51
|
Roa FJ, Peña E, Gatica M, Escobar-Acuña K, Saavedra P, Maldonado M, Cuevas ME, Moraga-Cid G, Rivas CI, Muñoz-Montesino C. Therapeutic Use of Vitamin C in Cancer: Physiological Considerations. Front Pharmacol 2020; 11:211. [PMID: 32194425 PMCID: PMC7063061 DOI: 10.3389/fphar.2020.00211] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Since the early studies of William J. McCormick in the 1950s, vitamin C has been proposed as a candidate for the treatment of cancer. A number of reports have shown that pharmacological concentrations of vitamin C selectively kill cancer cells in vitro and decrease the growth rates of a number of human tumor xenografts in immunodeficient mice. However, up to the date there is still doubt regarding this possible therapeutic role of vitamin C in cancer, mainly because high dose administration in cancer patients has not showed a clear antitumor activity. These apparent controversial findings highlight the fact that we lack information on the interactions that occurs between cancer cells and vitamin C, and if these transformed cells can uptake, metabolize and compartmentalize vitamin C like normal human cells do. The role of SVCTs and GLUTs transporters, which uptake the reduced form and the oxidized form of vitamin C, respectively, has been recently highlighted in the context of cancer showing that the relationship between vitamin C and cancer might be more complex than previously thought. In this review, we analyze the state of art of the effect of vitamin C on cancer cells in vitro and in vivo, and relate it to the capacity of cancer cells in acquiring, metabolize and compartmentalize this nutrient, with its implications on the potential therapeutic role of vitamin C in cancer.
Collapse
Affiliation(s)
- Francisco J Roa
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eduardo Peña
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcell Gatica
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar-Acuña
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina Saavedra
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Mafalda Maldonado
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Magdalena E Cuevas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carola Muñoz-Montesino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
52
|
Chen L, Song H, Luo Z, Cui H, Zheng W, Liu Y, Li W, Luo F, Liu J. PHLPP2 is a novel biomarker and epigenetic target for the treatment of vitamin C in pancreatic cancer. Int J Oncol 2020; 56:1294-1303. [PMID: 32319585 DOI: 10.3892/ijo.2020.5001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Epigenetic dysregulations are closely associated with the development of pancreatic ductal adenocarcinoma (PDAC), which is one of the most aggressive malignancies and currently has limited treatment options. Vitamin C (VC), an epigenetic mediator, exerts antitumor effects on several types of cancer. However, the clinical application of VC is limited, particularly in PDAC. Thus, to investigate the antitumor effects and explore the potential clinical application of VC in PDAC, the survival of patients from The Cancer Genome Atlas database were analyzed, and proliferation, apoptosis and migration assays were performed in the present study. It was first established that high expression levels of the sodium‑dependent VC transporter 2, a critical VC transporter, predicted a good prognosis in patients with pancreatic adenocarcinoma. It was further confirmed that VC directly inhibited proliferation, induced apoptosis and suppressed migration of human pancreatic cancer cells. Global 5‑hydroxymethylcytosine (5hmC) content was significantly upregulated in pancreatic cancer cells following VC treatment, predominantly relying on ten‑eleven translocation 2. Furthermore, VC could specifically increase 5hmC levels at the promotor region on PH domain leucine‑rich repeat protein phosphatase 2 (PHLPP2) and enhance PHLPP2 expression levels. When PHLPP2 expression levels were knocked down, VC was able to partially overcome the inhibition of pancreatic cancer cells. These results illustrated a novel and precise mechanism of action of epigenetic alterations that underly the inhibition of VC in pancreatic cancer, and emphasized that PHLPP2 may be a new biomarker and epigenetic target for the clinical treatment of VC in PDAC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Huan Song
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Zhongguang Luo
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Haoshu Cui
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Wanwei Zheng
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Yao Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Wenshuai Li
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Feifei Luo
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
53
|
Lin C, Dong J, Wei Z, Cheng KK, Li J, You S, Liu Y, Wang X, Chen Z. 1H NMR-Based Metabolic Profiles Delineate the Anticancer Effect of Vitamin C and Oxaliplatin on Hepatocellular Carcinoma Cells. J Proteome Res 2020; 19:781-793. [PMID: 31916767 DOI: 10.1021/acs.jproteome.9b00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Because of its high recurrence rate and heterogeneity, effective treatment for advanced stage of HCC is currently lacking. There are accumulating evidences showing the therapeutic potential of pharmacologic vitamin C (VC) on HCC. However, the metabolic basis underlying the anticancer property of VC remains to be elucidated. In this study, we used a high-resolution proton nuclear magnetic resonance-based metabolomics technique to assess the global metabolic changes in HCC cells following VC treatment. In addition, the HCC cells were also treated with oxaliplatin (OXA) to explore the potential synergistic effect induced by the combined VC and OXA treatment. The current metabolomics data suggested different mechanisms of OXA and VC in modulating cell growth and metabolism. In general, VC treatment led to inhibition of energy metabolism via NAD+ depletion and amino acid deprivation. On the other hand, OXA caused significant perturbation in phospholipid biosynthesis and phosphatidylcholine biosynthesis pathways. The current results highlighted glutathione metabolism, and pathways related to succinate and choline may play central roles in conferring the combined effect between OXA and VC. Taken together, this study provided metabolic evidence of VC and OXA in treating HCC and may contribute toward the potential application of combined VC and OXA as complementary HCC therapies.
Collapse
Affiliation(s)
- Caigui Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance , Xiamen University , Xiamen , Fujian 361005 , China
| | - Jiyang Dong
- Department of Electronic Science, Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance , Xiamen University , Xiamen , Fujian 361005 , China
| | - Zhiliang Wei
- Department of Radiology , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Kian-Kai Cheng
- Innovation Centre in Agritechnology , Universiti Teknologi Malaysia , Muar , Johor 84600 , Malaysia
| | - Jie Li
- Department of Hepatobiliary Surgery , ZhongShan Hospital of Xiamen University , Xiamen , Fujian 361005 , China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma , ZhongShan Hospital of Xiamen University , Xiamen , Fujian 361005 , China
| | - Song You
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma , ZhongShan Hospital of Xiamen University , Xiamen , Fujian 361005 , China.,Graduate College of Fujian Medical University , Fuzhou , Fujian 350004 , China
| | - Yueyue Liu
- Department of Electronic Science, Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance , Xiamen University , Xiamen , Fujian 361005 , China
| | - Xiaomin Wang
- Department of Hepatobiliary Surgery , ZhongShan Hospital of Xiamen University , Xiamen , Fujian 361005 , China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma , ZhongShan Hospital of Xiamen University , Xiamen , Fujian 361005 , China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance , Xiamen University , Xiamen , Fujian 361005 , China
| |
Collapse
|
54
|
Luchtel RA, Bhagat T, Pradhan K, Jacobs WR, Levine M, Verma A, Shenoy N. High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model. Proc Natl Acad Sci U S A 2020; 117:1666-1677. [PMID: 31911474 PMCID: PMC6983418 DOI: 10.1073/pnas.1908158117] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Major efforts are underway to identify agents that can potentiate effects of immune checkpoint inhibition. Here, we show that ascorbic acid (AA) treatment caused genomewide demethylation and enhanced expression of endogenous retroviral elements in lymphoma cells. AA also increased 5-hydroxymethylcytosine (5hmC) levels of CD8+ T cells and enhanced their cytotoxic activity in a lymphoma coculture system. High-dose AA treatment synergized with anti-PD1 therapy in a syngeneic lymphoma mouse model, resulting in marked inhibition of tumor growth compared with either agent alone. Analysis of the intratumoral epigenome revealed increased 5hmC with AA treatment, consistent with in vitro findings. Analysis of the tumor immune microenvironment revealed that AA strikingly increased intratumoral infiltration of CD8+ T cells and macrophages, suggesting enhanced tumor immune recognition. The combination treatment markedly enhanced intratumoral infiltration of macrophages and CD8+ T lymphocytes, granzyme B production by cytotoxic cells (cytotoxic T cells and natural killer cells), and interleukin 12 production by antigen-presenting cells compared with single-agent anti-PD1. These data indicate that AA potentiates anti-PD1 checkpoint inhibition through synergistic mechanisms. The study provides compelling rationale for testing combinations of high-dose AA and anti-PD1 agents in patients with aggressive B cell lymphoma as well as in preclinical models of other malignancies.
