51
|
Ma J, Bo SH, Lu XT, Xu AJ, Zhang J. Protective effects of carnosine on white matter damage induced by chronic cerebral hypoperfusion. Neural Regen Res 2016; 11:1438-1444. [PMID: 27857746 PMCID: PMC5090845 DOI: 10.4103/1673-5374.191217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Carnosine is a dipeptide that scavenges free radicals, inhibits inflammation in the central nervous system, and protects against ischemic and hypoxic brain damage through its anti-oxidative and anti-apoptotic actions. Therefore, we hypothesized that carnosine would also protect against white matter damage caused by subcortical ischemic injury. White matter damage was induced by right unilateral common carotid artery occlusion in mice. The animals were treated with 200, 500 or 750 mg/kg carnosine by intraperitoneal injection 30 minutes before injury and every other day after injury. Then, 37 days later, Klüver-Barrera staining, toluidine blue staining and immunofluorescence staining were performed. Carnosine (200, 500 mg/kg) substantially reduced damage to the white matter in the corpus callosum, internal capsule and optic tract, and it rescued expression of myelin basic protein, and alleviated the loss of oligodendrocytes. However, carnosine at the higher dose of 750 mg/kg did not have the same effects as the 200 and 500 mg/kg doses. These findings show that carnosine, at a particular dose range, protects against white matter damage caused by chronic cerebral ischemia in mice, likely by reducing oligodendroglial cell loss.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Hong Bo
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Tong Lu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - A-Jing Xu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
52
|
Banerjee S, Ghosh TK, Poddar MK. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system. Mech Ageing Dev 2015; 152:5-14. [DOI: 10.1016/j.mad.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
53
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
54
|
Abstract
The selective degradation of damaged or excessive mitochondria by autophagy is termed mitophagy. Mitophagy is crucial for mitochondrial quality control and has been implicated in several neurodegenerative disorders as well as in ischemic brain injury. Emerging evidence suggested that the role of mitophagy in cerebral ischemia may depend on different pathological processes. In particular, a neuroprotective role of mitophagy has been proposed, and the regulation of mitophagy seems to be important in cell survival. For these reasons, extensive investigations aimed to profile the mitophagy process and its underlying molecular mechanisms have been executed in recent years. In this review, we summarize the current knowledge regarding the mitophagy process and its role in cerebral ischemia, and focus on the pathological events and molecules that regulate mitophagy in ischemic brain injury.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Pharmacology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | |
Collapse
|
55
|
Liu Z, Zhang L, He Q, Liu X, Chukwunweike Ikechukwu O, Tong L, Guo L, Yang H, Zhang Q, Zhao H, Gu X. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia–reperfusion in rats. Int J Pharm 2015; 489:131-8. [DOI: 10.1016/j.ijpharm.2015.04.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/16/2015] [Indexed: 01/31/2023]
|
56
|
Complementary and Alternative Therapies for Autism Spectrum Disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:258589. [PMID: 26064157 PMCID: PMC4439475 DOI: 10.1155/2015/258589] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 01/05/2023]
Abstract
Background. Complementary and alternative medicine (CAM) represents a popular therapeutic option for patients with autism spectrum disorder (ASD). Unfortunately, there is a paucity of data regarding the efficacy of CAM in ASD. The aim of the present systematic review is to investigate trials of CAM in ASD. Material and Methods. We searched the following databases: MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, CINAHL, Psychology and Behavioral Sciences Collection, Agricola, and Food Science Source. Results. Our literature search identified 2687 clinical publications. After the title/abstract screening, 139 publications were obtained for detailed evaluation. After detailed evaluation 67 studies were included, from hand search of references we retrieved 13 additional studies for a total of 80. Conclusion. There is no conclusive evidence supporting the efficacy of CAM therapies in ASD. Promising results are reported for music therapy, sensory integration therapy, acupuncture, and massage.
