51
|
Shukla AK, Alam J, Alhoshan M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. MEMBRANES 2022; 12:247. [PMID: 35207168 PMCID: PMC8876851 DOI: 10.3390/membranes12020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Polyphenylsulfone (PPSU) membranes are of fundamental importance for many applications such as water treatment, gas separation, energy, electronics, and biomedicine, due to their low cost, controlled crystallinity, chemical, thermal, and mechanical stability. Numerous research studies have shown that modifying surface properties of PPSU membranes influences their stability and functionality. Therefore, the modification of the PPSU membrane surface is a pressing issue for both research and industrial communities. In this review, various surface modification methods and processes along with their mechanisms and performance are considered starting from 2002. There are three main approaches to the modification of PPSU membranes. The first one is bulk modifications, and it includes functional groups inclusion via sulfonation, amination, and chloromethylation. The second is blending with polymer (for instance, blending nanomaterials and biopolymers). Finally, the third one deals with physical and chemical surface modifications. Obviously, each method has its own limitations and advantages that are outlined below. Generally speaking, modified PPSU membranes demonstrate improved physical and chemical properties and enhanced performance. The advancements in PPSU modification have opened the door for the advance of membrane technology and multiple prospective applications.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| |
Collapse
|
52
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
53
|
Roy S, Priyadarshi R, Rhim JW. Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods 2021. [PMID: 34829072 DOI: 10.3390/foods10112789/s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Pullulan/chitosan-based multifunctional edible composite films were fabricated by reinforcing mushroom-mediated zinc oxide nanoparticles (ZnONPs) and propolis. The ZnONPs were synthesized using enoki mushroom extract and characterized using physicochemical methods. The mushroom-mediated ZnONPs showed an irregular shape with an average size of 26.7 ± 8.9 nm. The combined incorporation of ZnONPs and propolis pointedly improved the composite film's UV-blocking property without losing transparency. The reinforcement with ZnONPs and propolis improved the mechanical strength of the pullulan/chitosan-based film by ~25%. Additionally, the water vapor barrier property and hydrophobicity of the film were slightly increased. In addition, the pullulan/chitosan-based biocomposite film exhibited good antioxidant activity due to the propolis and excellent antibacterial activity against foodborne pathogens due to the ZnONPs. The developed edible pullulan/chitosan-based film was used for pork belly packaging, and the peroxide value and total number of aerobic microorganisms were significantly reduced in meat wrapped with the pullulan/chitosan/ZnONPs/propolis film.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
54
|
Roy S, Priyadarshi R, Rhim JW. Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods 2021; 10:foods10112789. [PMID: 34829072 PMCID: PMC8625050 DOI: 10.3390/foods10112789] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Pullulan/chitosan-based multifunctional edible composite films were fabricated by reinforcing mushroom-mediated zinc oxide nanoparticles (ZnONPs) and propolis. The ZnONPs were synthesized using enoki mushroom extract and characterized using physicochemical methods. The mushroom-mediated ZnONPs showed an irregular shape with an average size of 26.7 ± 8.9 nm. The combined incorporation of ZnONPs and propolis pointedly improved the composite film’s UV-blocking property without losing transparency. The reinforcement with ZnONPs and propolis improved the mechanical strength of the pullulan/chitosan-based film by ~25%. Additionally, the water vapor barrier property and hydrophobicity of the film were slightly increased. In addition, the pullulan/chitosan-based biocomposite film exhibited good antioxidant activity due to the propolis and excellent antibacterial activity against foodborne pathogens due to the ZnONPs. The developed edible pullulan/chitosan-based film was used for pork belly packaging, and the peroxide value and total number of aerobic microorganisms were significantly reduced in meat wrapped with the pullulan/chitosan/ZnONPs/propolis film.
