51
|
Purohit V, Simeone DM, Lyssiotis CA. Metabolic Regulation of Redox Balance in Cancer. Cancers (Basel) 2019; 11:cancers11070955. [PMID: 31288436 PMCID: PMC6678865 DOI: 10.3390/cancers11070955] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are chemically active free radicals produced by partial reduction of oxygen that can activate discrete signaling pathways or disrupt redox homeostasis depending on their concentration. ROS interacts with biomolecules, including DNA, and can cause mutations that can transform normal cells into cancer cells. Furthermore, certain cancer-causing mutations trigger alterations in cellular metabolism that can increase ROS production, resulting in genomic instability, additional DNA mutations, and tumor evolution. To prevent excess ROS-mediated toxicity, cancer-causing mutations concurrently activate pathways that manage this oxidative burden. Hence, an understanding of the metabolic pathways that regulate ROS levels is imperative for devising therapies that target tumor cells. In this review, we summarize the dual role of metabolism as a generator and inhibitor of ROS in cancer and discuss current strategies to target the ROS axis.
Collapse
Affiliation(s)
- Vinee Purohit
- Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University, New York, NY 10016, USA
- Department of Surgery, New York University, New York, NY 10016, USA
- Department of Pathology, New York University, New York, NY 10016, USA
| | - Costas A Lyssiotis
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
- Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
52
|
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 2019; 53:497-521. [PMID: 31039624 DOI: 10.1080/10715762.2019.1612059] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.
Collapse
Affiliation(s)
- Joanna Kruk
- a Faculty of Physical Culture and Health Promotion , University of Szczecin , Cukrowa 12 , Szczecin , Poland
| | - Hassan Y Aboul-Enein
- b Department of National Pharmaceutical and Medicinal Chemistry, Division of Pharmaceutical and Drug Industries Research , National Research Centre , Dokki , Egypt
| | - Aleksandra Kładna
- c Faculty of Medicine, Biotechnology and Laboratory Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Jacquelyn E Bowser
- d John Hazen White College of Arts & Sciences , Johnson & Wales University , Providence , USA
| |
Collapse
|
53
|
Detaille D, Pasdois P, Sémont A, Dos Santos P, Diolez P. An old medicine as a new drug to prevent mitochondrial complex I from producing oxygen radicals. PLoS One 2019; 14:e0216385. [PMID: 31048932 PMCID: PMC6497312 DOI: 10.1371/journal.pone.0216385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Findings Here, we demonstrate that OP2113 (5-(4-Methoxyphenyl)-3H-1,2-dithiole-3-thione, CAS 532-11-6), synthesized and used as a drug since 1696, does not act as an unspecific antioxidant molecule (i.e., as a radical scavenger) but unexpectedly decreases mitochondrial reactive oxygen species (ROS/H2O2) production by acting as a specific inhibitor of ROS production at the IQ site of complex I of the mitochondrial respiratory chain. Studies performed on isolated rat heart mitochondria also showed that OP2113 does not affect oxidative phosphorylation driven by complex I or complex II substrates. We assessed the effect of OP2113 on an infarct model of ex vivo rat heart in which mitochondrial ROS production is highly involved and showed that OP2113 protects heart tissue as well as the recovery of heart contractile activity. Conclusion / Significance This work represents the first demonstration of a drug authorized for use in humans that can prevent mitochondria from producing ROS/H2O2. OP2113 therefore appears to be a member of the new class of mitochondrial ROS blockers (S1QELs) and could protect mitochondrial function in numerous diseases in which ROS-induced mitochondrial dysfunction occurs. These applications include but are not limited to aging, Parkinson’s and Alzheimer's diseases, cardiac atrial fibrillation, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dominique Detaille
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Philippe Pasdois
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Audrey Sémont
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Pierre Dos Santos
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Centre Hospitalo-Universitaire de Bordeaux (CHU), Pôle Cardio-thoracique, Pessac, France
| | - Philippe Diolez
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
54
|
Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Free Radic Biol Med 2019; 134:177-189. [PMID: 30639617 DOI: 10.1016/j.freeradbiomed.2019.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
Redox changes and generation of reactive oxygen species (ROS) are part of normal cell metabolism. While low ROS levels are implicated in cellular signaling pathways necessary for survival, higher levels play major roles in cancer development as well as cell death signaling and execution. A role for redox changes in apoptosis has been long established; however, several new modalities of regulated cell death have been brought to light, for which the importance of ROS production as well as ROS source and targets are being actively investigated. In this review, we summarize recent findings on the role of ROS and redox changes in the activation and execution of two major forms of regulated cell death, necroptosis and ferroptosis. We also discuss the potential of using modulators of these two forms of cell death to exacerbate ROS as a promising anticancer therapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Sungmi Song