Collapse
|
57
|
Yong SM, Ong QR, Siew BE, Wong BS. The effect of chicken extract on ERK/CREB signaling is ApoE isoform-dependent. Food Funct 2015; 5:2043-51. [PMID: 25080220 DOI: 10.1039/c4fo00428k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is unclear how the nutritional supplement chicken extract (CE) enhances cognition. Human apolipoprotein E (ApoE) can regulate cognition and this isoform-dependent effect is associated with the N-methyl-d-aspartate receptor (NMDAR). To understand if CE utilizes this pathway, we compared the NMDAR signaling in neuronal cells expressing ApoE3 and ApoE4. We observed that CE increased S896 phosphorylation on NR1 in ApoE3 cells and this was linked to higher protein kinase C (PKC) activation. However, ApoE4 cells treated with CE have lowered S897 phosphorylation on NR1 and this was associated with reduced protein kinase A (PKA) phosphorylation. In ApoE3 cells, CE increased calmodulin kinase II (CaMKII) activation and AMPA GluR1 phosphorylation on S831. In contrast, CE reduced CaMKII phosphorylation and led to higher de-phosphorylation of S831 and S845 on GluR1 in ApoE4 cells. While CE enhanced ERK/CREB phosphorylation in ApoE3 cells, this pathway was down-regulated in both ApoE4 and mock cells after CE treatment. These results show that CE triggers ApoE isoform-specific changes on ERK/CREB signaling.
Collapse
Affiliation(s)
- Shan-May Yong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117597.
| | | | | | | |
Collapse
|
58
|
Shen Y, Gao H, Shi X, Wang N, Ai D, Li J, Ouyang L, Yang J, Tian Y, Lu J. Glutamine synthetase plays a role in d-galactose-induced astrocyte aging in vitro and in vivo. Exp Gerontol 2014; 58:166-73. [DOI: 10.1016/j.exger.2014.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/31/2014] [Accepted: 08/13/2014] [Indexed: 11/26/2022]
|
59
|
Shen Y, Tian Y, Yang J, Shi X, Ouyang L, Gao J, Lu J. Dual effects of carnosine on energy metabolism of cultured cortical astrocytes under normal and ischemic conditions. ACTA ACUST UNITED AC 2014; 192-193:45-52. [PMID: 25195162 DOI: 10.1016/j.regpep.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of carnosine on the bioenergetic profile of cultured cortical astrocytes under normal and ischemic conditions. METHODS The Seahorse Bioscience XF96 Extracellular Flux Analyzer was used to measure the oxygen consumption rates (OCRs) and extracellular acidification rates (ECARs) of cultured cortical astrocytes treated with and without carnosine under normal and ischemic conditions. RESULTS Under the normal growth condition, the basal OCRs and ECARs of astrocytes were 21.72±1.59 pmol/min/μg protein and 3.95±0.28 mpH/min/μg protein respectively. Mitochondrial respiration accounted for ~80% of the total cellular respiration and 85% of this coupled to ATP synthesis. Carnosine significantly reduced basal OCRs and ECARs and ATP-linked respiration, but it strikingly increased the spare respiratory capacity of astrocytes. The cellular ATP level in carnosine-treated astrocytes was reduced to ~42% of the control. However, under the ischemic condition, carnosine upregulated the mitochondrial respiratory and cellular ATP content of astrocytes exposed to 8h of oxygen-glucose deprivation (OGD) followed by 24 h of recovery under the normal growth condition. CONCLUSIONS Carnosine may be an endogenous regulator of astrocyte energy metabolism and a clinically safe therapeutic agent for promoting brain energy metabolism recovery after ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yueyang Tian
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianbo Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaojie Shi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Li Ouyang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jieqiong Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
60
|
Shen Y, Tian Y, Shi X, Yang J, Ouyang L, Gao J, Lu J. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes. Cell Biochem Funct 2014; 32:530-7. [PMID: 25077445 DOI: 10.1002/cbf.3047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/06/2022]
Abstract
Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.