Collapse
Affiliation(s)
- Rebecca A Luchtel
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461
| | - Tushar Bhagat
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461
| | - Kith Pradhan
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461;
- Department of Molecular Genetics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Amit Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461
| | - Niraj Shenoy
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461;
- Experimental Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
55
|
Zeng LH, Wang QM, Feng LY, Ke YD, Xu QZ, Wei AY, Zhang C, Ying RB. High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition. Onco Targets Ther 2019; 12:7405-7413. [PMID: 31571901 PMCID: PMC6753468 DOI: 10.2147/ott.s222702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/01/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose Vitamin C (VC) is a kind of essential nutrient in the body regarded as a canonical antioxidant during the past hundred years. However, the anti-cancer effect of VC is controversial. Our study is trying to clarify the relationship between VC dosage and breast cancer metastasis. Methods Human breast cancer cell lines Bcap37 and MDA-MB-453 were treated with VC at three different concentrations (low-dose, 0.01 mM; medium-dose, 0.1 mM; high-dose, 2 mM). Wound healing assays were conducted for migration assay; transwell tests were performed to detect the ability of cell invasion. The protein levels were evaluated by Western blot analysis or immunohistochemistry. Tumor xenografts in nude mice were built to test the effects of VC on breast cancer cell proliferation and metastasis. Results 0.01 and 0.1 mM VC promoted cell migration and invasion when compared with the control group, but 2 mM VC significantly suppressed cell migration and invasion of breast cancer cell lines. High-dose VC increased E-cadherin and reduced Vimentin, indicating that high-dose VC suppressed epithelial-mesenchymal transition (EMT) in breast cancer cells. Besides, high-dose VC inhibited cell invasion promoted by TGF-β1 in breast cancer cells. Meanwhile, high-dose VC reversed the suppression of E-cadherin and enhancement of Vimentin induced by TGF-β1 in breast cancer cells. Furthermore, high-dose VC significantly inhibited breast cancer metastasis in vivo. Conclusion High-dose VC inhibits cell migration and invasion of breast cancer cell lines through suppressing EMT. Thus, it may be considered as an anticancer drug candidate for breast cancer patients.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou City, Zhejiang Province 310015, People's Republic of China
| | - Qing-Mei Wang
- Department of Pharmacology, Zhejiang University City College, Hangzhou City, Zhejiang Province 310015, People's Republic of China.,Department of Surgical Oncology, Taizhou Cancer Hospital, Wenling City, Zhejiang Province 317500, People's Republic of China.,Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou City, Henan Province 450053, People's Republic of China
| | - Lin-Yi Feng
- Department of Pharmacology, Zhejiang University City College, Hangzhou City, Zhejiang Province 310015, People's Republic of China
| | - Yu-Dun Ke
- Department of Pharmacology, Zhejiang University City College, Hangzhou City, Zhejiang Province 310015, People's Republic of China
| | - Qian-Zi Xu
- Department of Pharmacology, Zhejiang University City College, Hangzhou City, Zhejiang Province 310015, People's Republic of China
| | - An-Yi Wei
- Department of Pharmacology, Zhejiang University City College, Hangzhou City, Zhejiang Province 310015, People's Republic of China
| | - Chong Zhang
- Department of Pharmacology, Zhejiang University City College, Hangzhou City, Zhejiang Province 310015, People's Republic of China
| | - Rong-Biao Ying
- Department of Surgical Oncology, Taizhou Cancer Hospital, Wenling City, Zhejiang Province 317500, People's Republic of China
| |
Collapse
|
56
|
Allen BG, Bodeker KL, Smith MC, Monga V, Sandhu S, Hohl R, Carlisle T, Brown H, Hollenbeck N, Vollstedt S, Greenlee JD, Howard MA, Mapuskar KA, Seyedin SN, Caster JM, Jones KA, Cullen JJ, Berg D, Wagner BA, Buettner GR, TenNapel MJ, Smith BJ, Spitz DR, Buatti JM. First-in-Human Phase I Clinical Trial of Pharmacologic Ascorbate Combined with Radiation and Temozolomide for Newly Diagnosed Glioblastoma. Clin Cancer Res 2019; 25:6590-6597. [PMID: 31427282 DOI: 10.1158/1078-0432.ccr-19-0594] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Standard treatment for glioblastoma (GBM) includes surgery, radiation therapy (RT), and temozolomide (TMZ), yielding a median overall survival (OS) of approximately 14 months. Preclinical models suggest that pharmacologic ascorbate (P-AscH-) enhances RT/TMZ antitumor effect in GBM. We evaluated the safety of adding P-AscH- to standard RT/TMZ therapy. PATIENTS AND METHODS This first-in-human trial was divided into an RT phase (concurrent RT/TMZ/P-AscH-) and an adjuvant (ADJ) phase (post RT/TMZ/P-AscH- phase). Eight P-AscH- dose cohorts were evaluated in the RT phase until targeted plasma ascorbate levels were achieved (≥20 mmol/L). In the ADJ phase, P-AscH- doses were escalated in each subject at each cycle until plasma concentrations were ≥20 mmol/L. P-AscH- was infused 3 times weekly during the RT phase and 2 times weekly during the ADJ phase continuing for six cycles or until disease progression. Adverse events were quantified by CTCAE (v4.03). RESULTS Eleven subjects were evaluable. No dose-limiting toxicities occurred. Observed toxicities were consistent with historical controls. Adverse events related to study drug were dry mouth and chills. Targeted ascorbate plasma levels of 20 mmol/L were achieved in the 87.5 g cohort; diminishing returns were realized in higher dose cohorts. Median progression-free survival (PFS) was 9.4 months and median OS was 18 months. In subjects with undetectable MGMT promoter methylation (n = 8), median PFS was 10 months and median OS was 23 months. CONCLUSIONS P-AscH-/RT/TMZ is safe with promising clinical outcomes warranting further investigation.
Collapse
Affiliation(s)
- Bryan G Allen
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kellie L Bodeker
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Mark C Smith
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Varun Monga
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Sonia Sandhu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Raymond Hohl
- Penn State Cancer Institute, Hershey, Pennsylvania
| | - Thomas Carlisle
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Heather Brown
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Nancy Hollenbeck
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Sandy Vollstedt
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Kranti A Mapuskar
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Steven N Seyedin
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Joseph M Caster
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Karra A Jones
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Joseph J Cullen
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Daniel Berg
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Brett A Wagner
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Garry R Buettner
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Mindi J TenNapel
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Brian J Smith
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa
| | - Douglas R Spitz
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, Iowa.
| |
Collapse
|
57
|
Buranasudja V, Doskey CM, Gibson AR, Wagner BA, Du J, Gordon DJ, Koppenhafer SL, Cullen JJ, Buettner GR. Pharmacologic Ascorbate Primes Pancreatic Cancer Cells for Death by Rewiring Cellular Energetics and Inducing DNA Damage. Mol Cancer Res 2019; 17:2102-2114. [PMID: 31337671 DOI: 10.1158/1541-7786.mcr-19-0381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 01/21/2023]
Abstract
The clinical potential of pharmacologic ascorbate (P-AscH-; intravenous delivery achieving mmol/L concentrations in blood) as an adjuvant in cancer therapy is being reevaluated. At mmol/L concentrations, P-AscH- is thought to exhibit anticancer activity via generation of a flux of H2O2 in tumors, which leads to oxidative distress. Here, we use cell culture models of pancreatic cancer to examine the effects of P-AscH- on DNA damage, and downstream consequences, including changes in bioenergetics. We have found that the high flux of H2O2 produced by P-AscH- induces DNA damage. In response to this DNA damage, we observed that PARP1 is hyperactivated. Using our unique absolute quantitation, we found that P-AscH- mediated the overactivation of PARP1, which results in consumption of NAD+, and subsequently depletion of ATP leading to mitotic cell death. We have also found that Chk1 plays a major role in the maintenance of genomic integrity following treatment with P-AscH-. Hyperactivation of PARP1 and DNA repair are ATP-consuming processes. Using a Seahorse XF96 analyzer, we demonstrated that the severe decrease in ATP after challenging with P-AscH- is because of increased demand, not changes in the rate of production. Genetic deletion and pharmacologic inhibition of PARP1 preserved both NAD+ and ATP; however, the toxicity of P-AscH- remained. These data indicate that disruption of bioenergetics is a secondary factor in the toxicity of P-AscH-; damage to DNA appears to be the primary factor. IMPLICATIONS: Efforts to leverage P-AscH- in cancer therapy should first focus on DNA damage.
Collapse
Affiliation(s)
- Visarut Buranasudja
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Claire M Doskey
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Adrienne R Gibson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| | - Juan Du
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa.,Department of Surgery, The University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa
| | | | - Joseph J Cullen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa.,Department of Surgery, The University of Iowa, Iowa City, Iowa.,Veterans Affairs Medical Center, The University of Iowa, Iowa City, Iowa
| | - Garry R Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa. .,Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
58
|
Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J, Ma S, Yao D, Ji M, Hou P. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 2019; 9:4461-4473. [PMID: 31285773 PMCID: PMC6599666 DOI: 10.7150/thno.35219] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Vitamin C has been demonstrated to kill BRAF mutant colorectal cancer cells selectively. BRAF mutation is the most common genetic alteration in thyroid tumor development and progression; however, the antitumor efficacy of vitamin C in thyroid cancer remains to be explored. Methods: The effect of vitamin C on thyroid cancer cell proliferation and apoptosis was assessed by the MTT assay and flow cytometry. Xenograft and transgenic mouse models were used to determine its in vivo antitumor activity of vitamin C. Molecular and biochemical methods were used to elucidate the underlying mechanisms of anticancer activity of vitamin C in thyroid cancer. Results: Pharmaceutical concentration of vitamin C significantly inhibited thyroid cancer cell proliferation and induced cell apoptosis regardless of BRAF mutation status. We demonstrated that the elevated level of Vitamin C in the plasma following a high dose of intraperitoneal injection dramatically inhibited the growth of xenograft tumors. Similar results were obtained in the transgenic mouse model. Mechanistically, vitamin C eradicated BRAF wild-type thyroid cancer cells through ROS-mediated decrease in the activity of EGF/EGFR-MAPK/ERK signaling and an increase in AKT ubiquitination and degradation. On the other hand, vitamin C exerted its antitumor activity in BRAF mutant thyroid cancer cells by inhibiting the activity of ATP-dependent MAPK/ERK signaling and inducing proteasome degradation of AKT via the ROS-dependent pathway. Conclusions: Our data demonstrate that vitamin C kills thyroid cancer cells by inhibiting MAPK/ERK and PI3K/AKT pathways via a ROS-dependent mechanism and suggest that pharmaceutical concentration of vitamin C has potential clinical use in thyroid cancer therapy.
Collapse
|
59
|
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a dismal prognosis and is often discovered at an advanced stage with few therapeutic options. Current conventional regimens for PDA are associated with significant morbidity, decreased quality of life, and a considerable financial burden. As a result, some patients turn to integrative medicine therapies as an alternate option after a diagnosis of PDA. Intravenous pharmacologic ascorbic acid (PAA) is one such treatment. The use of PAA has been passionately debated for many years, but more recent rigorous scientific research has shown that there are significant blood concentration differences when ascorbic acid is given parenterally when compared to oral dosing. This pharmacologic difference appears to be critical for its role in oncology. Here, we report the use of PAA in a patient with poorly differentiated stage IV PDA as an exclusive chemotherapeutic regimen. The patient survived nearly 4 years after diagnosis, with PAA as his sole treatment, and he achieved objective regression of his disease. He died from sepsis and organ failure from a bowel perforation event. This case illustrates the possibility of PAA to effectively control tumor progression and serve as an adjunct to standard of care PDA chemotherapy regimens. Our patient's experience with PAA should be taken into consideration, along with previous research in cell, animal, and clinical experiments to design future treatment trials.