Collapse
|
55
|
Roy S, Rhim JW. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. Int J Biol Macromol 2021; 193:2038-2046. [PMID: 34774596 DOI: 10.1016/j.ijbiomac.2021.11.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
A functional carrageenan/agar-based film was prepared by combining tea tree oil Pickering emulsion (PET) and zinc sulfide nanoparticles (ZnSNP). PET was formulated using tea tree essential oil stabilized with nanocellulose fibers. PET and ZnSNPs were uniformly dispersed in the binary polymer matrix and formed compatible films. The incorporation of ZnSNPs improved the mechanical strength, whereas PET slightly decreased the strength, but the combined addition of ZnSNP and PET maintained the mechanical strength with slightly improved flexibility. The addition of ZnSNP and PET, alone or in combination, slightly improved the water vapor barrier, water resistance, and thermal stability of the film. In addition, the carrageenan/agar-based composite membrane showed distinct antioxidant and antibacterial activity. The ZnSNP and PET incorporated binary composite films with enhanced physical and functional properties are likely to be used in active food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
56
|
Sharmin E, Batubara AS, Tamboosi BA, Al Khozay EB, Alamoudi MK, Al Aidaroos OZ, Albenayan JA, Lamfon MY, Sindi AAH, Al-Madboly LA, Shoeib NA, Alam M. PVA nanocomposite hydrogel loaded with silver nanoparticles enriched Nigella sativa oil. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1963277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eram Sharmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan S. Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Elaf Bander Al Khozay
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Khalid Alamoudi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ohoud Zaki Al Aidaroos
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jana Abdullaziz Albenayan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Majd Yousuf Lamfon
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lamiaa A. Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nagwa A. Shoeib
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
57
|
Kumar L, Verma S, Joshi K, Utreja P, Sharma S. Nanofiber as a novel vehicle for transdermal delivery of therapeutic agents: challenges and opportunities. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00324-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Transdermal delivery of drugs is a quite challenging task for pharmaceutical scientists. The transdermal route is preferred over the oral route due to various advantages like avoidance of the first-pass effect, non-invasiveness, and high patient compliance. Therefore, it is necessary to develop an effective carrier system that enables the effective passage of the drug through the dermal barrier.
Main body of abstract
Various novel drug delivery systems are used to enhance the permeation of a variety of drugs through the skin barrier. Researchers around the globe have explored nanofibers for the transdermal delivery of various therapeutic agents. Nanofibers are designed to have a high concentration of therapeutic agents in them promoting their flux through various skin layers. Polymeric nanofibers can be explored for the loading of both hydrophilic and lipophilic drugs. Biopolymer-based nanofibers have been also explored for transdermal delivery. They are capable of controlling the release of therapeutic agents for a prolonged time.
Short conclusion
The literature presented in this review paper provides significant proof that nanofibers will have an intense impact on the transdermal delivery of different bioactive molecules in the future.
Graphic abstract
Collapse
|
58
|
|
59
|
Zaharescu T, Blanco I. Stabilization Effects of Natural Compounds and Polyhedral Oligomeric Silsesquioxane Nanoparticles on the Accelerated Degradation of Ethylene-Propylene-Diene Monomer. Molecules 2021; 26:molecules26154390. [PMID: 34361544 PMCID: PMC8347017 DOI: 10.3390/molecules26154390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
In this work the analysis on the stabilization activities of some natural antioxidants (rosemary extract, capsaicin, quercetin or oleanolic acid) is presented. A similar contribution of an inorganic structure-polyhedral oligomeric silsesquioxane (POSS) nanoparticles-is also evaluated. The stabilization effects on the oxidation protection were investigated for several formulations based on ethylene-propylene-diene-terpolymer (EPDM). The samples were examined in pristine state or after γ-irradiation, when the accelerated degradation scission of polymer macromolecules followed by the mitigation of oxidation. Three evaluation procedures: chemiluminescence, FTIR spectroscopy and thermal analysis were applied for the characterization of stability efficiency. The delaying effect of oxidative aging in EPDM matrix is illustrated by the values of activation energy, which are correlated with the type and concentration of embedded compounds. The durability of studied EPDM formulations is discussed for the assessment of material life. The improved behavior of structured hybrids useful for the optimization application regimes is essentially based on the antioxidant properties of polyphenolic components in the cases of natural antioxidants or on the penetration of free radical intermediates into the free volumes of POSS.