Collapse
Affiliation(s)
- Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
61
|
Yan H, Zhang X, Hu W, Ma J, Hou W, Zhang X, Wang X, Gao J, Shen Y, Lv J, Ohtsu H, Han F, Wang G, Chen Z. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms. Nat Commun 2014; 5:3334. [PMID: 24566390 PMCID: PMC3948077 DOI: 10.1038/ncomms4334] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022] Open
Abstract
The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. Histamine H3 receptor dysregulation is a hallmark of pathological conditions in the central nervous system, and H3 receptor antagonism is neuroprotective. Here Chen et al. show that histamine-independent H3 receptor activation can enhance neuronal cell death during cerebral ischaemia by suppressing autophagy.
Collapse
Affiliation(s)
- Haijing Yan
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2]
| | - Xiangnan Zhang
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China [3]
| | - Weiwei Hu
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China [3]
| | - Jing Ma
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Hou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingzhou Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Wang
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Jieqiong Gao
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Yao Shen
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Jianxin Lv
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Hiroshi Ohtsu
- Department of Engineering, School of Medicine, Tohoku University, Aoba-ku, Sendai 980-8775, Japan
| | - Feng Han
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University, College of Pharmaceutical Sciences, Suzhou 215123, China
| | - Zhong Chen
- 1] Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China
| |
Collapse
|
62
|
Majid A. Neuroprotection in stroke: past, present, and future. ISRN NEUROLOGY 2014; 2014:515716. [PMID: 24579051 PMCID: PMC3918861 DOI: 10.1155/2014/515716] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/16/2013] [Indexed: 01/05/2023]
Abstract
Stroke is a devastating medical condition, killing millions of people each year and causing serious injury to many more. Despite advances in treatment, there is still little that can be done to prevent stroke-related brain damage. The concept of neuroprotection is a source of considerable interest in the search for novel therapies that have the potential to preserve brain tissue and improve overall outcome. Key points of intervention have been identified in many of the processes that are the source of damage to the brain after stroke, and numerous treatment strategies designed to exploit them have been developed. In this review, potential targets of neuroprotection in stroke are discussed, as well as the various treatments that have been targeted against them. In addition, a summary of recent progress in clinical trials of neuroprotective agents in stroke is provided.
Collapse
Affiliation(s)
- Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
- Department of Neurology and Manchester Academic Health Sciences Centre, Salford Royal Hospital, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
63
|
Abstract
Carnosine (β-alanyl-l-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also in other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine, collectively called the histidine-containing dipeptides. This review aims to decipher the physiological roles of carnosine, based on its biochemical properties. The latter include pH-buffering, metal-ion chelation, and antioxidant capacity as well as the capacity to protect against formation of advanced glycation and lipoxidation end-products. For these reasons, the therapeutic potential of carnosine supplementation has been tested in numerous diseases in which ischemic or oxidative stress are involved. For several pathologies, such as diabetes and its complications, ocular disease, aging, and neurological disorders, promising preclinical and clinical results have been obtained. Also the pathophysiological relevance of serum carnosinase, the enzyme actively degrading carnosine into l-histidine and β-alanine, is discussed. The carnosine system has evolved as a pluripotent solution to a number of homeostatic challenges. l-Histidine, and more specifically its imidazole moiety, appears to be the prime bioactive component, whereas β-alanine is mainly regulating the synthesis of the dipeptide. This paper summarizes a century of scientific exploration on the (patho)physiological role of carnosine and related compounds. However, far more experiments in the fields of physiology and related disciplines (biology, pharmacology, genetics, molecular biology, etc.) are required to gain a full understanding of the function and applications of this intriguing molecule.
Collapse
|
64
|
Ji YS, Park JW, Heo H, Park JS, Park SW. The Neuroprotective Effect of Carnosine (β-Alanyl-l-Histidine) on Retinal Ganglion Cell Following Ischemia-Reperfusion Injury. Curr Eye Res 2013; 39:634-41. [DOI: 10.3109/02713683.2013.855235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
65
|
Wang XF, Hu WW, Yan HJ, Tan L, Gao JQ, Tian YY, Shi XJ, Hou WW, Li J, Shen Y, Chen Z. Modulation of astrocytic glutamine synthetase expression and cell viability by histamine in cultured cortical astrocytes exposed to OGD insults. Neurosci Lett 2013; 549:69-73. [DOI: 10.1016/j.neulet.2013.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/05/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
|
66
|
Bae ON, Majid A. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage. Brain Res 2013; 1527:246-54. [PMID: 23850642 DOI: 10.1016/j.brainres.2013.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 01/06/2023]
Abstract
Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection.