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
55
|
Zhou L, Liu L, Chai W, Zhao T, Jin X, Guo X, Han L, Yuan C. Dichloroacetic acid upregulates apoptosis of ovarian cancer cells by regulating mitochondrial function. Onco Targets Ther 2019; 12:1729-1739. [PMID: 30881027 PMCID: PMC6419601 DOI: 10.2147/ott.s194329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Metabolic reprogramming is a characteristic of tumor cells and is considered a potential therapeutic target. Even under aerobic conditions, tumor cells use glycolysis to produce energy, a phenomenon called the “Warburg effect”. Pyruvate dehydrogenase kinase 1 (PDK1) is a key factor linking glycolysis and the tricarboxylic acid cycle. Dichloroacetic acid (DCA) reverses the Warburg effect by inhibition of PDK1 to switch cytoplasmic glucose metabolism to mitochondrial oxidative phosphorylation (OXPHOS). Methods Cell viability was examined using a standard MTT assay. Glucose consumption and l-lactate production were measured using commercial colorimetric kits, and intracellular lactate dehydrogenase (LDH) activity was evaluated using cell lysates and an LDH Quantification Kit. Real-time PCR was used to detect the expression of related genes. The production of total ROS was evaluated by staining with dichlorofluorescin diacetate. Results Comparison of various aspects of glucose metabolism, such as expression of key enzymes in glycolysis, lactate production, glucose consumption, mitochondrial oxygen consumption rate, and citric acid production, revealed that A2780/DDP cells were primarily dependent on glycolysis whereas A2780 cells were primarily dependent on mitochondrial OXPHOS. Mitochondrial uncoupling protein 2 (UCP2) protects against mitochondrial ROS while allowing energy metabolism to switch to glycolysis. Treatment of A2780 cells with various concentrations of DCA resulted in decreased expression of UCP2, a metabolic switch from glycolysis to mitochondrial OXPHOS, and an increase in oxidative stress induced by ROS. These effects were not observed in A2780/DDP cells with higher UCP2 expression suggesting that UCP2 might induce changes in mitochondrial functions that result in different sensitivities to DCA. Conclusion Our results show that a drug targeting tumor metabolic changes affects almost the entire process of glucose metabolism. Thus, it is necessary to comprehensively determine tumor metabolic functions to facilitate individualized antitumor therapy.
Collapse
Affiliation(s)
- Li Zhou
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Lianlian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China,
| | - Wei Chai
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Ting Zhao
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Xin Jin
- Department of Obstetrics and Gynecology, Dalian Municipal Women and Children's Medical Center, Dalian 130041, China
| | - Xinxin Guo
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Liying Han
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China,
| | - Chunli Yuan
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|
56
|
Li S, Sun C, Gu Y, Gao X, Zhao Y, Yuan Y, Zhang F, Hu P, Liang W, Cao K, Zhang J, Wang Z, Ye J. Mutation of IDH1 aggravates the fatty acid‑induced oxidative stress in HCT116 cells by affecting the mitochondrial respiratory chain. Mol Med Rep 2019; 19:2509-2518. [PMID: 30720071 PMCID: PMC6423594 DOI: 10.3892/mmr.2019.9903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Increasing evidence has indicated that mutations of isocitrate dehydrogenase 1/2 (IDH1/2) contribute to the metabolic reprogramming of cancer cells; however their functions in lipid metabolism remain unknown. In the present study, the parental and IDH1 (R132H/+) mutant HCT116 cells were treated with various concentrations of oleic acid (OA) or palmitic acid (PA) in the presence or absence of glucose. The results demonstrated that mutation of IDH1 exacerbated the effects of OA and PA on cell viability and apoptosis, and consistently elevated the production of reactive oxygen species in HCT116 cells, particularly in the absence of glucose. Furthermore, mutation of IDH1 inhibited the rate of fatty acid oxidation (FAO), but elevated the glucose consumption in HCT116 cells. The results of immunoblotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) indicated that the expression of glucose transporter 1 was upregulated, whereas that of carnitine palmitoyl transferase 1 was downregulated in IDH1 mutant HCT116 cells. Although mitochondrial DNA quantification demonstrated that mutation of IDH1 had no effect on the quantity of mitochondria, immunoblotting and RT‑qPCR revealed that mutation of IDH1 in HCT116 cells significantly downregulated the expression of cytochrome c (CYCS) and CYCS oxidase IV, two important components in mitochondrial respiratory chain. These results indicated that mutation of IDH1 aggravated the fatty acid‑induced oxidative stress in HCT116 cells, by suppressing FAO and disrupting the mitochondrial respiratory chain. The results of the present study may provide novel insight into therapeutic strategies for the treatment of cancer types with IDH mutation.