Collapse
Affiliation(s)
- Traian Zaharescu
- INCDIE ICPE-CA, 313 Splaiul Unirii, 03138 Bucharest, Romania
- Correspondence: ; Tel.: +40-72-663-6222
| | - Ignazio Blanco
- Department of Civil Engineering and Architecture, University of Catania, V.le A. Doria 6, 95125 Catania, Italy;
| |
Collapse
|
60
|
Preparation and characterization of chitosan oligosaccharide derivatives containing cinnamyl moieties with enhanced antibacterial activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
61
|
Kartik A, Akhil D, Lakshmi D, Panchamoorthy Gopinath K, Arun J, Sivaramakrishnan R, Pugazhendhi A. A critical review on production of biopolymers from algae biomass and their applications. BIORESOURCE TECHNOLOGY 2021; 329:124868. [PMID: 33707076 DOI: 10.1016/j.biortech.2021.124868] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Algae is abundantly present in our ecosystems and can be easily extracted and used for production of biopolymers. Algae does not produce any anthropogenic, harmful effects, has a good growth rate, and cultivable in wastewater. This literature elucidates the potential of algae biomass by comparing various seaweed and microalgae strains. The routes for biopolymer production were portrayed and their novel methods of isolation such as microwave assisted, ultrasound assisted, and subcritical water assisted extraction are discussed in detail. These novel methods are observed to be highly efficient compared to conventional solvent extraction, with the microwave assisted and ultrasound assisted processes yielding 33% and 5% more biopolymer respectively than the conventional method. Biopolymers are used in variety of applications such as environmental remediation, adsorbent and antioxidant. Biopolymer is shown to be highly effective in the removal of potentially toxic elements and is seen to extract more than 40 mg PTE/g biopolymer.
Collapse
Affiliation(s)
- Ashokkumar Kartik
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Dilipkumar Akhil
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Divya Lakshmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
62
|
Bio-based films prepared with apple pomace: Volatiles compound composition and mechanical, antioxidant and antibacterial properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
63
|
Pinto L, Bonifacio MA, De Giglio E, Santovito E, Cometa S, Bevilacqua A, Baruzzi F. Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100676] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
64
|
Carmona-Ribeiro AM, Araújo PM. Antimicrobial Polymer-Based Assemblies: A Review. Int J Mol Sci 2021; 22:5424. [PMID: 34063877 PMCID: PMC8196616 DOI: 10.3390/ijms22115424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
An antimicrobial supramolecular assembly (ASA) is conspicuous in biomedical applications. Among the alternatives to overcome microbial resistance to antibiotics and drugs, ASAs, including antimicrobial peptides (AMPs) and polymers (APs), provide formulations with optimal antimicrobial activity and acceptable toxicity. AMPs and APs have been delivered by a variety of carriers such as nanoparticles, coatings, multilayers, hydrogels, liposomes, nanodisks, lyotropic lipid phases, nanostructured lipid carriers, etc. They have similar mechanisms of action involving adsorption to the cell wall, penetration across the cell membrane, and microbe lysis. APs, however, offer the advantage of cheap synthetic procedures, chemical stability, and improved adsorption (due to multipoint attachment to microbes), as compared to the expensive synthetic routes, poor yield, and subpar in vivo stability seen in AMPs. We review recent advances in polymer-based antimicrobial assemblies involving AMPs and APs.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo 05508-000, Brazil;
| | | |
Collapse
|
65
|
de Almeida WS, da Silva DA. Does polysaccharide quaternization improve biological activity? Int J Biol Macromol 2021; 182:1419-1436. [PMID: 33965482 DOI: 10.1016/j.ijbiomac.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The natural polysaccharides, due to their structural diversity, commonly present very distinct solubility and physical chemical properties and additionally have intrinsic biological activities that, gene-rally, reveal themselves in a light way. The chemical modification of the molecular structure can improve these parameters. In this review, original articles that approached the quaternization of polysaccharides for purposes of biological application were selected, without limitation of year of publication, in the databases Scopus, Web of Science and PubMed. The results obtained from the bibliographic survey indicate that the increase in positive charges caused by quaternization improves the interaction between modified polysaccharides and structures that have negative charges on their surface, such as the cell wall of microorganisms and some cells in the human body, such as the DNA. This greater interaction is reflected as an increase in the biological activity of all polysaccharides broached in this study. Another important data obtained was the fact that the chemical changes did not affect or irrelevantly affect the toxicity of almost all of the polysaccharides that were quaternized. Therefore, polysaccharide quaternization is a safe and effective way to obtain improvements in the biological behavior of these macromolecules.
