed in in vitro chemical models: Molecular mechanisms and structure requirements. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
97
|
Lucas Tenório CJ, Assunção Ferreira MR, Lira Soares LA. Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
98
|
Evdokimova S, Karetkin B, Zhurikov M, Guseva E, Khabibulina N, Shakir I, Panfilov V. Antagonistic activity of synbiotics: Response surface modeling of various factors. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synbiotic compositions have a great potential for curing microbial intestinal infections. Novel targeted synbiotics are a promising field of the modern functional food industry. The present research assessed the effect of various fructan fractions, initial probiotic counts, and test strains on the antagonistic properties of synbiotics.
The research involved powdered roots of Arctium lappa L. and strains of Bifidobacterium bifidum, Bacillus cereus, and Salmonella enterica. The experiment was based on the central composite rotatable design. A water extract of A. lappa roots was purified and concentrated. Fructan fractions were precipitated at various concentrations of ethanol, dried, and sub jected to carbon-13 nuclear magnetic resonance (13C-NMR) spectrometry. The bifidobacteria and the test strains were co-cultivated in the same medium that contained one of the fractions. Co-cultivation lasted during 10 h under the same conditions. The acid concentrations were determined by high-performance liquid chromatography to define the synbiotic factor.
The obtained fructans were closer to commercial oligofructose in terms of the number and location of NMR peaks. However, they were between oligofructose and inulin in terms of signal intensity. The response surface analysis for bacilli showed that the minimal synbiotic factor value corresponded to the initial probiotic count of 7.69 log(CFU/mL) and the fructan fraction precipitated by 20% ethanol. The metabolites produced by the bacilli also affected their growth. The synbiotic factor response surface for the experiments with Salmonella transformed from parabolic to saddle shape as the initial test strain count increased. The minimal synbiotic factor value corresponded to the lowest precipitant concentration and the highest probiotic count.
The research established a quantitative relationship between the fractional composition of fructans and the antagonistic activity of the synbiotic composition with bifidobacteria. It also revealed how the ratio of probiotic and pathogen counts affects the antagonism. The proposed approach can be extrapolated on other prebiotics and microbial strains in vivo.
Collapse
Affiliation(s)
| | - Boris Karetkin
- Dmitry Mendeleev University of Chemical Technology of Russia
| | | | - Elena Guseva
- Dmitry Mendeleev University of Chemical Technology of Russia
| | | | - Irina Shakir
- Dmitry Mendeleev University of Chemical Technology of Russia
| | - Victor Panfilov
- Dmitry Mendeleev University of Chemical Technology of Russia
| |
Collapse
|
99
|
Potential Role of Phytochemical Extract from Saffron in Development of Functional Foods and Protection of Brain-Related Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6480590. [PMID: 36193081 PMCID: PMC9526642 DOI: 10.1155/2022/6480590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The present review is designed to measure the effects of saffron extract in functional foods and its pharmacological properties against various disorders. Saffron is a traditional medicinal plant used as a food additive. The stigma of saffron has bioactive compounds such as safranal, crocin, crocetin, picrocrocin, kaempferol, and flavonoid. These bioactive compounds can be extracted using conventional (maceration, solvent extraction, soxhlet extraction, and vapor or hydrodistillation) and novel techniques (emulsion liquid membrane extraction, ultrasound-assisted extraction, enzyme-associated extraction, pulsed electric field extraction, microwave-assisted extraction, and supercritical fluid extraction). Saffron is used as a functional ingredient, natural colorant, shelf-life enhancer, and fortifying agent in developing different food products. The demand for saffron has been increasing in the pharma industry due to its protection against cardiovascular and Alzheimer disease and its antioxidant, anti-inflammatory, antitumor, and antidepressant properties. Conclusively, the phytochemical compounds of saffron improve the nutrition value of products and protect humans against various disorders.
Collapse
|
100
|
Therapeutic and Nutraceutical Effects of Polyphenolics from Natural Sources. Molecules 2022; 27:molecules27196225. [PMID: 36234762 PMCID: PMC9572829 DOI: 10.3390/molecules27196225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of cardiovascular disease, oxidative stress-related complications, and chronic age-related illnesses is gradually increasing worldwide. Several causes include the ineffectiveness of medicinal treatment therapies, their toxicity, their inability to provide radical solutions in some diseases, and the necessity of multiple drug therapy in certain chronic diseases. It is therefore necessary for alternative treatment methods to be sought. In this review, polyphenols were identified and classified according to their chemical structure, and the sources of these polyphenol molecules are indicated. The cardioprotective, ROS scavenging, anti-aging, anticancer properties of polyphenolic compounds have been demonstrated by the results of many studies, and these natural antioxidant molecules are potential alternative therapeutic agents.
Collapse
|