Collapse
|
60
|
Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B. Vitamin C as a Modulator of the Response to Cancer Therapy. Molecules 2019; 24:E453. [PMID: 30695991 PMCID: PMC6384696 DOI: 10.3390/molecules24030453] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/04/2023] Open
Abstract
Ascorbic acid (vitamin C) has been gaining attention as a potential treatment for human malignancies. Various experimental studies have shown the ability of pharmacological doses of vitamin C alone or in combinations with clinically used drugs to exert beneficial effects in various models of human cancers. Cytotoxicity of high doses of vitamin C in cancer cells appears to be related to excessive reactive oxygen species generation and the resulting suppression of the energy production via glycolysis. A hallmark of cancer cells is a strongly upregulated aerobic glycolysis, which elevates its relative importance as a source of ATP (Adenosine 5'-triphosphate). Aerobic glycolysis is maintained by a highly increased uptake of glucose, which is made possible by the upregulated expression of its transporters, such as GLUT-1, GLUT-3, and GLUT-4. These proteins can also transport the oxidized form of vitamin C, dehydroascorbate, permitting its preferential uptake by cancer cells with the subsequent depletion of critical cellular reducers as a result of ascorbate formation. Ascorbate also has a potential to affect other aspects of cancer cell metabolism due to its ability to promote reduction of iron(III) to iron(II) in numerous cellular metalloenzymes. Among iron-dependent dioxygenases, important targets for stimulation by vitamin C in cancer include prolyl hydroxylases targeting the hypoxia-inducible factors HIF-1/HIF-2 and histone and DNA demethylases. Altered metabolism of cancer cells by vitamin C can be beneficial by itself and promote activity of specific drugs.
Collapse
Affiliation(s)
- Wiktoria Blaszczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Wojciech Barczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Julia Masternak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland.
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| |
Collapse
|
61
|
Foo CHJ, Pervaiz S. gRASping the redox lever to modulate cancer cell fate signaling. Redox Biol 2019; 25:101094. [PMID: 30638892 PMCID: PMC6859584 DOI: 10.1016/j.redox.2018.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023] Open
Abstract
RAS proteins are critical regulators of signaling networks controlling diverse cellular functions such as cell proliferation and survival and its mutation are among the most powerful oncogenic drivers in human cancers. Despite intense efforts, direct RAS-targeting strategies remain elusive due to its "undruggable" nature. To that end, bulk of the research efforts has been directed towards targeting upstream and/or downstream of RAS signaling. However, the therapeutic efficacies of these treatments are limited in the long run due to the acquired drug resistance in RAS-driven cancers. Interestingly, recent studies have uncovered a potential role of RAS in redox-regulation as well as the interplay between ROS and RAS-associated signaling networks during process of cancer initiation and progression. More specifically, these studies provide ample evidence to implicate RAS as a redox-rheostat, manipulating ROS levels to provide a redox-milieu conducive for carcinogenesis. Importantly, the understanding of RAS-ROS interplay could provide us with novel targetable vulnerabilities for designing therapeutic strategies. In this review, we provide a brief summary of the advances in the field to illustrate the dual role of RAS in redox-regulation and its implications in RAS signaling outcomes and also emerging redox-based strategies to target RAS-driven cancers.
Collapse
Affiliation(s)
- Chuan Han Jonathan Foo
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; Medical Science Cluster Cancer Program, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore; National University Cancer Institute, NUHS, Singapore.
| |
Collapse
|
62
|
Schoenfeld JD, Alexander MS, Waldron TJ, Sibenaller ZA, Spitz DR, Buettner GR, Allen BG, Cullen JJ. Pharmacological Ascorbate as a Means of Sensitizing Cancer Cells to Radio-Chemotherapy While Protecting Normal Tissue. Semin Radiat Oncol 2019; 29:25-32. [PMID: 30573181 PMCID: PMC6310038 DOI: 10.1016/j.semradonc.2018.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemoradiation has remained the standard of care treatment for many of the most aggressive cancers. However, despite effective toxicity to cancer cells, current chemoradiation regimens are limited in efficacy due to significant normal cell toxicity. Thus, efforts have been made to identify agents demonstrating selective toxicity, whereby treatments simultaneously sensitize cancer cells to protect normal cells from chemoradiation. Pharmacological ascorbate (intravenous infusions of vitamin C resulting in plasma ascorbate concentrations ≥20 mM; P-AscH-) has demonstrated selective toxicity in a variety of preclinical tumor models and is currently being assessed as an adjuvant to standard-of-care therapies in several early phase clinical trials. This review summarizes the most current preclinical and clinical data available demonstrating the multidimensional role of P-AscH- in cancer therapy including: selective toxicity to cancer cells via a hydrogen peroxide (H2O2)-mediated mechanism; action as a sensitizing agent of cancer cells to chemoradiation; a protectant of normal tissues exposed to chemoradiation; and its safety and tolerability in clinical trials.
Collapse
Affiliation(s)
- Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA
| | - Matthew S Alexander
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; Department of Surgery, Iowa City, IA
| | - Timothy J Waldron
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Zita A Sibenaller
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Joseph J Cullen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; Department of Surgery, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA; Veterans Affairs Medical Center, Iowa City, IA.
| |
Collapse
|
63
|
Cantoni O, Guidarelli A, Fiorani M. Mitochondrial Uptake and Accumulation of Vitamin C: What Can We Learn from Cell Culture Studies? Antioxid Redox Signal 2018; 29:1502-1515. [PMID: 28699359 DOI: 10.1089/ars.2017.7253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The mitochondrial fraction of l-ascorbic acid (AA) is of critical importance for the regulation of the redox status of these organelles and for cell survival. Recent Advances: Most cell types take up AA by the high-affinity sodium-dependent vitamin C transporter 2 (SVCT2) sensitive to inhibition by dehydroascorbic acid (DHA). DHA can also be taken up by glucose transporters (GLUTs) and then reduced back to AA. DHA concentrations, normally very low in biological fluids, may only become significant next to superoxide-releasing cells. Very little is known about the mechanisms mediating the mitochondrial transport of the vitamin. CRITICAL ISSUES Information on AA transport is largely derived from studies using cultured cells and is therefore conditioned by possible cell culture effects as overexpression of SVCT2 in the plasma membrane and mitochondria. Mitochondrial SVCT2 is susceptible to inhibition by DHA and transports AA with a low affinity as a consequence of the restrictive ionic conditions. In some cells, however, high-affinity mitochondrial transport of AA is observed. Mitochondrial uptake of DHA may take place through GLUTs, an event followed by its prompt reduction to AA in the matrix. Intracellular levels of DHA are, however, normally very low. FUTURE DIRECTIONS We need to establish, or rule out, the role and significance of mitochondrial SVCT2 in vivo. The key question for mitochondrial DHA transport is instead related to its very low intracellular concentrations.
Collapse
Affiliation(s)
- Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| |
Collapse
|
64
|
Shenoy N, Creagan E, Witzig T, Levine M. Ascorbic Acid in Cancer Treatment: Let the Phoenix Fly. Cancer Cell 2018; 34:700-706. [PMID: 30174242 PMCID: PMC6234047 DOI: 10.1016/j.ccell.2018.07.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/25/2018] [Accepted: 07/28/2018] [Indexed: 01/25/2023]
Abstract
Vitamin C (ascorbic acid, ascorbate), despite controversy, has re-emerged as a promising anti-cancer agent. Recent knowledge of intravenous ascorbate pharmacokinetics and discovery of unexpected mechanisms of ascorbate action have spawned many investigations. Two mechanisms of anti-cancer activity with ascorbate have gained prominence: hydrogen peroxide-induced oxidative stress and DNA demethylation mediated by ten-eleven translocation enzyme activation. Here, we highlight salient aspects of the evolution of ascorbate in cancer treatment, provide insights into the pharmacokinetics of ascorbate, describe mechanisms of its anti-cancer activity in relation to the pharmacokinetics, outline promising preclinical and clinical evidence, and recommend future directions.
Collapse
Affiliation(s)
- Niraj Shenoy
- Division of Hematology & Medical Oncology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine- Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10467, USA.
| | - Edward Creagan
- Division of Hematology & Medical Oncology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas Witzig
- Division of Hematology & Medical Oncology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1372, USA.