Collapse
Affiliation(s)
- Sheng Li
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yu Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xing Gao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Peizhen Hu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Weihua Liang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kaiyu Cao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jin Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Ye
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
57
|
Wong HS, Benoit B, Brand MD. Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radic Biol Med 2019; 130:140-150. [PMID: 30389498 DOI: 10.1016/j.freeradbiomed.2018.10.448] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
Abstract
The relative contributions of different mitochondrial and cytosolic sources of superoxide and hydrogen peroxide in cells are not well established because of a lack of suitable quantitative assays. To address this problem using resting C2C12 myoblasts we measured the effects of specific inhibitors that do not affect other pathways on the rate of appearance of hydrogen peroxide in the extracellular medium. We used inhibitors of NADPH oxidases (NOXs), suppressors of site IQ electron leak (S1QELs) at mitochondrial Complex I, and suppressors of site IIIQo electron leak (S3QELs) at mitochondrial Complex III. Around 40% of net cellular hydrogen peroxide release was from NOXs and approximately 45% was from the two mitochondrial sites; 30% from site IIIQo and 15% from site IQ. As expected, decreasing cytosolic antioxidant capacity by lowering glutathione levels increased the absolute rates from all sites without changing their proportions, whereas decreasing antioxidant defenses in the mitochondrial matrix increased only the absolute and relative contributions of the two mitochondrial sites. These results show directly that mitochondria are a major contributor to cytosolic hydrogen peroxide in resting C2C12 myoblasts, and provide the first direct evidence of superoxide/hydrogen peroxide production from site IQ in unstressed cells.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | - Bérengère Benoit
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|
58
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|
59
|
Roussel D, Boël M, Mortz M, Romestaing C, Duchamp C, Voituron Y. Threshold effect in the H2O2 production of skeletal muscle mitochondria during fasting and refeeding. J Exp Biol 2019; 222:jeb.196188. [DOI: 10.1242/jeb.196188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023]
Abstract
Under nutritional deprivation, the energetic benefits of reducing mitochondrial metabolism are often associated with enhanced harmful pro-oxidant effects and a subsequent long-term negative impact on cellular integrity. However, the flexibility of mitochondrial functioning under stress has rarely been explored during the transition from basal non-phosphorylating to maximal phosphorylating oxygen consumption. Here, we experimentally tested whether ducklings (Cairina moschata) fasted for 6 days and thereafter refed for 3 days, exhibited modifications to their mitochondrial fluxes, i.e. oxygen consumption, ATP synthesis, reactive oxygen species generation (ROS) and associated ratios, such as the electron leak (% ROS/O) and the oxidative cost of ATP production (% ROS/ATP). This was done at different steady state rate of oxidative phosphorylation in both pectoralis (glycolytic) and gastrocnemius (oxidative) muscles. Fasting induced a decrease in the rates of oxidative phosphorylation and maximal ROS release. All these changes were completely reversed by 3 days of refeeding. Yet, the fundamental finding of the present study is the existence of a clear threshold in ROS release and associated ratios, which remained low until a low level of mitochondrial activity is reached (30-40% of maximal oxidative phosphorylation activity).
Collapse
Affiliation(s)
- Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Mélanie Boël
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Mathieu Mortz
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Claude Duchamp
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| | - Yann Voituron
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université de Lyon, ENTPE, Lyon, France
| |
Collapse
|
60
|
Dajani S, Saripalli A, Sharma-Walia N. Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget 2018; 9:36392-36405. [PMID: 30555637 PMCID: PMC6284741 DOI: 10.18632/oncotarget.26351] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
As highly conserved ubiquitous proteins, aquaporins (AQPs) play an imperative role in the development and progression of cancer. By trafficking water and other small molecules, AQPs play a vital role in preserving the cellular environment. Due to their critical role in cell stability and integrity, it would make sense that AQPs are involved in cancer progression. When AQPs alter the cellular environment, there may be several downstream effects such as alterations in cellular osmolality, volume, ionic composition, and signaling pathways. Changes in the intracellular levels of certain molecules serving as second messengers are synchronized by AQPs. Thus AQPs regulate numerous downstream effector signaling molecules that promote cancer development and progression. In numerous cancer types, AQP expression has shown a correlation with tumor stage and prognosis. Furthermore, AQPs assist in angiogenic and oxidative stress related damaging processes critical for cancer progression. This indicates that AQP proteins may be a viable therapeutic target or biomarker of cancer prognosis.
Collapse
Affiliation(s)
- Salah Dajani
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anand Saripalli
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Neelam Sharma-Walia
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
61
|
Treberg JR, Braun K, Selseleh P. Mitochondria can act as energy-sensing regulators of hydrogen peroxide availability. Redox Biol 2018; 20:483-488. [PMID: 30466061 PMCID: PMC6249968 DOI: 10.1016/j.redox.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023] Open
Abstract
Mitochondria are widely recognized as sources of reactive oxygen species in animal cells, with H2O2 being of particular note because it can act not only in oxidative stress but also is important to several signalling pathways. Lesser recognized is that mitochondria can have far greater capacity to consume H2O2 than to produce it; however, the consumption of H2O2 may be kinetically constrained by H2O2 availability especially at the low nanomolar (or lower) concentrations that occur in vivo. The production of H2O2 is a function of many factors, not the least of which are respiratory substrate availability and the protonmotive force (Δp). The Δp, which is predominantly membrane potential (ΔΨ), can be a strong indicator of mitochondrial energy status, particularly if respiratory substrate supply is either not meeting or exceeding demand. The notion that mitochondria may functionally act in regulating H2O2 concentrations may be somewhat implicit but little evidence demonstrating this is available. Here we demonstrate key assumptions that are required for mitochondria to act as regulators of H2O2 by an integrated system of production and concomitant consumption. In particular we show the steady-state level of H2O2 mitochondria approach is a function of both mitochondrial H2O2 consumption and production capacity, the latter of which is strongly influenced by ΔΨ. Our results are consistent with mitochondria being able to manipulate extramitochondrial H2O2 as a means of signalling mitochondrial energetic status, in particular the Δp or ΔΨ. Such a redox-based signal could operate with some independence from other energy sensing mechanisms such as those that transmit information using the cytosolic adenylate pool.