Collapse
Affiliation(s)
- Ok-Nam Bae
- Division of Cerebrovascular Diseases and Department of Neurology and Ophthalmology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
67
|
Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology 2013; 77:156-66. [PMID: 23791559 DOI: 10.1016/j.neuropharm.2013.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 11/22/2022]
Abstract
Astrocytic glutamate transporter 1 (GLT-1) is responsible for the majority of extracellular glutamate clearance and is essential for preventing excitotoxicity in the brain. Up-regulation of GLT-1 shows benefit effect on ischemia-induced neuronal damage. In present study, we examined the effect of histamine, a neurotransmitter or neuromodulator, on GLT-1 expression and function. In acute hippocampal slices, histamine selectively increased GLT-1 expression independent of neuronal activities. Similar up-regulation of GLT-1 was also observed after histamine treatment in pure cultured astrocytes, which was abolished by H1 receptor antagonist or PKC inhibitor. Cell surface biotinylation and whole-cell patch recordings of glutamate transporter current confirmed the up-regulation of functional GLT-1 following histamine exposure. Histamine treatment decreased the extracellular glutamate content and alleviated neuronal cell death induced by exogenous glutamate challenge. Moreover, we found a significant neuroprotective effect of histamine in brain slices after oxygen-glucose deprivation (OGD). In addition, histidine, the precursor of histamine, also showed neuroprotection against ischemic injury, which was accompanied by reversion of declined expression of GLT-1 in adult rats subjected to middle cerebral artery occlusion (MCAO). These neuroprotective effects of histamine/histidine were blocked by GLT-1 specific inhibitor dihydrokainate or H1 receptor antagonist. In summary, our results suggest that histamine up-regulates GLT-1 expression and function via astrocytic H1 receptors, thus resulting in neuroprotection against excitotoxicity and ischemic injury.
Collapse
|
68
|
Ma J, Xiong JY, Hou WW, Yan HJ, Sun Y, Huang SW, Jin L, Wang Y, Hu WW, Chen Z. Protective effect of carnosine on subcortical ischemic vascular dementia in mice. CNS Neurosci Ther 2013; 18:745-53. [PMID: 22943141 DOI: 10.1111/j.1755-5949.2012.00362.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Recently, we found carnosine protects against N-Methyl-D-Aspartate (NMDA) induced excitotoxicity through a histaminergic pathway. The aim of this study was to determine whether the carnosine-histidine-histamine pathway also played a protective role in subcortical ischemic vascular dementia (SIVD). METHODS Adult male mice (C57BL/6 strain) were subjected to right unilateral common carotid arteries occlusion (rUCCAO) and treated with carnosine or histidine. Object recognition test, passive avoidance task, Morris water maze, and immunohistochemical analyses were performed after rUCCAO. RESULTS We found that carnosine (200, 500 mg/kg) ameliorated white matter lesion and cognitive impairment evaluated by object recognition test, passive avoidance task, and Morris water maze test after rUCCAO in both wide-type mice and histidine decarboxylase knockout mice, which are lack of endogenous histamine. However, administration of histidine did not show the same effect. The myelin basic protein in the corpus callosum decreased obviously at day 37 after rUCCAO, which was largely reversed by carnosine (200, 500 mg/kg). Carnosine (200, 500 mg/kg) suppressed the activation of microglia and astrocyte as attenuating the elevation of glial fibrillary acidic protein (GFAP) and Iba-1 fluorescent intensity. Moreover, carnosine (200, 500 mg/kg) significantly attenuated the increase in reactive oxygen species generation after rUCCAO. CONCLUSION These data suggest that the neuroprotective effect of carnosine on rUCCAO in mice is not dependent on the histaminergic pathway, but may be due to a suppression of reactive oxygen species generation, glia activation, and myelin degeneration.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bae ON, Serfozo K, Baek SH, Lee KY, Dorrance A, Rumbeiha W, Fitzgerald SD, Farooq MU, Naravelta B, Bhatt A, Majid A. Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 2012; 44:205-12. [PMID: 23250994 DOI: 10.1161/strokeaha.112.673954] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE An urgent need exists to develop therapies for stroke that have high efficacy, long therapeutic time windows, and acceptable toxicity. We undertook preclinical investigations of a novel therapeutic approach involving supplementation with carnosine, an endogenous pleiotropic dipeptide. METHODS Efficacy and safety of carnosine treatment was evaluated in rat models of permanent or transient middle cerebral artery occlusion. Mechanistic studies used primary neuronal/astrocytic cultures and ex vivo brain homogenates. RESULTS Intravenous treatment with carnosine exhibited robust cerebroprotection in a dose-dependent manner, with long clinically relevant therapeutic time windows of 6 hours and 9 hours in transient and permanent models, respectively. Histological outcomes and functional improvements including motor and sensory deficits were sustained on 14th day poststroke onset. In safety and tolerability assessments, carnosine did not exhibit any evidence of adverse effects or toxicity. Moreover, histological evaluation of organs, complete blood count, coagulation tests, and the serum chemistry did not reveal any abnormalities. In primary neuronal cell cultures and ex vivo brain homogenates, carnosine exhibited robust antiexcitotoxic, antioxidant, and mitochondria protecting activity. CONCLUSIONS In both permanent and transient ischemic models, carnosine treatment exhibited significant cerebroprotection against histological and functional damage, with wide therapeutic and clinically relevant time windows. Carnosine was well tolerated and exhibited no toxicity. Mechanistic data show that it influences multiple deleterious processes. Taken together, our data suggest that this endogenous pleiotropic dipeptide is a strong candidate for further development as a stroke treatment.
Collapse
Affiliation(s)
- Ok-Nam Bae
- Department of Neurology, Salford Royal Hospital, Stott Lane, Salford, England
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Chengappa KNR, Turkin SR, DeSanti S, Bowie CR, Brar JS, Schlicht PJ, Murphy SL, Hetrick ML, Bilder R, Fleet D. A preliminary, randomized, double-blind, placebo-controlled trial of L-carnosine to improve cognition in schizophrenia. Schizophr Res 2012; 142:145-52. [PMID: 23099060 DOI: 10.1016/j.schres.2012.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Targeting glutamatergic dysfunction provides an exciting opportunity to improve cognitive impairment in schizophrenia. One treatment approach has targeted inadequate antioxidant defenses at glutamatergic synapses. Animal and human data suggest NMDA antagonists worsen executive cognitive controls--e.g. increase perseverative responses and impair set-shifting. We conducted a preliminary study to test the hypothesis that L-carnosine, an antioxidant and anti-glycation agent which is co-localized and released with glutamate would improve executive dysfunction, a cognitive domain associated with glutamate. METHODS Seventy-five symptomatically stable adults with chronic schizophrenia were randomly assigned to L-carnosine as adjunctive treatment (2 g/day) or a matched placebo in a double-blind manner for 3 months. Cognitive domains (executive dysfunction, memory, attention and motor speed) were assessed using a computerized battery at baseline, 4 and 12 weeks, along with psychopathology ratings and safety parameters. RESULTS The L-carnosine group performed significantly faster on non-reversal condition trials of the set-shifting test compared with placebo but reversal reaction times and errors were not significantly different between treatments. On the strategic target detection test, the L-carnosine group displayed significantly improved strategic efficiency and made fewer perseverative errors compared with placebo. Other cognitive tests showed no significant differences between treatments. Psychopathology scores remained stable. The carnosine group reported more adverse events (30%) compared with the placebo group (14%). Laboratory indices remained within acceptable ranges. CONCLUSIONS These preliminary findings suggest that L-carnosine merits further consideration as adjunctive treatment to improve executive dysfunction in persons with schizophrenia.