| |
Collapse
|
65
|
Alexander MS, Wilkes JG, Schroeder SR, Buettner GR, Wagner BA, Du J, Gibson-Corley K, O'Leary BR, Spitz DR, Buatti JM, Berg DJ, Bodeker KL, Vollstedt S, Brown HA, Allen BG, Cullen JJ. Pharmacologic Ascorbate Reduces Radiation-Induced Normal Tissue Toxicity and Enhances Tumor Radiosensitization in Pancreatic Cancer. Cancer Res 2018; 78:6838-6851. [PMID: 30254147 DOI: 10.1158/0008-5472.can-18-1680] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 12/23/2022]
Abstract
: Chemoradiation therapy is the mainstay for treatment of locally advanced, borderline resectable pancreatic cancer. Pharmacologic ascorbate (P-AscH-, i.e., intravenous infusions of ascorbic acid, vitamin C), but not oral ascorbate, produces high plasma concentrations capable of selective cytotoxicity to tumor cells. In doses achievable in humans, P-AscH- decreases the viability and proliferative capacity of pancreatic cancer via a hydrogen peroxide (H2O2)-mediated mechanism. In this study, we demonstrate that P-AscH- radiosensitizes pancreatic cancer cells but inhibits radiation-induced damage to normal cells. Specifically, radiation-induced decreases in clonogenic survival and double-stranded DNA breaks in tumor cells, but not in normal cells, were enhanced by P-AscH-, while radiation-induced intestinal damage, collagen deposition, and oxidative stress were also reduced with P-AscH- in normal tissue. We also report on our first-in-human phase I trial that infused P-AscH- during the radiotherapy "beam on." Specifically, treatment with P-AscH- increased median overall survival compared with our institutional average (21.7 vs. 12.7 months, P = 0.08) and the E4201 trial (21.7 vs. 11.1 months). Progression-free survival in P-AscH--treated subjects was also greater than our institutional average (13.7 vs. 4.6 months, P < 0.05) and the E4201 trial (6.0 months). Results indicated that P-AscH- in combination with gemcitabine and radiotherapy for locally advanced pancreatic adenocarcinoma is safe and well tolerated with suggestions of efficacy. Because of the potential effect size and minimal toxicity, our findings suggest that investigation of P-AscH- efficacy is warranted in a phase II clinical trial. SIGNIFICANCE: These findings demonstrate that pharmacologic ascorbate enhances pancreatic tumor cell radiation cytotoxicity in addition to offering potential protection from radiation damage in normal surrounding tissue, making it an optimal agent for improving treatment of locally advanced pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Matthew S Alexander
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Justin G Wilkes
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Samuel R Schroeder
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Juan Du
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Katherine Gibson-Corley
- The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Brianne R O'Leary
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - John M Buatti
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Daniel J Berg
- The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kellie L Bodeker
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Sandy Vollstedt
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Heather A Brown
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Joseph J Cullen
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa. .,Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa.,The Veterans' Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
66
|
Carr AC, Cook J. Intravenous Vitamin C for Cancer Therapy - Identifying the Current Gaps in Our Knowledge. Front Physiol 2018; 9:1182. [PMID: 30190680 PMCID: PMC6115501 DOI: 10.3389/fphys.2018.01182] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023] Open
Abstract
The use of intravenous vitamin C (IVC) for cancer therapy has long been an area of intense controversy. Despite this, high dose IVC has been administered for decades by complementary health care practitioners and physicians, with little evidence base resulting in inconsistent clinical practice. In this review we pose a series of questions of relevance to both researchers and clinicians, and also patients themselves, in order to identify current gaps in our knowledge. These questions include: Do oncology patients have compromised vitamin C status? Is intravenous the optimal route of vitamin C administration? Is IVC safe? Does IVC interfere with chemotherapy or radiotherapy? Does IVC decrease the toxic side effects of chemotherapy and improve quality of life? What are the relevant mechanisms of action of IVC? What are the optimal doses, frequency, and duration of IVC therapy? Researchers have made massive strides over the last 20 years and have addressed many of these important aspects, such as the best route for administration, safety, interactions with chemotherapy, quality of life, and potential mechanisms of action. However, we still do not know the answers to a number of fundamental questions around best clinical practice, such as how much, how often and for how long to administer IVC to oncology patients. These questions point the way forward for both basic research and future clinical trials.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John Cook
- New Brighton Health Care, Christchurch, New Zealand
| |
Collapse
|
67
|
Pires AS, Marques CR, Encarnação JC, Abrantes AM, Marques IA, Laranjo M, Oliveira R, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Botelho MF. Ascorbic Acid Chemosensitizes Colorectal Cancer Cells and Synergistically Inhibits Tumor Growth. Front Physiol 2018; 9:911. [PMID: 30083105 PMCID: PMC6064950 DOI: 10.3389/fphys.2018.00911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is continuously classified as one of the most incidental and mortal types of cancer worldwide. The positive outcomes of the conventional chemotherapy are frequently associated with high toxicity, which often leads to the suspension of the treatment. Growing evidences consider the use of pharmacological concentrations of ascorbic acid (AA), better known as vitamin C, in the treatment of cancer. The use of AA in a clinical context is essentially related to the adoption of new therapeutic strategies based on combination regimens, where AA plays a chemosensitizing role. The reduced sensitivity of some tumors to chemotherapy and the highly associated adverse effects continue to be some of the major obstacles in the effective treatment of CRC. So, this paper aimed to study the potential of a new therapeutic approach against this neoplasia with diminished side effects for the patient. This approach was based on the study of the combination of high concentrations of AA with reduced concentrations of drugs conventionally used in CRC patients and eligible for first and second line chemotherapeutic regimens, namely 5-fluorouracilo (5-FU), oxaliplatin (Oxa) or irinotecan (Iri). The evaluation of the potential synergy between the compounds was first assessed in vitro in three CRC cell lines with different genetic background and later in vivo using one xenograft animal model of CRC. AA and 5-FU act synergistically in vitro just for longer incubation times, however, in vivo showed no benefit compared to 5-FU alone. In contrast to the lack of synergy seen in in vitro studies with the combination of AA with irinotecan, the animal model revealed the therapeutic potential of this combination. AA also potentiated the effect of Oxa, since a synergistic effect was demonstrated, in almost all conditions and in the three cell lines. Moreover, this combined therapy (CT) caused a stagnation of the tumor growth rate, being the most promising tested combination. Pharmacological concentrations of AA increased the efficacy of Iri and Oxa against CRC, with promising results in cell lines with more aggressive phenotypes, namely, tumors with mutant or null P53 expression and tumors resistant to chemotherapy.
Collapse
Affiliation(s)
- Ana S Pires
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia R Marques
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - João C Encarnação
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M Abrantes
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês A Marques
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mafalda Laranjo
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui Oliveira
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João E Casalta-Lopes
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana C Gonçalves
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Oncobiology and Hematology Laboratory, Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana B Sarmento-Ribeiro
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Oncobiology and Hematology Laboratory, Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Hematology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria F Botelho
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
68
|
Bigelsen S. Evidence-based complementary treatment of pancreatic cancer: a review of adjunct therapies including paricalcitol, hydroxychloroquine, intravenous vitamin C, statins, metformin, curcumin, and aspirin. Cancer Manag Res 2018; 10:2003-2018. [PMID: 30034255 PMCID: PMC6049054 DOI: 10.2147/cmar.s161824] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite new and exciting research and renewed optimism about future therapy, current statistics of survival from pancreatic cancer remains dismal. Patients seeking alternative or complementary treatments should be warned to avoid the hype and instead look to real science. A variety of relatively safe and inexpensive treatment options that have shown success in preclinical models and/or retrospective studies are currently available. Patients require their physicians to provide therapeutic guidance and assistance in obtaining and administrating these various therapies. Paricalcitol, an analog of vitamin D, has been shown by researchers at the Salk Institute for Biological Studies to break though the protective stroma surrounding tumor cells. Hydroxychloroquine has been shown to inhibit autophagy, a process by which dying cells recycle injured organelles and internal toxins to generate needed energy for survival and reproduction. Intravenous vitamin C creates a toxic accumulation of hydrogen peroxide within cancer cells, hastening their death. Metformin inhibits mitochondrial oxidative metabolism utilized by cancer stem cells. Statins inhibit not only cholesterol but also other factors in the same pathway that affect cancer cell growth, protein synthesis, and cell cycle progression. A novel formulation of curcumin may prevent resistance to chemotherapy and inhibit pancreatic cancer cell proliferation. Aspirin therapy has been shown to prevent pancreatic cancer and may be useful to prevent recurrence. These therapies are all currently available and are reviewed in this paper with emphasis on the most recent laboratory research and clinical studies.
Collapse
Affiliation(s)
- Stephen Bigelsen
- Department of Allergy, Asthma and Immunology, Rutgers New Jersey Medical School, Newark, NJ, USA,
| |
Collapse
|
69
|
Nauman G, Gray JC, Parkinson R, Levine M, Paller CJ. Systematic Review of Intravenous Ascorbate in Cancer Clinical Trials. Antioxidants (Basel) 2018; 7:antiox7070089. [PMID: 30002308 PMCID: PMC6071214 DOI: 10.3390/antiox7070089] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 02/02/2023] Open
Abstract
Background: Ascorbate (vitamin C) has been evaluated as a potential treatment for cancer as an independent agent and in combination with standard chemotherapies. This review assesses the evidence for safety and clinical effectiveness of intravenous (IV) ascorbate in treating various types of cancer. Methods: Single arm and randomized Phase I/II trials were included in this review. The PubMed, MEDLINE, and Cochrane databases were searched. Results were screened by three of the authors (GN, RP, and CJP) to determine if they met inclusion criteria, and then summarized using a narrative approach. Results: A total of 23 trials involving 385 patients met the inclusion criteria. Only one trial, in ovarian cancer, randomized patients to receive vitamin C or standard of care (chemotherapy). That trial reported an 8.75 month increase in progression-free survival (PFS) and an improved trend in overall survival (OS) in the vitamin C treated arm. Conclusion: Overall, vitamin C has been shown to be safe in nearly all patient populations, alone and in combination with chemotherapies. The promising results support the need for randomized placebo-controlled trials such as the ongoing placebo-controlled trials of vitamin C and chemotherapy in prostate cancer.