Collapse
Affiliation(s)
- Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.
| | - Kristen Braun
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Parisa Selseleh
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
62
|
Treberg JR, Braun K, Zacharias P, Kroeker K. Multidimensional mitochondrial energetics: Application to the study of electron leak and hydrogen peroxide metabolism. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:121-128. [DOI: 10.1016/j.cbpb.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
63
|
Treberg JR, Munro D, Jastroch M, Quijada-Rodriguez AR, Kutschke M, Wiens L. Comparing Electron Leak in Vertebrate Muscle Mitochondria. Integr Comp Biol 2018; 58:495-505. [DOI: 10.1093/icb/icy095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jason R Treberg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
- Department of Food and Human Nutritional Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
- Centre on Aging, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
| | - Daniel Munro
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm SE-106 91, Sweden
| | - Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
| | - Maria Kutschke
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Lilian Wiens
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T2N2
| |
Collapse
|
64
|
Mitochondrial bioenergetics, redox state, dynamics and turnover alterations in renal mass reduction models of chronic kidney diseases and their possible implications in the progression of this illness. Pharmacol Res 2018; 135:1-11. [PMID: 30030169 DOI: 10.1016/j.phrs.2018.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023]
Abstract
Nowadays, chronic kidney disease (CKD) is considered a worldwide public health problem. CKD is a term used to describe a set of pathologies that structurally and functionally affect the kidney, it is mostly characterized by the progressive loss of kidney function. Current therapeutic approaches are insufficient to avoid the development of this disease, which highlights the necessity of developing new strategies to reverse or at least delay CKD progression. Kidney is highly dependent on mitochondrial homeostasis and function, consequently, the idea that mitochondrial pathologies could play a pivotal role in the genesis and development of kidney diseases has risen. Although many research groups have recently published studies of mitochondrial function in acute kidney disease models, the existing information about CKD is still limited, especially in renal mass reduction (RMR) models. This paper focuses on reviewing current experimental information about the bioenergetics, dynamics (fission and fusion processes), turnover (mitophagy and biogenesis) and redox mitochondrial alterations in RMR, to discuss and integrate the mitochondrial changes triggered by nephron loss, as well as its relationship with loss of kidney function in CKD, in these models. Understanding these mechanisms would allow us to design new therapies that target these mitochondrial alterations.
Collapse
|
65
|
Function and Regulation of Protein Kinase D in Oxidative Stress: A Tale of Isoforms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2138502. [PMID: 29854077 PMCID: PMC5944262 DOI: 10.1155/2018/2138502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Oxidative stress is a condition that arises when cells are faced with levels of reactive oxygen species (ROS) that destabilize the homeostatic redox balance. High levels of ROS can cause damage to macromolecules including DNA, lipids, and proteins, eventually resulting in cell death. Moderate levels of ROS however serve as signaling molecules that can drive and potentiate several cellular phenotypes. Increased levels of ROS are associated with a number of diseases including neurological disorders and cancer. In cancer, increased ROS levels can contribute to cancer cell survival and proliferation via the activation of several signaling pathways. One of the downstream effectors of increased ROS is the protein kinase D (PKD) family of kinases. In this review, we will discuss the regulation and function of this family of ROS-activated kinases and describe their unique isoform-specific features, in terms of both kinase regulation and signaling output.
Collapse
|
66
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
67
|
Martínez-Cárdenas A, Chávez-Cabrera C, Vasquez-Bahena JM, Flores-Cotera LB. A common mechanism explains the induction of aerobic fermentation and adaptive antioxidant response in Phaffia rhodozyma. Microb Cell Fact 2018; 17:53. [PMID: 29615045 PMCID: PMC5883411 DOI: 10.1186/s12934-018-0898-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Background Growth conditions that bring about stress on Phaffia rhodozyma cells encourage the synthesis of astaxanthin, an antioxidant carotenoid, which protects cells against oxidative damage. Using P. rhodozyma cultures performed with and without copper limitation, we examined the kinetics of astaxanthin synthesis along with the expression of asy, the key astaxanthin synthesis gene, as well as aox, which encodes an alternative oxidase protein. Results Copper deficiency had a detrimental effect on the rates of oxygen consumption and ethanol reassimilation at the diauxic shift. In contrast, copper deficiency prompted alcoholic fermentation under aerobic conditions and had a favorable effect on the astaxanthin content of cells, as well as on aox expression. Both cultures exhibited strong aox expression while consuming ethanol, but particularly when copper was absent. Conclusion We show that the induction of either astaxanthin production, aox expression, or aerobic fermentation exemplifies the crucial role that redox imbalance plays in triggering any of these phenomena. Based on our own results and data from others, we propose a mechanism that rationalizes the central role played by changes of respiratory activity, which lead to redox imbalances, in triggering both the short-term antioxidant response as well as fermentation in yeasts and other cell types.