Collapse
Affiliation(s)
- K N Roy Chengappa
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, PA 15213-2593, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhang L, Yao K, Fan Y, He P, Wang X, Hu W, Chen Z. Carnosine protects brain microvascular endothelial cells against rotenone-induced oxidative stress injury through histamine H1and H2receptorsin vitro. Clin Exp Pharmacol Physiol 2012; 39:1019-25. [DOI: 10.1111/1440-1681.12019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/09/2012] [Accepted: 10/02/2012] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ke Yao
- Eye Center; Second Affiliated Hospital of Zhejiang University; School of Medicine; Hangzhou; Zhejiang; China
| | | | - Ping He
- Department of Pharmacy; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; Zhejiang; China
| | | | - Weiwei Hu
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; School of Basic Medical Sciences; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; China
| | - Zhong Chen
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; School of Basic Medical Sciences; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; China
| |
Collapse
|
72
|
Fan YY, Zhang XN, He P, Shen Z, Shen Y, Wang XF, Hu WW, Chen Z. Transient lack of glucose but not O2 is involved in ischemic postconditioning-induced neuroprotection. CNS Neurosci Ther 2012; 19:30-7. [PMID: 23167958 DOI: 10.1111/cns.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/22/2012] [Accepted: 10/10/2012] [Indexed: 12/18/2022] Open
Abstract
AIM Cerebral ischemic postconditioning has emerged recently as a kind of endogenous strategy for neuroprotection. We set out to test whether hypoxia or glucose deprivation (GD) would substitute for ischemia in postconditioning. METHODS Adult male C57BL/6J mice were treated with postconditioning evoked by ischemia (bilateral common carotid arteries occlusion) or hypoxia (8% O(2) ) after 45-min middle cerebral arterial occlusion. Corticostriatal slices from mice were subjected to 1-min oxygen-glucose deprivation (OGD), GD, or oxygen deprivation (OD) postconditioning at 5 min after 15-min OGD. RESULTS Hypoxic postconditioning did not decrease infarct volume or improve neurologic function at 24 h after reperfusion, while ischemic postconditioning did. Similarly, OGD and GD but not OD postconditioning attenuated the OGD/reperfusion-induced injury in corticostriatal slices. The effective duration of low-glucose (1 mmol/L) postconditioning was longer than that of OGD postconditioning. Moreover, OGD and GD but not OD postconditioning reversed the changes of glutamate, GABA, glutamate transporter-1 protein expression, and glutamine synthetase activity induced by OGD/reperfusion. CONCLUSIONS These results suggest that the transient lack of glucose but not oxygen plays a key role in ischemic postconditioning-induced neuroprotection, at least partly by regulating glutamate metabolism. Low-glucose postconditioning might be a clinically safe and feasible therapeutic approach against cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Bertinaria M, Rolando B, Giorgis M, Montanaro G, Marini E, Collino M, Benetti E, Daniele PG, Fruttero R, Gasco A. Carnosine analogues containing NO-donor substructures: Synthesis, physico-chemical characterization and preliminary pharmacological profile. Eur J Med Chem 2012; 54:103-12. [DOI: 10.1016/j.ejmech.2012.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/04/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022]
|
74
|
Hu WW, Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci 2012; 3:238-47. [PMID: 22860191 DOI: 10.1021/cn200126p] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/10/2012] [Indexed: 12/25/2022] Open
Abstract