Collapse
Affiliation(s)
- Wanessa Sales de Almeida
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil.
| | - Durcilene Alves da Silva
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil; Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Federal do Delta do Parnaíba, Brazil.
| |
Collapse
|
66
|
Yong H, Liu J. Active packaging films and edible coatings based on polyphenol‐rich propolis extract: A review. Compr Rev Food Sci Food Saf 2021; 20:2106-2145. [DOI: 10.1111/1541-4337.12697] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| | - Jun Liu
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| |
Collapse
|
67
|
Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect 2021; 6:154-176. [DOI: 10.1002/slct.202003978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2025]
Abstract
AbstractBiopolymers are considered as a favorable group of substances with a broad array of applications, of which biomedical field stands out. The interesting features of biopolymers such as low‐cost, non‐cytotoxicity, hydrophilicity, biodegradation and biocompatibility make them promising and excellent feedstock to be used in implantable devices. The bounteous reactive functional groups in the backbone structure of polysaccharides and its derivatives could be utilized to develop hydrogels, nano‐composite and 3D scaffolds with appealing structures and desired features, leading to promising research attention towards biomedical fields. The present review describes the foremost properties as well as potential of different biopolymers, and their composites for application in implantable biomedical systems. This work may introduce readers about the comprehension of state‐of‐the‐art advances, real present challenges along with the future anticipation of eco‐friendly and biomimetic techniques for the modification of biopolymeric materials to improve their biomedical applications.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
- Centre of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
68
|
Bensid A, El Abed N, Houicher A, Regenstein JM, Özogul F. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food – a review. Crit Rev Food Sci Nutr 2020; 62:2985-3001. [DOI: 10.1080/10408398.2020.1862046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Abdelkader Bensid
- Department of Agronomy, Faculty of Natural Sciences and Life, Ziane Achour University, Djelfa, Algeria
| | - Nariman El Abed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Abderrahmane Houicher
- Department of Agriculture, Faculty of Science, Laghouat University, Laghouat, Algeria
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
69
|
Leite LSF, Bilatto S, Paschoalin RT, Soares AC, Moreira FKV, Oliveira ON, Mattoso LHC, Bras J. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. Int J Biol Macromol 2020; 165:2974-2983. [PMID: 33122067 DOI: 10.1016/j.ijbiomac.2020.10.189] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
We report on gelatin films incorporating rosin-grafted cellulose nanocrystals (r-CNCs), which fulfill the most relevant requirements for antimicrobial packaging applications. Transparent gelatin/r-CNCs bionanocomposite films (0.5-6 wt% r-CNCs) were obtained by solution casting and displayed high UV-barrier properties, which were superior to the most used plastic packaging films. The gelatin/r-CNCs films exhibited a moderate water vapor permeability (0.09 g mm/m2 h kPa), and high tensile strength (40 MPa) and Young's modulus (1.9 GPa). The r-CNCs were more efficient in improving the optical, water vapor barrier and tensile properties of gelatin films than conventional CNCs. Grafting of rosin on CNCs resulted in an antimicrobial nanocellulose that inhibited the growth of Staphylococcus aureus and Escherichia coli. The antibacterial properties of r-CNCs were sustained in the gelatin films, as demonstrated by agar diffusion tests and proof-of-principle experiments involving cheese storage. Overall, the incorporation of r-CNCs as active fillers in gelatin films is a suitable approach for producing novel eco-friendly, antimicrobial packaging materials.
Collapse
Affiliation(s)
- Liliane S F Leite
- Federal University of São Carlos, Graduate Program in Materials Science and Engineering (PPGCEM), 13565-905 São Carlos, Brazil; National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil; University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France.
| | - Stanley Bilatto
- National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Rafaella T Paschoalin
- University of São Paulo, São Carlos Institute of Physics, 13560-970 São Carlos, Brazil.
| | - Andrey C Soares
- National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Francys K V Moreira
- Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, São Carlos, SP 13565-905, Brazil.
| | - Osvaldo N Oliveira
- University of São Paulo, São Carlos Institute of Physics, 13560-970 São Carlos, Brazil.
| | - Luiz H C Mattoso
- Federal University of São Carlos, Graduate Program in Materials Science and Engineering (PPGCEM), 13565-905 São Carlos, Brazil; National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Julien Bras
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France; Nestle Research Center, 1000 Lausanne, Switzerland.