Collapse
Affiliation(s)
- Anahí Martínez-Cárdenas
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.,College of Science and Technology Studies of the State of Michoacán, Loma de las Liebres 180, Fraccionamiento Lomas del Sur, 58095, Morelia, Michoacán, Mexico
| | - Jazmín M Vasquez-Bahena
- Avi-mex Laboratory S.A de C.V, Trigo 169, Col. Granjas Esmeralda, 09810, Mexico City, Mexico
| | - Luis B Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
68
|
Liu R, Cao P, Ren A, Wang S, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 2018; 16:388-400. [PMID: 29631100 PMCID: PMC5953243 DOI: 10.1016/j.redox.2018.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research found that NADPH oxidase-silenced strains exhibited a partial reduction in the response to SA, resulting in the induction of increased ROS production. Furthermore, the localization of ROS shows that mitochondria are sources of ROS production in response to SA treatment. An additional analysis focused on the relationship between SA-induced ROS production and mitochondrial functions, and the results showed that inhibitors of mitochondrial complexes I and II exert approximately 40–50% superimposed inhibitory effects on the respiration rate and H2O2 content when co-administered with SA. However, no obvious superimposed inhibition effects were observed in the sample co-treated with mitochondrial complex III inhibitor and SA, implying that the inhibitor of mitochondrial complex III and SA might act on the same site in mitochondria. Additional experiments revealed that complex III activity was decreased 51%, 62% and 75% after treatment with 100, 200, and 400 µM SA, respectively. Our results highlight the finding that SA inhibits mitochondrial complex III activity to increase ROS generation. In addition, inhibition of mitochondrial complex III caused ROS accumulation, which plays an essential role in SA-mediated GA biosynthesis in G. lucidum. This conclusion was also demonstrated in complex III-silenced strains. To the best of our knowledge, this study provides the first demonstration that SA inhibits complex III activity to increase the ROS levels and thereby regulate secondary metabolite biosynthesis. Mitochondria as a source of salicylic acid (SA) induced reactive oxygen species (ROS) production in Ganoderma lucidum. SA induces the accumulation of ganoderic acids in Ganoderma lucidum by mitochondria ROS overproduction. SA inhibits mitochondrial complex III activity to increase ROS and thereby induces ganoderic acids biosynthesis.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Pengfei Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Shengli Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ting Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
69
|
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018; 117:76-89. [PMID: 29373843 DOI: 10.1016/j.freeradbiomed.2018.01.024] [Citation(s) in RCA: 565] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (IR) injury is central to the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. IR injury is mediated by several factors including the elevated production of reactive oxygen species (ROS), which occurs particularly at reperfusion. The mitochondrial respiratory chain and NADPH oxidases of the NOX family are major sources of ROS in cardiomyocytes. The first part of this review discusses recent findings and controversies on the mechanisms of superoxide production by the mitochondrial electron transport chain during IR injury, as well as the contribution of the NOX isoforms expressed in cardiomyocytes, NOX1, NOX2 and NOX4, to this damage. It then focuses on the effects of ROS on the opening of the mitochondrial permeability transition pore (mPTP), an inner membrane non-selective pore that causes irreversible damage to the heart. The second part analyzes the redox mechanisms of cardiomyocyte mitochondrial protection; specifically, the activation of the hypoxia-inducible factor (HIF) pathway and the antioxidant transcription factor Nrf2, which are both regulated by the cellular redox state. Redox mechanisms involved in ischemic preconditioning, one of the most effective ways of protecting the heart against IR injury, are also reviewed. Interestingly, several of these protective pathways converge on the inhibition of mPTP opening during reperfusion. Finally, the clinical and translational implications of these cardioprotective mechanisms are discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain.
| |
Collapse
|
70
|
Wagner JT, Singh PP, Romney AL, Riggs CL, Minx P, Woll SC, Roush J, Warren WC, Brunet A, Podrabsky JE. The genome of Austrofundulus limnaeus offers insights into extreme vertebrate stress tolerance and embryonic development. BMC Genomics 2018; 19:155. [PMID: 29463212 PMCID: PMC5819677 DOI: 10.1186/s12864-018-4539-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in northern Venezuela, South America, and is an emerging extremophile model for vertebrate diapause, stress tolerance, and evolution. Embryos of A. limnaeus regularly experience extended periods of desiccation and anoxia as a part of their natural history and have unique metabolic and developmental adaptations. Currently, there are limited genomic resources available for gene expression and evolutionary studies that can take advantage of A. limnaeus as a unique model system. Results We describe the first draft genome sequence of A. limnaeus. The genome was assembled de novo using a merged assembly strategy and was annotated using the NCBI Eukaryotic Annotation Pipeline. We show that the assembled genome has a high degree of completeness in genic regions that is on par with several other teleost genomes. Using RNA-seq and phylogenetic-based approaches, we identify several candidate genes that may be important for embryonic stress tolerance and post-diapause development in A. limnaeus. Several of these genes include heat shock proteins that have unique expression patterns in A. limnaeus embryos and at least one of these may be under positive selection. Conclusion The A. limnaeus genome is the first South American annual killifish genome made publicly available. This genome will be a valuable resource for comparative genomics to determine the genetic and evolutionary mechanisms that support the unique biology of annual killifishes. In a broader context, this genome will be a valuable tool for exploring genome-environment interactions and their impacts on vertebrate physiology and evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-4539-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josiah T Wagner
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA. .,Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon, USA.
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Amie L Romney
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Claire L Riggs
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Patrick Minx
- McDonnell Genome Institute at Washington University, St Louis, Missouri, USA
| | - Steven C Woll
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Jake Roush
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Wesley C Warren
- McDonnell Genome Institute at Washington University, St Louis, Missouri, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, California, USA.,Glenn Center for the Biology of Aging, Stanford, California, USA
| | - Jason E Podrabsky
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| |
Collapse
|
71
|
Zhang Y, Li Y, He Y, Hu W, Zhang Y, Wang X, Tang H. Identification of NADPH oxidase family members associated with cold stress in strawberry. FEBS Open Bio 2018; 8:593-605. [PMID: 29632812 PMCID: PMC5881550 DOI: 10.1002/2211-5463.12393] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
NADPH oxidase is encoded by a small gene family (Respiratory burst oxidase homologs, Rbohs) and plays an important role in regulating various biological processes. However, little information about this gene family is currently available for strawberry. In this study, a total of seven Rboh genes were identified from strawberry through genomewide analysis. Gene structure analysis showed the number of exons ranged from 10 to 23, implying that this variation occurred in FvRboh genes by the insertion and distribution of introns; the order and approximate size of exons were relatively conserved. FvRbohC was predicted to localize to the thylakoid membrane of the chloroplast, while other members were computed to localize to the plasma membrane, indicating different functions. Amino acid sequence alignment, conserved domain, and motif analysis showed that all identified FvRbohs had typical features of plant Rbohs. Phylogenetic analysis of Rbohs from strawberry, grape, Arabidopsis, and rice suggested that the FvRbohs could be divided into five subgroups and showed a closer relationship with those from grape and Arabidopsis than those from rice. The expression patterns of FvRboh genes in root, stem, leaf, flower, and fruit revealed robust tissue specificity. The expression levels of FvRbohA and FvRbohD were quickly induced by cold stress, followed by an increase in NADPH oxidase activity, leading to O2− accumulation and triggering the antioxidant reaction by the transient increases in SOD activity. This suggested these two genes may be involved in cold stress and defense responses in strawberry.