Collapse
Affiliation(s)
- Gina Nauman
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Clinical Nutrition Section, Bethesda, MD 20892, USA.
| | - Javaughn Corey Gray
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Rose Parkinson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Mark Levine
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Clinical Nutrition Section, Bethesda, MD 20892, USA.
| | - Channing J Paller
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
70
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
71
|
Park S, Ahn S, Shin Y, Yang Y, Yeom CH. Vitamin C in Cancer: A Metabolomics Perspective. Front Physiol 2018; 9:762. [PMID: 29971019 PMCID: PMC6018397 DOI: 10.3389/fphys.2018.00762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
There is an ongoing interest in cellular antioxidants and oxidants as well as cellular mechanisms underlying their effects. Several reports suggest that vitamin C (L-ascorbic acid) functions as a pro-oxidant with selective toxicity against specific types of tumor cells. In addition, reduced glutathione plays an emerging role in reducing oxidative stress due to xenobiotic toxins such as metals and oxidants associated with diseases such as cancer, cardiovascular disease, and stroke. High-dose intravenous vitamin C and intravenous glutathione have been used as complementary, alternative, and adjuvant medicines. Here, we review the molecular mechanisms underlying the regulation of oxidation/reduction systems, focusing on the altered metabolomics profile in cancer cells following treatment with pharmacological vitamin C. This review focuses on the role of vitamin C in energy metabolism in terms of adenosine triphosphate, cysteine, and reduced glutathione levels, affecting cancer cell death.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Yujeong Shin
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Yoonjung Yang
- Department of Food and Nutrition, Dongduk Women's University, Seoul, South Korea
| | | |
Collapse
|
72
|
Erudaitius D, Mantooth J, Huang A, Soliman J, Doskey CM, Buettner GR, Rodgers VGJ. Calculated cell-specific intracellular hydrogen peroxide concentration: Relevance in cancer cell susceptibility during ascorbate therapy. Free Radic Biol Med 2018; 120:356-367. [PMID: 29601946 PMCID: PMC6160292 DOI: 10.1016/j.freeradbiomed.2018.03.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 01/24/2023]
Abstract
The high extracellular hydrogen peroxide (H2O2) concentrations generated during pharmacological ascorbate (P-AscH-) therapy has been shown to exhibit a high flux into susceptible cancer cells leading to a decrease in clonogenic survival. It is hypothesized that the intracellular H2O2 concentration for susceptibility is independent of cell type and that the variation observed in dosing is associated with differences in the cell-specific overall steady-state intracellular H2O2 concentration values. The steady-state variation in intracellular H2O2 concentration is coupled to a number of cellular specific transport and reaction factors including catalase activity and membrane permeability. Here a lumped-parameter mathematical modeling approach, assuming a catalase-dominant peroxide removal mechanism, is used to calculate intracellular H2O2 concentration for several cell lines. Experimental measurements of critical parameters pertaining to the model are obtained. The cell lines investigated are normal pancreatic cells, H6c7, the pancreatic cancer cell line, MIA PaCa-2 and the glioblastoma cell lines, LN-229, T98G, and U-87; all which vary in susceptibility. The intracellular H2O2 concentration estimates are correlated with the clonogenic surviving fraction for each cell line, in-vitro. The results showed that, despite the fact that the experimental parameters including catalase concentration and plasma membrane permeability demonstrated significant variability across cell lines, the calculated steady-state intracellular to extracellular H2O2 concentration ratio did not vary significantly across cell lines. Thus, the calculated intracellular H2O2 concentration is not unique in characterizing susceptibility. These results imply that, although intracellular H2O2 concentration plays a key role in cellular susceptibility to P-AscH- adjuvant therapy, its overall contribution in a unifying mechanism across cell types is complex.
Collapse
Affiliation(s)
- Dieanira Erudaitius
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Jacqueline Mantooth
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Andrew Huang
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | - Jesse Soliman
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Claire M Doskey
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, USA
| | - Garry R Buettner
- Free Radical & Radiation Biology, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Victor G J Rodgers
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
73
|
Klimant E, Wright H, Rubin D, Seely D, Markman M. Intravenous vitamin C in the supportive care of cancer patients: a review and rational approach. ACTA ACUST UNITED AC 2018; 25:139-148. [PMID: 29719430 DOI: 10.3747/co.25.3790] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article reviews intravenous vitamin C (IV C) in cancer care and offers a rational approach to enable medical oncologists and integrative practitioners to safely provide IV C combined with oral vitamin C to patients. The use of IV C is a safe supportive intervention to decrease inflammation in the patient and to improve symptoms related to antioxidant deficiency, disease processes, and side effects of standard cancer treatments. A proposed rationale, together with relevant clinical safety considerations for the application of IV C in oncologic supportive care, is provided.
Collapse
Affiliation(s)
- E Klimant
- Salish Cancer Center, Fife, WA, U.S.A
| | - H Wright
- Naturopathic Specialists, Scottsdale, AZ, U.S.A
| | - D Rubin
- Naturopathic Specialists, Scottsdale, AZ, U.S.A
| | - D Seely
- Department of Research and Clinical Epidemiology, Ottawa Integrative Cancer Centre, Ottawa, ON
| | - M Markman
- Department of Medical Oncology, Cancer Treatment Centers of America, Philadelphia, PA, U.S.A
| |
Collapse
|
74
|
Noguera NI, Pelosi E, Angelini DF, Piredda ML, Guerrera G, Piras E, Battistini L, Massai L, Berardi A, Catalano G, Cicconi L, Castelli G, D'Angiò A, Pasquini L, Graziani G, Fioritoni G, Voso MT, Mastrangelo D, Testa U, Lo-Coco F. High-dose ascorbate and arsenic trioxide selectively kill acute myeloid leukemia and acute promyelocytic leukemia blasts in vitro. Oncotarget 2018; 8:32550-32565. [PMID: 28427227 PMCID: PMC5464808 DOI: 10.18632/oncotarget.15925] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
The use of high-dose ascorbate (ASC) for the treatment of human cancer has been attempted several decades ago and has been recently revived by several in vitro and in vivo studies in solid tumors. We tested the cytotoxic effects of ASC, alone or in combination with arsenic trioxide (ATO) in acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL). Leukemic cell lines and primary blasts from AML and APL patients were treated with graded concentrations of ASC, alone or in association with standard concentration (1 μM) of ATO. The ASC/ATO combination killed myeloid blasts, including leukemic CD34+ cells, while sparing CD34+ progenitors obtained from normal cord blood and bone marrow. Actually, approximately one-third (11/36) of primary AML cases were highly sensitive to the ASC/ATO combination. The mechanism of cell killing appeared to be related to increased oxidative stress and overproduction of ROS in a non-quantitative fashion, which resulted in induction of apoptosis. These effects were reverted by the addition of the antioxidant N-Acetyl-Cysteine (NAC). In the APL NB4 model, ASC induced direct degradation of the PML and PML/RARA proteins via caspase activation, while the transcriptional repressor DAXX was recruited in re-constituted PML nuclear bodies. Our findings encourage the design of pilot studies to explore the potential clinical benefit of ASC alone or in combination with ATO in advanced AML and APL.
Collapse
Affiliation(s)
- Nélida I Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela F Angelini
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Maria Liliana Piredda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Eleonora Piras
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia-I.R.C.C.S., Rome, Italy
| | - Lauretta Massai
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Polo Scientifico San Miniato, Siena, Italy
| | - Anna Berardi
- Pescara Cell Factory Foundation Onlus, Pescara, Italy
| | | | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese D'Angiò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pasquini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Mastrangelo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Polo Scientifico San Miniato, Siena, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| |
Collapse
|
75
|
Zhou M, Li X, Li Y, Yao Q, Ming Y, Li Z, Lu L, Shi S. Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy. Drug Deliv 2017; 24:1230-1242. [PMID: 28856937 PMCID: PMC8241186 DOI: 10.1080/10717544.2017.1370619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
A co-loaded drug delivery system based on ascorbyl palmitate that can transport various functional drugs to their targets within a tumor represents an attractive strategy for increasing the efficiency of anticancer treatment. In this study, we developed a dual drug delivery system to encapsulate ascorbyl palmitate (AP) and paclitaxel (PTX) for synergistic cancer therapy. AP, which is a vitamin C derivative, and PTX were incorporated into solid lipid nanoparticles (AP/PTX-SLNs), which were used to treat murine B16F10 melanoma that had metastasized to the lungs of mice. These nanoparticles were spherical with an average size of 223 nm as measured by transmission electron microscope and dynamic light scattering. In vitro cytotoxicity assays indicated that the AP/PTX-SLNs with an AP/PTX mass ratio of 2/1 provided the optimal synergistic anticancer efficacy. In vivo, AP/PTX-SLNs were revealed to be much more effective in suppressing tumor growth in B16F10-bearing mice and in eliminating cancer cells in the lungs than single drug (AP or PTX)-loaded SLNs via a synergistic effect through reducing the Bcl-2/Bax ratio. Furthermore, no marked side effects were observed during the treatment with the AP/PTX-SLNs, indicating that the co-delivery system with ascorbyl palmitate holds promising clinical potential in cancer therapy.