| |
Collapse
|
70
|
Rosenbloom RA, Zhao Y. Hydroxypropyl methylcellulose or soy protein isolate-based edible, water-soluble, and antioxidant films for safflower oil packaging. J Food Sci 2020; 86:129-139. [PMID: 33258162 DOI: 10.1111/1750-3841.15543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Edible, water-soluble, heat-sealable, and antioxidant films were developed from hydroxypropyl methylcellulose (HPMC) or soy protein isolate (SPI) and applied as safflower oil packaging. A 0.1 or 0.2% DL-α-tocopherol acetate (VE) and 0 or 0.25% oleic acid were added into film formulations to provide antioxidant and hydrophobic properties, respectively, using a 23 factorial design. Films were analyzed for appearance, microstructure, water and oil sensitivity, mechanical properties, and antioxidant functionality. Subsequently, a completely randomized design was implemented for incorporating 2, 4, or 6% cellulose nanocrystals (CNCs, w/w dry weight polymer) for improving film mechanical and barrier properties. HPMC-based films achieved full dissolution in water at <55 °C under 5 min, while SPI-based films disintegrated in water up to 90 °C. Oleic acid significantly increased (P < 0.05) heat sealability of SPI film from 78 to 143 N/m and elongation at break from 36% to 88%, but decreased tensile strength and heat sealability of HPMC films by 55% and 41%, respectively. As safflower oil packaging, after 60 days of storage at 35 °C, oil contained in SPI-based pouch had the lowest peroxide values, 8.1 ± 0.9 mEq/kg. Based on barrier, mechanical, and antioxidant capacity evaluations, HPMC film with 0.1% VE and SPI film with 0.25% oleic acid and 0.1% VE were incorporated with CNC. SPI/CNC films did not show observable trends, but HPMC/2% CNC film exhibited significantly improved mechanical and barrier properties, with oxygen permeability of 5.0 mL mm/m2 day kPa. The developed films are a promising packaging alternative to decrease plastic waste, extend shelf life of lipid-based foods, and increase consumer convenience. PRACTICAL APPLICATION: Individually packaged, single-use pouches of sauce or oil are common for seasoning instant and frozen foods, creating unnecessary plastic waste. Edible, water-soluble packaging with antioxidant functionality would reduce plastic waste, extend shelf life by preventing oxidation, and increase consumer convenience. The biopolymeric films and pouches developed in this study have unique properties from water solubility across a wide range of temperatures, resistance to oil, high oxygen barrier, and good heat sealability, providing a variety of potential applications for promoting sustainable food packaging.
Collapse
Affiliation(s)
- Rachel A Rosenbloom
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, Oregon, 97331, U.S.A
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
71
|
Mellinas AC, Jiménez A, Garrigós MC. Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties. Foods 2020; 9:E1572. [PMID: 33138245 PMCID: PMC7692356 DOI: 10.3390/foods9111572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
In this work, pectin-based active films with a cocoa bean shell extract, obtained after waste valorisation of residues coming from the chocolate production process, and zinc oxide/zinc nanoparticles (ZnO/Zn-NPs) at different concentrations, were obtained by casting. The effect of the active additive incorporation on the thermal, barrier, structural, morphological and optical properties was investigated. Moreover, the photocatalytic properties of the obtained films based on the decomposition of methylene blue (MB) in aqueous solution at room temperature were also studied. A significant increase in thermal and oxidative stability was obtained with the incorporation of 3 wt% of ZnO/Zn-NPs compared to the control film. The addition of 5 wt% cocoa bean shell extract to pectin significantly affected the oxygen barrier properties due to a plasticizing effect. In contrast, the addition of ZnO/Zn-NPs at 1 wt% to pectin caused a decrease in oxygen transmission rate per film thickness (OTR.e) values of approximately 50% compared to the control film, resulting in an enhanced protection against oxidation for food preservation. The optical properties were highly influenced by the incorporation of the natural extract but this effect was mitigated when nanoparticles were also incorporated into pectin-based films. The addition of the extract and nanoparticles resulted in a clear improvement (by 98%) in UV barrier properties, which could be important for packaged food sensitive to UV radiation. Finally, the photocatalytic activity of the developed films containing nanoparticles was demonstrated, showing photodegradation efficiency values of nearly 90% after 60 min at 3 wt% of ZnO/Zn-NPs loading. In conclusion, the obtained pectin-based bionanocomposites with cocoa bean shell waste extract and zinc oxide/zinc nanoparticles showed great potential to be used as active packaging for food preservation.
Collapse
Affiliation(s)
| | | | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.C.M.); (A.J.)
| |
Collapse
|