Histamine is recognized as a neurotransmitter or neuromodulator in the brain, and it plays a major role in the pathogenic progression after cerebral ischemia. Extracellular histamine increases gradually after ischemia, and this may come from histaminergic neurons or mast cells. Histamine alleviates neuronal damage and infarct volume, and it promotes recovery of neurological function after ischemia; the H1, H2, and H3 receptors are all involved. Further studies suggest that histamine alleviates excitotoxicity, suppresses the release of glutamate and dopamine, and inhibits inflammation and glial scar formation. Histamine may also affect cerebral blood flow by targeting to vascular smooth muscle cells, and promote neurogenesis. Moreover, endogenous histamine is an essential mediator in the cerebral ischemic tolerance. Due to its multiple actions, affecting neurons, glia, vascular cells, and inflammatory cells, histamine is likely to be an important target in cerebral ischemia. But due to its low penetration of the blood-brain barrier and its wide actions in the periphery, histamine-related agents, like H3 antagonists and carnosine, show potential for cerebral ischemia therapy. However, important questions about the molecular aspects and pathophysiology of histamine and related agents in cerebral ischemia remain to be answered to form a solid scientific basis for therapeutic application.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
75
|
Barreto G, White RE, Ouyang Y, Xu L, Giffard RG. Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:164-73. [PMID: 21521168 DOI: 10.2174/187152411796011303] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
In the past two decades, over 1000 clinical trials have failed to demonstrate a benefit in treating stroke, with the exception of thrombolytics. Although many targets have been pursued, including antioxidants, calcium channel blockers, glutamate receptor blockers, and neurotrophic factors, often the focus has been on neuronal mechanisms of injury. Broader attention to loss and dysfunction of non-neuronal cell types is now required to increase the chance of success. Of the several glial cell types, this review will focus on astrocytes. Astrocytes are the most abundant cell type in the higher mammalian nervous system, and they play key roles in normal CNS physiology and in central nervous system injury and pathology. In the setting of ischemia astrocytes perform multiple functions, some beneficial and some potentially detrimental, making them excellent candidates as therapeutic targets to improve outcome following stroke and in other central nervous system injuries. The older neurocentric view of the central nervous system has changed radically with the growing understanding of the many essential functions of astrocytes. These include K+ buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons, and modulation of neuronal excitability. In this review, we will focus on those functions of astrocytes that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve outcome following cerebral ischemia.
Collapse
Affiliation(s)
- George Barreto
- Department of Anesthesia, Stanford University School of Medicine, S272, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
76
|
Ohsawa M, Mutoh J, Asato M, Yamamoto S, Ono H, Hisa H, Kamei J. Carnosine has antinociceptive properties in the inflammation-induced nociceptive response in mice. Eur J Pharmacol 2012; 682:56-61. [PMID: 22366199 DOI: 10.1016/j.ejphar.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 12/28/2022]
Abstract
Carnosine is a biologically active dipeptide that is found in fish and chicken muscle. Recent studies have revealed that carnosine has neuroprotective activity in zinc-induced neural cell apoptosis and ischemic stroke. In the present study, we examined the expression of carnosine in the spinal cord, and the antinociceptive potency of carnosine in a mouse model of inflammation-induced nociceptive pain. Immunohistochemical studies with antiserum against carnosine showed an abundance of carnosine-immunoreactivity in the dorsal horn of the mouse spinal cord. Double-immunostaining techniques revealed that carnosine was expressed in the neurons and astrocytes in the spinal cord. Oral administration of carnosine attenuated the number of writhing behaviors induced by the intraperitoneal administration of 0.6% acetic acid. Treatment with carnosine also attenuated the second phase, but not the first phase, of the nociceptive response to formalin. Moreover, intrathecal, but not intraplanter, administration of carnosine attenuated the second phase of the nociceptive response to formalin. Our immunohistochemical and behavioral data suggest that carnosine has antinociceptive effects toward inflammatory pain, which may be mediated by the attenuation of nociceptive sensitization in the spinal cord.