Collapse
Affiliation(s)
- Min Zhou
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Xin Li
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Yuanyuan Li
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Qiu'e Yao
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Yue Ming
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Ziwei Li
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| | - Laichun Lu
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China.,b Teaching Experimental Center , College of Pharmacy, Third Military Medical University , Chongqing , China
| | - Sanjun Shi
- a Department of Pharmacy , Institute of Surgery Research, Daping Hospital/The Third Affiliated Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
76
|
Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, Violet PC, Pessetto Z, Godwin AK, Fan F, Levine M, Drisko JA, Chen Q. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci Rep 2017; 7:17188. [PMID: 29215048 PMCID: PMC5719364 DOI: 10.1038/s41598-017-17568-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is among the most lethal cancers with poorly tolerated treatments. There is increasing interest in using high-dose intravenous ascorbate (IVC) in treating this disease partially because of its low toxicity. IVC bypasses bioavailability barriers of oral ingestion, provides pharmacological concentrations in tissues, and exhibits selective cytotoxic effects in cancer cells through peroxide formation. Here, we further revealed its anti-pancreatic cancer mechanisms and conducted a phase I/IIa study to investigate pharmacokinetic interaction between IVC and gemcitabine. Pharmacological ascorbate induced cell death in pancreatic cancer cells with diverse mutational backgrounds. Pharmacological ascorbate depleted cellular NAD+ preferentially in cancer cells versus normal cells, leading to depletion of ATP and robustly increased α-tubulin acetylation in cancer cells. While ATP depletion led to cell death, over-acetylated tubulin led to inhibition of motility and mitosis. Collagen was increased, and cancer cell epithelial-mesenchymal transition (EMT) was inhibited, accompanied with inhibition in metastasis. IVC was safe in patients and showed the possibility to prolong patient survival. There was no interference to gemcitabine pharmacokinetics by IVC administration. Taken together, these data revealed a multi-targeting mechanism of pharmacological ascorbate's anti-cancer action, with minimal toxicity, and provided guidance to design larger definitive trials testing efficacy of IVC in treating advanced pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gregory Reed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jun Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Stephen Williamson
- Department of Internal Medicine, Hematology and Oncology Division, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Pierre-Christian Violet
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ziyan Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mark Levine
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeanne A Drisko
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
77
|
Ma E, Chen P, Wilkins HM, Wang T, Swerdlow RH, Chen Q. Pharmacologic ascorbate induces neuroblastoma cell death by hydrogen peroxide mediated DNA damage and reduction in cancer cell glycolysis. Free Radic Biol Med 2017; 113:36-47. [PMID: 28916476 PMCID: PMC5856454 DOI: 10.1016/j.freeradbiomed.2017.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/06/2017] [Accepted: 09/09/2017] [Indexed: 11/22/2022]
Abstract
An ascorbate-mediated production of oxidative stress has been shown to retard tumor growth. Subsequent glycolysis inhibition has been suggested. Here, we further define the mechanisms relevant to this observation. Ascorbate was cytotoxic to human neuroblastoma cells through the production of H2O2, which led to ATP depletion, inhibited GAPDH, and non-apoptotic and non-autophagic cell death. The mechanism of cytotoxicity is different when PARP-dependent DNA repair machinery is active or inhibited. Ascorbate-generated H2O2 damaged DNA, activated PARP, depleted NAD+, and reduced glycolysis flux. NAD+ supplementation prevented ATP depletion and cell death, while treatment with a PARP inhibitor, olaparib, preserved NAD+ and ATP levels but led to increased DNA double-strand breakage and did not prevent ascorbate-induced cell death. These data indicate that in cells with an intact PARP-associated DNA repair system, ascorbate-induced cell death is caused by NAD+ and ATP depletion, while in the absence of PARP activation ascorbate-induced cell death still occurs but is a consequence of ROS-induced DNA damage. In a mouse xenograft model, intraperitoneal ascorbate inhibited neuroblastoma tumor growth and prolonged survival. Collectively, these data suggest that ascorbate could be effective in the treatment of glycolysis-dependent tumors. Also, in cancers that use alternative energy metabolism pathways, combining a PARP inhibitor with ascorbate treatment could be useful.
Collapse
Affiliation(s)
- Enlong Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, USA; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, USA
| | - Heather M Wilkins
- Kansas University Alzheimer's Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Tao Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, USA
| | - Russell H Swerdlow
- Kansas University Alzheimer's Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, USA.
| |
Collapse
|
78
|
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Bradley MD, Wagner BA, Buettner GR, Monga V, Milhem M, Spitz DR, Allen BG. Redox active metals and H 2O 2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models. Redox Biol 2017; 14:417-422. [PMID: 29069637 PMCID: PMC5651553 DOI: 10.1016/j.redox.2017.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 11/15/2022] Open
Abstract
Soft tissue sarcomas are a histologically heterogeneous group of rare mesenchymal cancers for which treatment options leading to increased overall survival have not improved in over two decades. The current study shows that pharmacological ascorbate (systemic high dose vitamin C achieving ≥ 20 mM plasma levels) is a potentially efficacious and easily integrable addition to current standard of care treatment strategies in preclinical models of fibrosarcoma and liposarcoma both in vitro and in vivo. Furthermore, enhanced ascorbate-mediated toxicity and DNA damage in these sarcoma models were found to be dependent upon H2O2 and intracellular labile iron. Together, these data support the hypothesis that pharmacological ascorbate may represent an easily implementable and non-toxic addition to conventional sarcoma therapies based on taking advantage of fundamental differences in cancer cell oxidative metabolism. Ascorbate sensitizes sarcoma cells to radiation- or chemo-therapy by a mechanism involving redox active metal ions and H2O2. Pharmacological ascorbate in combination with radio-chemo-therapy decreases sarcoma disease burden in murine xenografts. Ascorbate-mediated DNA damage is dependent on intracellular redox active iron.
Collapse
Affiliation(s)
- Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Zita A Sibenaller
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Megan D Bradley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Mohammed Milhem
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
79
|
SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts. Cancer Lett 2017; 398:1-11. [PMID: 28385602 DOI: 10.1016/j.canlet.2017.03.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/21/2022]
Abstract
Cholangiocarcinoma (CC) is a devastating malignancy with late diagnosis and poor response to conventional chemotherapy. Recent studies have revealed anti-cancer effect of vitamin C (l-ascorbic acid, ascorbate) in several types of cancer. However, the effect of l-ascorbic acid (AA) in CC remains elusive. Herein, we demonstrated that AA induced cytotoxicity in CC cells by generating intracellular reactive oxygen species (ROS), and subsequently DNA damage, ATP depletion, mTOR pathway inhibition. Moreover, AA worked synergistically with chemotherapeutic agent cisplatin to impair CC cells growth both in vitro and in vivo. Intriguingly, sodium-dependent vitamin C transporter 2 (SVCT-2) expression was inversely correlated with IC50 values of AA. Knockdown of SVCT-2 dramatically alleviated DNA damage, ATP depletion, and inhibition of mTOR pathway induced by AA. Furthermore, SVCT-2 knockdown endowed CC cells with the resistance to AA treatment. Finally, the inhibitory effects of AA were further confirmed in patient-derived CC xenograft models. Thus, our results unravel therapeutic potential of AA alone or in combination with cisplatin for CC. SVCT2 expression level may serve as a positive outcome predictor for AA treatment in CC.
Collapse
|
80
|
Xia J, Xu H, Zhang X, Allamargot C, Coleman KL, Nessler R, Frech I, Tricot G, Zhan F. Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic Acid. EBioMedicine 2017; 18:41-49. [PMID: 28229908 PMCID: PMC5405162 DOI: 10.1016/j.ebiom.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
High-dose chemotherapies to treat multiple myeloma (MM) can be life-threatening due to toxicities to normal cells and there is a need to target only tumor cells and/or lower standard drug dosage without losing efficacy. We show that pharmacologically-dosed ascorbic acid (PAA), in the presence of iron, leads to the formation of highly reactive oxygen species (ROS) resulting in cell death. PAA selectively kills CD138+ MM tumor cells derived from MM and smoldering MM (SMM) but not from monoclonal gammopathy undetermined significance (MGUS) patients. PAA alone or in combination with melphalan inhibits tumor formation in MM xenograft mice. This study shows PAA efficacy on primary cancer cells and cell lines in vitro and in vivo. Pharmacologically-dosed ascorbic acid kills Multiple Myeloma cells. Pharmacologically-dosed ascorbic leads to apoptosis-inducing factor 1 cleavage. Pharmacologically-dosed ascorbic lowers melphalan dosage.
Multiple myeloma (MM) remains a difficult to cure disease in the majority of cases. Several preclinical and clinical studies have shown that ascorbic acid in pharmacologic doses (PAA) selectively kills cancer cells, while sparing normal cells. This article reveals the biological mechanism by which PAA exerts its anti-cancer effects and should lead to the development of an innovative therapy in MM.
Collapse
Affiliation(s)
- Jiliang Xia
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Institute of Cancer Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Xu
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Xiaoyan Zhang
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; East China University of Science and Technology, Shanghai, China
| | - Chantal Allamargot
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, United States
| | - Kristen L Coleman
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Randy Nessler
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, United States
| | - Ivana Frech
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Guido Tricot
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States.
| | - Fenghuang Zhan
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
81
|
Fernandes G, Barone AW, Dziak R. The effect of ascorbic acid on bone cancer cells in vitro. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/23312025.2017.1288335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14201, USA
| | - Andrew W. Barone
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14201, USA
| | - Rosemary Dziak
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14201, USA
| |
Collapse
|
82
|
Erudaitius D, Huang A, Kazmi S, Buettner GR, Rodgers VGJ. Peroxiporin Expression Is an Important Factor for Cancer Cell Susceptibility to Therapeutic H2O2: Implications for Pharmacological Ascorbate Therapy. PLoS One 2017; 12:e0170442. [PMID: 28107421 PMCID: PMC5249139 DOI: 10.1371/journal.pone.0170442] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
Cancer cell toxicity to therapeutic H2O2 varies widely depending on cell type. Interestingly, it has been observed that different cancer cell types have varying peroxiporin expression. We hypothesize that variation in peroxiporin expression can alter cell susceptibility to therapeutic H2O2 concentrations. Here, we silence peroxiporin aquaporin-3 (AQP3) on the pancreatic cancer cell line MIA PaCa-2 and compare clonogenic survival response to the wild-type. The results showed a significantly higher surviving fraction in the clonogenic response for siAQP3 MIA PaCa-2 cells at therapeutic H2O2 doses (P < 0.05). These results suggest that peroxiporin expression is significant in modulating the susceptibility of cancer cells to ascorbate therapy.
Collapse
Affiliation(s)
- Dieanira Erudaitius
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| | - Andrew Huang
- Department of Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Sarah Kazmi
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| | - Garry R. Buettner
- Free Radical & Radiation Biology, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, United States of America
| | - Victor G. J. Rodgers
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
| |
Collapse
|
83
|
Hosokawa Y, Saga R, Monzen S, Terashima S, Tsuruga E. Ascorbic acid does not reduce the anticancer effect of radiotherapy. Biomed Rep 2017; 6:103-107. [PMID: 28123717 PMCID: PMC5244771 DOI: 10.3892/br.2016.819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
The present study hypothesized that the therapeutic use of ascorbic acid (AsA) in combination with radiation may reduce therapy-related side effects and increase the antitumor effects. The aim of the study was to examine the association between the scavenged activity of AsA and the biological anticancer effect of hydroxyl (OH) radicals generated by X-ray irradiation. Cell survival, DNA fragmentation of human leukemia HL60 cells and the amount of OH radicals were investigated following X-ray irradiation and AsA treatment. The number of living cells decreased, and DNA fragmentation increased at AsA concentrations >1 mM. Electron spin resonance spectra revealed that X-ray irradiation generated OH radicals, which were scavenged by AsA at concentrations >75 µM. The AsA concentration inside the cell was 75 µM when cells underwent extracellular treatment with 5 mM AsA, which significantly induced HL60 cell death even without irradiation. No increase in the number of viable HL60 cells was observed following AsA treatment with irradiation when compared to irradiation alone. In conclusion, the disappearance of the radiation anticancer effects with AsA treatment in combination with radiotherapy for cancer treatment is not a cause for concern.