Collapse
Affiliation(s)
- Yunting Zhang
- College of Horticulture Sichuan Agricultural University Chengdu China
| | - Yali Li
- College of Horticulture Sichuan Agricultural University Chengdu China
| | - Yuwei He
- College of Horticulture Sichuan Agricultural University Chengdu China
| | - Wenjie Hu
- College of Horticulture Sichuan Agricultural University Chengdu China
| | - Yong Zhang
- College of Horticulture Sichuan Agricultural University Chengdu China
| | - Xiaorong Wang
- College of Horticulture Sichuan Agricultural University Chengdu China.,Institute of Pomology and Olericulture Sichuan Agricultural University Chengdu China
| | - Haoru Tang
- College of Horticulture Sichuan Agricultural University Chengdu China
| |
Collapse
|
72
|
Zhu L, Zhang J, Zhou J, Lu Y, Huang S, Xiao R, Yu X, Zeng X, Liu B, Liu F, Sun M, Dai M, Hao Q, Li J, Wang T, Li T, Hu Q. Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. Oncotarget 2018; 7:48925-48940. [PMID: 27419637 PMCID: PMC5226481 DOI: 10.18632/oncotarget.10596] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are essential for the onset of hypoxia-induced pulmonary vasoconstriction and pulmonary vascular-remodeling, two major aspects underlying the development of pulmonary hypertension, an incurable disease. However, hypoxia induces relaxation of systemic arteries such as femoral arteries and mitochondrial heterogeneity controls the distinct responses of pulmonary versus femoral artery smooth muscle cells to hypoxia in vitro. The aim of this study was to determine whether mitochondrial heterogeneity can be experimentally exploited in vivo for a potential treatment against pulmonary hypertension. The intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in vivo via intravenous administration. The immune-florescent staining and ultrastructural examinations on pulmonary arteries confirmed the intracellular distribution of exogenous mitochondria and revealed the possible mitochondrial transfer from pulmonary artery endothelial cells into smooth muscle cells in part through their intercellular space and intercellular junctions. The transplantation of mitochondria derived from femoral artery smooth muscle cells inhibited acute hypoxia-triggered pulmonary vasoconstriction, attenuated chronic hypoxia-induced pulmonary vascular remodeling, and thus prevented the development of pulmonary hypertension or cured the established pulmonary hypertension in rats exposed to chronic hypoxia. Our findings suggest that mitochondrial transplantation possesses potential implications for exploring a novel therapeutic and preventive strategy against pulmonary hypertension.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Pathology, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Juan Zhou
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Current address: Department of Clinical Laboratory of Xuzhou Central Hospital, Xuzhou, China
| | - Yankai Lu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Songling Huang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xiangyuan Yu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Fangbo Liu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Mengxiang Sun
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Mao Dai
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Qiang Hao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Pathology, Tongji Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Tongfei Li
- Department of Pathology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| |
Collapse
|
73
|
Bunik VI, Brand MD. Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells. Biol Chem 2018; 399:407-420. [DOI: 10.1515/hsz-2017-0284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Abstract
Mitochondrial 2-oxoacid dehydrogenase complexes oxidize 2-oxoglutarate, pyruvate, branched-chain 2-oxoacids and 2-oxoadipate to the corresponding acyl-CoAs and reduce NAD+ to NADH. The isolated enzyme complexes generate superoxide anion radical or hydrogen peroxide in defined reactions by leaking electrons to oxygen. Studies using isolated mitochondria in media mimicking cytosol suggest that the 2-oxoacid dehydrogenase complexes contribute little to the production of superoxide or hydrogen peroxide relative to other mitochondrial sites at physiological steady states. However, the contributions may increase under pathological conditions, in accordance with the high maximum capacities of superoxide or hydrogen peroxide-generating reactions of the complexes, established in isolated mitochondria. We assess available data on the use of modulations of enzyme activity to infer superoxide or hydrogen peroxide production from particular 2-oxoacid dehydrogenase complexes in cells, and limitations of such methods to discriminate specific superoxide or hydrogen peroxide sources in vivo.