Collapse
Affiliation(s)
- Masahiro Ohsawa
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka-shi, Miyazaki 882-8508 Japan.
| | | | | | | | | | | | | |
Collapse
|
77
|
Chen T, Fei F, Jiang XF, Zhang L, Qu Y, Huo K, Fei Z. Down-regulation of Homer1b/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons. Free Radic Biol Med 2012; 52:208-17. [PMID: 22080088 DOI: 10.1016/j.freeradbiomed.2011.10.451] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 11/28/2022]
Abstract
Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Homer proteins, a new member of the postsynaptic scaffolding proteins, regulate glutamatergic signaling and intracellular calcium mobilization in the central nervous system. Here we investigated the effects of down-regulating Homer1b/c, a constitutively expressed long form of Homer proteins, on glutamate excitotoxicity-induced neuronal injury. In our in vitro excitotoxic models, we demonstrated that glutamate insults led to a dose-dependent neuronal injury, which was mediated by the intracellular calcium-dependent reactive oxygen species (ROS) production. We found that down-regulation of Homer1b/c with specific small interfering RNA (siRNA) improved neuronal survival, inhibited intracellular ROS production, and reduced apoptotic cell death after neurotoxicity. Homer1b/c knockdown decreased the intracellular calcium overload through inhibition of the group I metabotropic glutamate receptor (mGluR)/inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the endoplasmic reticulum (ER) in injured neurons. In addition, Homer1b/c siRNA transfection attenuated the activation of eukaryotic initiation factor 2α (eIF2α), RNA-dependent protein kinase-like ER kinase (PERK) and caspase-12, and inhibited the up-regulation of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) after glutamate treatment. Homer1b/c knockdown also preserved the mitochondrial membrane potential (MMP), reduced cytochrome c (Cyt. c) release, and partly blocked the increase of capase-9 activity and Bax/Bcl-2 ratio. Taken together, these results suggest that down-regulation of Homer1b/c protects cortical neurons against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the inhibition of calcium-dependent ROS production and the preservation of the ER and mitochondrial function.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
78
|
Di Paola R, Impellizzeri D, Salinaro AT, Mazzon E, Bellia F, Cavallaro M, Cornelius C, Vecchio G, Calabrese V, Rizzarelli E, Cuzzocrea S. Administration of carnosine in the treatment of acute spinal cord injury. Biochem Pharmacol 2011; 82:1478-89. [DOI: 10.1016/j.bcp.2011.07.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/02/2011] [Accepted: 07/06/2011] [Indexed: 01/10/2023]
|
79
|
Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med 2011; 32:258-66. [DOI: 10.1016/j.mam.2011.10.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022]
|
80
|
|
81
|
Gong YX, Shou WT, Feng B, Zhang WP, Wang HJ, Ohtsu H, Chen Z. Ameliorating effect of histamine on impairment of cued fear extinction induced by morphine withdrawal in histidine decarboxylase gene knockout mice. Acta Pharmacol Sin 2010; 31:1431-7. [PMID: 21052083 DOI: 10.1038/aps.2010.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM Histamine plays an important role in morphine addiction and memory-dependent behavior. However, little is known about the effect of histamine on the impairment of memory after morphine withdrawal. This study was designed to investigate the effect of histamine on memory impairment induced by morphine withdrawal in histidine decarboxylase knockout (HDC-KO) and wild-type (WT) mice. METHODS WT and HDC-KO mice were given subcutaneous morphine or saline twice daily for 5 consecutive days. The mice received a cued or contextual fear conditioning session 7 days after the last injection. During subsequent days, mice received 4 cued or contextual extinction sessions (one session per day). Western blot was used to assess extracellular signal-regulated kinase (ERK) phosphorylation in the amygdala and hippocampus. RESULTS Morphine withdrawal did not affect the acquisition of cued or contextual fear responses. It impaired cued but not contextual fear extinction. The acquisition of cued and contextual fear responses was accelerated in HDC-KO mice. Histamine deficiency aggravated the impairment of cued fear extinction induced by morphine withdrawal, whereas histamine (icv, 5 μg/mouse) reversed this effect. Morphine withdrawal decreased ERK phosphorylation in the amygdala after cued fear extinction, especially in HDC-KO mice. CONCLUSION These results suggest that morphine withdrawal specifically impairs cued fear extinction and histamine ameliorates this impairment. Its action might be mediated by the modulation of ERK phosphorylation in the amygdala. Histamine should be explored for possible roles in the prevention or treatment of morphine abuse and relapse.
Collapse
|