Collapse
Affiliation(s)
- Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Satoru Monzen
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Shingo Terashima
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Eichi Tsuruga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
84
|
Li J, Guo C, Feng F, Fan A, Dai Y, Li N, Zhao D, Chen X, Lu Y. Co-delivery of docetaxel and palmitoyl ascorbate by liposome for enhanced synergistic antitumor efficacy. Sci Rep 2016; 6:38787. [PMID: 27934917 PMCID: PMC5146911 DOI: 10.1038/srep38787] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022] Open
Abstract
Palmitoyl ascorbate (PA) as an antioxidant has the potential for the treatment of cancer. In the present study, a nanocarrier system was developed for co-delivery of docetaxel (DOC) with palmitoyl ascorbate and the therapeutic efficacy of a combination drug regimen was investigated. For this purpose, different ratios of docetaxel and palmitoyl ascorbate were co-encapsulated in a liposome and they all showed high encapsulation efficiency. The average diameters of the liposomes ranged from 140 to 170 nm. Negative zeta potential values were observed for all systems, ranged from -40 mV to -56 mV. Studies on drug release and cellular uptake of the co-delivery system demonstrated that both drugs were effectively taken up by the cells and released slowly. Moreover, the liposome loading drugs with DOC/PA concentration ratio of 1:200 showed the highest anti-tumor activity to three different types of tumor cells. The higher in vivo therapeutic efficacy with lower systemic toxicity of the DOC-PA200-LPs was also verified by the H22 tumor bearing mice model. Our results showed that such co-loaded delivery systems could serve as a promising therapeutic approach to improve clinical outcomes against hepatic carcinoma.
Collapse
Affiliation(s)
- Junxiu Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Chaorui Guo
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Fan Feng
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Ali Fan
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Yu Dai
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, #639 Longmain Avenue, Jiangning District, Najing, 211198, China
| |
Collapse
|
85
|
Doskey CM, Buranasudja V, Wagner BA, Wilkes JG, Du J, Cullen JJ, Buettner GR. Tumor cells have decreased ability to metabolize H 2O 2: Implications for pharmacological ascorbate in cancer therapy. Redox Biol 2016; 10:274-284. [PMID: 27833040 PMCID: PMC5106370 DOI: 10.1016/j.redox.2016.10.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022] Open
Abstract
Ascorbate (AscH−) functions as a versatile reducing agent. At pharmacological doses (P-AscH−; [plasma AscH−] ≥≈20 mM), achievable through intravenous delivery, oxidation of P-AscH− can produce a high flux of H2O2 in tumors. Catalase is the major enzyme for detoxifying high concentrations of H2O2. We hypothesize that sensitivity of tumor cells to P-AscH− compared to normal cells is due to their lower capacity to metabolize H2O2. Rate constants for removal of H2O2 (kcell) and catalase activities were determined for 15 tumor and 10 normal cell lines of various tissue types. A differential in the capacity of cells to remove H2O2 was revealed, with the average kcell for normal cells being twice that of tumor cells. The ED50 (50% clonogenic survival) of P-AscH− correlated directly with kcell and catalase activity. Catalase activity could present a promising indicator of which tumors may respond to P-AscH−. Ascorbate oxidizes in cell culture medium to generate a flux of H2O2. The rate constants for removal of extracellular H2O2 are on average 2-fold higher in normal cells than in cancer cells. The ED50 of high-dose ascorbate correlated with the ability of tumor cells to remove extracellular H2O2. The response to pharmacological ascorbate in murine-models of pancreatic cancer paralleled the in vitro results.
Collapse
Affiliation(s)
- Claire M Doskey
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
| | - Visarut Buranasudja
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Free Radical & Radiation Biology Program in the Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Justin G Wilkes
- Department of Surgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan Du
- Department of Surgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Joseph J Cullen
- Free Radical & Radiation Biology Program in the Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; Department of Surgery, The University of Iowa, Iowa City, IA 52242, USA; Veterans Affairs Medical Center, Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Garry R Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA; Free Radical & Radiation Biology Program in the Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
86
|
Janakiram NB, Mohammed A, Madka V, Kumar G, Rao CV. Prevention and treatment of cancers by immune modulating nutrients. Mol Nutr Food Res 2016; 60:1275-94. [PMID: 26833775 PMCID: PMC6038926 DOI: 10.1002/mnfr.201500884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 12/11/2022]
Abstract
Epidemiological and laboratory data support the protective effects of bioactive nutrients in our diets for various diseases. Along with various factors, such as genetic history, alcohol, smoking, exercise, and dietary choices play a vital role in affecting an individual's immune responses toward a transforming cell, by either preventing or accelerating a neoplastic transformation. Ample evidence suggests that dietary nutrients control the inflammatory and protumorigenic responses in immune cells. Immunoprevention is usually associated with the modulation of immune responses that help in resolving the inflammation, thus improving clinical outcome. Various metabolic pathway-related nutrients, including glutamine, arginine, vitamins, minerals, and long-chain fatty acids, are important components of immunonutrient mixes. Epidemiological studies related to these substances have reported different results, with no or minimal effects. However, several studies suggest that these nutrients may have immune-modulating effects that may lower cancer risk. Preclinical studies submit that most of these components may provide beneficial effects. The present review discusses the available data, the immune-modulating functions of these nutrients, and how these substances could be used to study immune modulation in a neoplastic environment. Further research will help to determine whether the mechanistic signaling pathways in immune cells altered by nutrients can be exploited for cancer prevention and treatment.
Collapse
Affiliation(s)
- Naveena B. Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
87
|
Rouleau L, Antony AN, Bisetto S, Newberg A, Doria C, Levine M, Monti DA, Hoek JB. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity. Free Radic Biol Med 2016; 95:308-322. [PMID: 27036367 PMCID: PMC4867251 DOI: 10.1016/j.freeradbiomed.2016.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022]
Abstract
We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance.
Collapse
Affiliation(s)
- Lauren Rouleau
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anil Noronha Antony
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sara Bisetto
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Newberg
- Jefferson-Myrna Brind Center of Integrative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Cataldo Doria
- Division of Transplantation, Liver Tumor Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Daniel A Monti
- Jefferson-Myrna Brind Center of Integrative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Jan B Hoek
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
88
|
García-Santos EP, Padilla-Valverde D, Villarejo-Campos P, Murillo-Lázaro C, Fernández-Grande E, Palomino-Muñoz T, Rodríguez-Martínez M, Amo-Salas M, Nuñez-Guerrero P, Sánchez-García S, Puerto-Puerto A, Martín-Fernández J. The utility of hyperthermic intra-abdominal chemotherapy with gemcitabine for the inhibition of tumor progression in an experimental model of pancreatic peritoneal carcinomatosis, in relation to their behavior with pancreatic cancer stem cells CD133+ CXCR4. Pancreatology 2016; 16:632-9. [PMID: 27289344 DOI: 10.1016/j.pan.2016.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/04/2016] [Accepted: 04/24/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The origin of pancreatic cancer has been identified as a population of malignant pancreatic stem cells CD133+ CXCR4+ immunophenotype. These cells have high capacity for early locoregional invasion, being responsible for early recurrence and high mortality rates of pancreatic cancer. We propose a study for decreasing tumor progression of pancreatic cancer by reducing the volume and neoplastic subpopulation of pancreatic cancer stem cells CD133+ CXCR4+. Therefore, we develop a new therapeutic model, characterized by the application of HIPEC (Hyperthermic Intraperitoneal Chemotherapy) with gemcitabine. DESIGN Pancreatic tumor cell line: human cell line BxPC-3. The animal model involved 18 immunosuppressed rats 5 weeks weighing 150-200 gr. The implantation of 13 × 10(6) cells/mL was performed with homogeneous distribution in the 13 abdominopelvic quadrants according to the peritoneal carcinomatosis index (PCI) and were randomized into three treatment groups. Group I (4 rats) received intravenous saline. Group II (6 rats) received intravenous gemcitabine. Group III (8 rats) received HIPEC at 41 °C for 30 min with gemcitabine + gemcitabine IV. A histological study confirmed pancreatic cancer and immunohistochemical quantification of pancreatic cancer stem cells CD133+ CXCR4+ tumor cells. RESULTS There was a population decline of pancreatic cancer stem cells CD133+ CXCR4+ in the HIPEC group with respect to the other two groups (p < 0.001). There was a decrease in PCI between treatment groups (p < 0.05). CONCLUSION The initial results are encouraging since there is a declining population of cancer stem cells CD133+ CXCR4+ in the HIPEC group and decreased tumor volume compared to the other two treatment groups. All the conclusions are only valid for BxPC3 cell line, and the effects HIPEC on Kras-driven pancreatic tumors remain to be determined.
Collapse
Affiliation(s)
- Esther Pilar García-Santos
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - David Padilla-Valverde
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Pedro Villarejo-Campos
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Cristina Murillo-Lázaro
- Servicio de Anatomía Patológica, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Esther Fernández-Grande
- Servicio de Análisis Clínicos, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Teodoro Palomino-Muñoz
- Servicio de Análisis Clínicos, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | | | - Mariano Amo-Salas
- Facultad de Medicina de Ciudad Real, Universidad de Castilla La Mancha, Spain
| | - Paloma Nuñez-Guerrero
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Susana Sánchez-García
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Alejandro Puerto-Puerto
- Servicio de Urología, Hospital General La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - Jesús Martín-Fernández
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
89
|
Abstract
The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer.