Collapse
Affiliation(s)
- Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , 119992 Moscow , Russia
| | - Martin D. Brand
- Buck Institute for Research on Aging , 8001 Redwood Blvd. , Novato, CA 94945 , USA
| |
Collapse
|
74
|
Oxidative Stress, Selenium Redox Systems Including GPX/TXNRD Families. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
75
|
Abstract
Mitochondrial activity in cells must be tightly controlled in response to changes in intracellular circumstances. Despite drastic changes in intracellular conditions and mitochondrial morphology, it is not clear how mitochondrial activity is controlled during M phase of the cell cycle. Here, we show that mitochondrial activity is drastically changed during M phase. Mitochondrial membrane potential changed during M phase progression. Mitochondria were polarized until metaphase to the same extent as mitochondria in interphase cells, but were depolarized at around telophase and cytokinesis. After cytokinesis, mitochondrial membrane potential was recovered. In addition, the generation of superoxide anions in mitochondria was significantly reduced at metaphase even in the presence of antimycin A, an inhibitor of complex III. These results suggest that the electron supply to the mitochondrial electron transfer chain is suppressed during M phase. This suppression might decrease the reactive oxygen species generated by the fragmentation of mitochondria during M phase.
Collapse
|
76
|
Joshi S, Kar S, Kavdia M. Computational analysis of interactions of oxidative stress and tetrahydrobiopterin reveals instability in eNOS coupling. Microvasc Res 2017; 114:114-128. [PMID: 28729163 DOI: 10.1016/j.mvr.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/30/2023]
Abstract
In cardiovascular and neurovascular diseases, an increase in oxidative stress and endothelial dysfunction has been reported. There is a reduction in tetrahydrobiopterin (BH4), which is a cofactor for the endothelial nitric oxide synthase (eNOS), resulting in eNOS uncoupling. Studies of the enhancement of BH4 availability have reported mixed results for improvement in endothelial dysfunction. Our understanding of the complex interactions of eNOS uncoupling, oxidative stress and BH4 availability is not complete and a quantitative understanding of these interactions is required. In the present study, we developed a computational model for eNOS uncoupling that considers the temporal changes in biopterin ratio in the oxidative stress conditions. Using the model, we studied the effects of cellular oxidative stress (Qsupcell) representing the non-eNOS based oxidative stress sources and BH4 synthesis (QBH4) on eNOS NO production and biopterin ratio (BH4/total biopterins (TBP)). Model results showed that oxidative stress levels from 0.01 to 1nM·s-1 did not affect eNOS NO production and eNOS remained in coupled state. When the Qsupcell increased above 1nM·s-1, the eNOS coupling and NO production transitioned to an oscillatory state. Oxidative stress levels dynamically changed the biopterin ratio. When Qsupcell increased from 1 to 100nM·s-1, the endothelial cell NO production, TBP levels and biopterin ratio reduced significantly from 26.5 to 2nM·s-1, 3.75 to 0.002μM and 0.99 to 0.25, respectively. For an increase in BH4 synthesis, the improvement in NO production rate and BH4 levels were dependent on the extent of cellular oxidative stress. However, a 10-fold increase in QBH4 at higher oxidative stresses did not restore the NO-production rate and the biopterin ratio. Our mechanistic analysis reveals that a combination of enhancing tetrahydrobiopterin level with a reduction in cellular oxidative stress may result in significant improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Joshi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Saptarshi Kar
- Engineering Computational Biology Group, University of Western Australia, Crawley, WA 6009, Australia
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
77
|
Wiens L, Banh S, Sotiri E, Jastroch M, Block BA, Brand MD, Treberg JR. Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle. Front Physiol 2017; 8:704. [PMID: 28966595 PMCID: PMC5605635 DOI: 10.3389/fphys.2017.00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 01/01/2023] Open
Abstract
Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.
Collapse
Affiliation(s)
- Lilian Wiens
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Sheena Banh
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Emianka Sotiri
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Martin Jastroch
- Helmholtz Diabetes Center at Helmholtz Zentrum München, Institute for Diabetes and ObesityMunich, Germany
| | - Barbara A Block
- Tuna Research and Conservation Center, Hopkins Marine Station, Stanford UniversityStanford, CA, United States
| | - Martin D Brand
- Buck Institute for Research on AgingNovato, CA, United States
| | - Jason R Treberg
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada.,Department of Human Nutritional Sciences, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
78
|
Munro D, Treberg JR. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. ACTA ACUST UNITED AC 2017; 220:1170-1180. [PMID: 28356365 DOI: 10.1242/jeb.132142] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are widely recognized as a source of reactive oxygen species (ROS) in animal cells, where it is assumed that over-production of ROS leads to an overwhelmed antioxidant system and oxidative stress. In this Commentary, we describe a more nuanced model of mitochondrial ROS metabolism, where integration of ROS production with consumption by the mitochondrial antioxidant pathways may lead to the regulation of ROS levels. Superoxide and hydrogen peroxide (H2O2) are the main ROS formed by mitochondria. However, superoxide, a free radical, is converted to the non-radical, membrane-permeant H2O2; consequently, ROS may readily cross cellular compartments. By combining measurements of production and consumption of H2O2, it can be shown that isolated mitochondria can intrinsically approach a steady-state concentration of H2O2 in the medium. The central hypothesis here is that mitochondria regulate the concentration of H2O2 to a value set by the balance between production and consumption. In this context, the consumers of ROS are not simply a passive safeguard against oxidative stress; instead, they control the established steady-state concentration of H2O2 By considering the response of rat skeletal muscle mitochondria to high levels of ADP, we demonstrate that H2O2 production by mitochondria is far more sensitive to changes in mitochondrial energetics than is H2O2 consumption; this concept is further extended to evaluate how the muscle mitochondrial H2O2 balance should respond to changes in aerobic work load. We conclude by considering how differences in the ROS consumption pathways may lead to important distinctions amongst tissues, along with briefly examining implications for differing levels of activity, temperature change and metabolic depression.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 .,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.,Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
79
|
Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 2017; 292:16804-16809. [PMID: 28842493 DOI: 10.1074/jbc.r117.789271] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial production of superoxide and hydrogen peroxide is potentially important in cell signaling and disease. Eleven distinct mitochondrial sites that differ markedly in capacity are known to leak electrons to oxygen to produce O2̇̄ and/or H2O2 We discuss their contributions to O2̇̄/H2O2 production under native conditions in mitochondria oxidizing different substrates and in conditions mimicking physical exercise and the changes in their capacities after caloric restriction. We review the use of S1QELs and S3QELs, suppressors of mitochondrial O2̇̄/H2O2 generation that do not inhibit oxidative phosphorylation, as tools to characterize the contributions of specific sites in situ and in vivo.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Pratiksha A Dighe
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Vojtech Mezera
- From the Buck Institute for Research on Aging, Novato, California 94945
| | | | - Martin D Brand
- From the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
80
|
Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7038603. [PMID: 28874953 PMCID: PMC5569935 DOI: 10.1155/2017/7038603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022]
Abstract
Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS) apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin) on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases), but only at very high concentrations (10-2-10-1 M) that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.