Collapse
Affiliation(s)
| | - Joseph J Cullen
- 1528 JCP, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
90
|
Muthu P, Lutz S. Quantitative Detection of Nucleoside Analogues by Multi-enzyme Biosensors using Time-Resolved Kinetic Measurements. ChemMedChem 2016; 11:660-6. [PMID: 26934468 DOI: 10.1002/cmdc.201600096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/05/2023]
Abstract
Fast, simple and cost-effective methods for detecting and quantifying pharmaceutical agents in patients are highly sought after to replace equipment and labor-intensive analytical procedures. The development of new diagnostic technology including portable detection devices also enables point-of-care by non-specialists in resource-limited environments. We have focused on the detection and dose monitoring of nucleoside analogues used in viral and cancer therapies. Using deoxyribonucleoside kinases (dNKs) as biosensors, our chemometric model compares observed time-resolved kinetics of unknown analytes to known substrate interactions across multiple enzymes. The resulting dataset can simultaneously identify and quantify multiple nucleosides and nucleoside analogues in complex sample mixtures.
Collapse
Affiliation(s)
- Pravin Muthu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
91
|
Affiliation(s)
- Colleen R Reczek
- Department of Medicine and Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine and Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
92
|
|
93
|
Davis-Yadley AH, Malafa MP. Vitamins in pancreatic cancer: a review of underlying mechanisms and future applications. Adv Nutr 2015; 6:774-802. [PMID: 26567201 PMCID: PMC4642423 DOI: 10.3945/an.115.009456] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer.
Collapse
Affiliation(s)
- Ashley H Davis-Yadley
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL; and Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
94
|
Serrano OK, Parrow NL, Violet PC, Yang J, Zornjak J, Basseville A, Levine M. Antitumor effect of pharmacologic ascorbate in the B16 murine melanoma model. Free Radic Biol Med 2015; 87:193-203. [PMID: 26119785 DOI: 10.1016/j.freeradbiomed.2015.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
Because 5-year survival rates for patients with metastatic melanoma remain below 25%, there is continued need for new therapeutic approaches. For some tumors, pharmacologic ascorbate treatment may have a beneficial antitumor effect and may work synergistically with standard chemotherapeutics. To investigate this possibility in melanoma, we examined the effect of pharmacologic ascorbate on B16-F10 cells. Murine models were employed to compare tumor size following treatment with ascorbate, and the chemotherapeutic agents dacarbazine or valproic acid, alone or in combination with ascorbate. Results indicated that nearly all melanoma cell lines were susceptible to ascorbate-mediated cytotoxicity. Compared to saline controls, pharmacologic ascorbate decreased tumor size in both C57BL/6 (P < 0.0001) and NOD-scid tumor bearing mice (P < 0.0001). Pharmacologic ascorbate was superior or equivalent to dacarbazine as an antitumor agent. Synergy was not apparent when ascorbate was combined with either dacarbazine or valproic acid; the latter combination may have additional toxicities. Pharmacologic ascorbate induced DNA damage in melanoma cells, as evidenced by increased phosphorylation of the histone variant, H2A.X. Differences were not evident in tumor samples from C57BL/6 mice treated with pharmacologic ascorbate compared to tumors from saline-treated controls. Together, these results suggest that pharmacologic ascorbate has a cytotoxic effect against melanoma that is largely independent of lymphocytic immune functions and that continued investigation of pharmacologic ascorbate in cancer treatment is warranted.
Collapse
Affiliation(s)
- Oscar K Serrano
- Department of Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, USA
| | - Nermi L Parrow
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Yang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Zornjak
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Agnes Basseville
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
95
|
Venturelli S, Sinnberg TW, Niessner H, Busch C. Molecular mechanisms of pharmacological doses of ascorbate on cancer cells. Wien Med Wochenschr 2015; 165:251-7. [PMID: 26065536 DOI: 10.1007/s10354-015-0356-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | | | | | | |
Collapse
|
96
|
Cieslak JA, Strother RK, Rawal M, Du J, Doskey CM, Schroeder SR, Button A, Wagner BA, Buettner GR, Cullen JJ. Manganoporphyrins and ascorbate enhance gemcitabine cytotoxicity in pancreatic cancer. Free Radic Biol Med 2015; 83:227-37. [PMID: 25725418 PMCID: PMC4441864 DOI: 10.1016/j.freeradbiomed.2015.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/23/2015] [Accepted: 02/16/2015] [Indexed: 12/17/2022]
Abstract
Pharmacological ascorbate (AscH(-)) selectively induces cytotoxicity in pancreatic cancer cells vs normal cells via the generation of extracellular hydrogen peroxide (H2O2), producing double-stranded DNA breaks and ultimately cell death. Catalytic manganoporphyrins (MnPs) can enhance ascorbate-induced cytotoxicity by increasing the rate of AscH(-) oxidation and therefore the rate of generation of H2O2. We hypothesized that combining MnPs and AscH(-) with the chemotherapeutic agent gemcitabine would further enhance pancreatic cancer cell cytotoxicity without increasing toxicity in normal pancreatic cells or other organs. Redox-active MnPs were combined with AscH(-) and administered with or without gemcitabine to human pancreatic cancer cell lines, as well as immortalized normal pancreatic ductal epithelial cells. The MnPs MnT2EPyP (Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl) porphyrin pentachloride) and MnT4MPyP (Mn(III)tetrakis(N-methylpyridinium-4-yl) porphyrin pentachloride) were investigated. Clonogenic survival was significantly decreased in all pancreatic cancer cell lines studied when treated with MnP + AscH(-) + gemcitabine, whereas nontumorigenic cells were resistant. The concentration of ascorbate radical (Asc(•-), an indicator of oxidative flux) was significantly increased in treatment groups containing MnP and AscH(-). Furthermore, MnP + AscH(-) increased double-stranded DNA breaks in gemcitabine-treated cells. These results were abrogated by extracellular catalase, further supporting the role of the flux of H2O2. In vivo growth was inhibited and survival increased in mice treated with MnT2EPyP, AscH(-), and gemcitabine without a concomitant increase in systemic oxidative stress. These data suggest a promising role for the use of MnPs in combination with pharmacologic AscH(-) and chemotherapeutics in pancreatic cancer.
Collapse
Affiliation(s)
- John A Cieslak
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Robert K Strother
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Malvika Rawal
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Juan Du
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Claire M Doskey
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel R Schroeder
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Anna Button
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
97
|
Chen Q, Polireddy K, Chen P, Dong R. The unpaved journey of vitamin C in cancer treatment. Can J Physiol Pharmacol 2015; 93:1055-63. [PMID: 26469874 DOI: 10.1139/cjpp-2014-0509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Effectiveness and low-toxicity to normal tissues are ideal properties for a cancer treatment, and one that numerous research programs are aiming for. Vitamin C has long been used in the field of Complementary and Alternative Medicine as a cancer treatment, with profound safety and anecdotal efficacy. Recent studies revealed the scientific basis for this use, and indicated that vitamin C, at supra-nutritional doses, holds considerable promise as an effective and low-toxic therapeutic strategy to treat cancer. Reviewed here are the early controversies surrounding vitamin C and cancer treatment, the breakthrough discoveries that led to the current advancement, and recent clinical studies, as well as research into its mechanisms of action.
Collapse
Affiliation(s)
- Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA
| | - Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics. KU Integrative Medicine, the University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, Kansas City, KS 66160, USA
| |
Collapse
|
98
|
High-dose intravenous vitamin C combined with cytotoxic chemotherapy in patients with advanced cancer: a phase I-II clinical trial. PLoS One 2015; 10:e0120228. [PMID: 25848948 PMCID: PMC4388666 DOI: 10.1371/journal.pone.0120228] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/27/2015] [Indexed: 12/17/2022] Open
Abstract
Background Biological and some clinical evidence suggest that high-dose intravenous vitamin C (IVC) could increase the effectiveness of cancer chemotherapy. IVC is widely used by integrative and complementary cancer therapists, but rigorous data are lacking as to its safety and which cancers and chemotherapy regimens would be the most promising to investigate in detail. Methods and Findings We carried out a phase I-II safety, tolerability, pharmacokinetic and efficacy trial of IVC combined with chemotherapy in patients whose treating oncologist judged that standard-of-care or off-label chemotherapy offered less than a 33% likelihood of a meaningful response. We documented adverse events and toxicity associated with IVC infusions, determined pre- and post-chemotherapy vitamin C and oxalic acid pharmacokinetic profiles, and monitored objective clinical responses, mood and quality of life. Fourteen patients were enrolled. IVC was safe and generally well tolerated, although some patients experienced transient adverse events during or after IVC infusions. The pre- and post-chemotherapy pharmacokinetic profiles suggested that tissue uptake of vitamin C increases after chemotherapy, with no increase in urinary oxalic acid excretion. Three patients with different types of cancer experienced unexpected transient stable disease, increased energy and functional improvement. Conclusions Despite IVC’s biological and clinical plausibility, career cancer investigators currently ignore it while integrative cancer therapists use it widely but without reporting the kind of clinical data that is normally gathered in cancer drug development. The present study neither proves nor disproves IVC’s value in cancer therapy, but it provides practical information, and indicates a feasible way to evaluate this plausible but unproven therapy in an academic environment that is currently uninterested in it. If carried out in sufficient numbers, simple studies like this one could identify specific clusters of cancer type, chemotherapy regimen and IVC in which exceptional responses occur frequently enough to justify appropriately focused clinical trials. Trial Registration ClinicalTrials.gov NCT01050621
Collapse
|
99
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
100
|
DNA damage and inhibition of akt pathway in mcf-7 cells and ehrlich tumor in mice treated with 1,4-naphthoquinones in combination with ascorbate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:495305. [PMID: 25793019 PMCID: PMC4352476 DOI: 10.1155/2015/495305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
Abstract
The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, γH2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells.
Collapse
|