Collapse
|
81
|
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2017; 80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Citation(s) in RCA: 1268] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Increased reactive oxygen species (ROS) production has been detected in various cancers and has been shown to have several roles, for example, they can activate pro-tumourigenic signalling, enhance cell survival and proliferation, and drive DNA damage and genetic instability. Counterintuitively ROS can also promote anti-tumourigenic signalling, initiating oxidative stress-induced tumour cell death. Tumour cells express elevated levels of antioxidant proteins to detoxify elevated ROS levels, establish a redox balance, while maintaining pro-tumourigenic signalling and resistance to apoptosis. Tumour cells have an altered redox balance to that of their normal counterparts and this identifies ROS manipulation as a potential target for cancer therapies. This review discusses the generation and sources of ROS within tumour cells, the regulation of ROS by antioxidant defence systems, as well as the effect of elevated ROS production on their signalling targets in cancer. It also provides an insight into how pro- and anti-tumourigenic ROS signalling pathways could be manipulated in the treatment of cancer.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
82
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
83
|
Bazil JN, Beard DA, Vinnakota KC. Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation. Biophys J 2016; 110:962-71. [PMID: 26910433 DOI: 10.1016/j.bpj.2015.09.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023] Open
Abstract
Competing models of mitochondrial energy metabolism in the heart are highly disputed. In addition, the mechanisms of reactive oxygen species (ROS) production and scavenging are not well understood. To deepen our understanding of these processes, a computer model was developed to integrate the biophysical processes of oxidative phosphorylation and ROS generation. The model was calibrated with experimental data obtained from isolated rat heart mitochondria subjected to physiological conditions and workloads. Model simulations show that changes in the quinone pool redox state are responsible for the apparent inorganic phosphate activation of complex III. Model simulations predict that complex III is responsible for more ROS production during physiological working conditions relative to complex I. However, this relationship is reversed under pathological conditions. Finally, model analysis reveals how a highly reduced quinone pool caused by elevated levels of succinate is likely responsible for the burst of ROS seen during reperfusion after ischemia.
Collapse
Affiliation(s)
- Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| | - Kalyan C Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
84
|
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 2016; 100:14-31. [PMID: 27085844 DOI: 10.1016/j.freeradbiomed.2016.04.001] [Citation(s) in RCA: 721] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD+; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site IIIQo) and the site in complex I active during reverse electron transport (site IQ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites IIIQo and IQ are active in cells and have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts.
Collapse
Affiliation(s)
- Martin D Brand
- Buck Institute for Research on Aging, Novato, CA 94945, United States.
| |
Collapse
|
85
|
|
86
|
Wagner JT, Herrejon Chavez F, Podrabsky JE. Mitochondrial DNA Sequence and Lack of Response to Anoxia in the Annual Killifish Austrofundulus limnaeus. Front Physiol 2016; 7:379. [PMID: 27630577 PMCID: PMC5005410 DOI: 10.3389/fphys.2016.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022] Open
Abstract
The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of Venezuela, South America. Permanent populations of A. limnaeus are maintained by production of stress-tolerant embryos that are able to persist in the desiccated sediment. Previous work has demonstrated that A. limnaeus have a remarkable ability to tolerate extended periods of anoxia and desiccating conditions. After considering temperature, A. limnaeus embryos have the highest known tolerance to anoxia when compared to any other vertebrate yet studied. Oxygen is completely essential for the process of oxidative phosphorylation by mitochondria, the intracellular organelle responsible for the majority of adenosine triphosphate production. Thus, understanding the unique properties of A. limnaeus mitochondria is of great interest. In this work, we describe the first complete mitochondrial genome (mtgenome) sequence of a single adult A. limnaeus individual and compare both coding and non-coding regions to several other closely related fish mtgenomes. Mitochondrial features were predicted using MitoAnnotator and polyadenylation sites were predicted using RNAseq mapping. To estimate the responsiveness of A. limnaeus mitochondria to anoxia treatment, we measure relative mitochondrial DNA copy number and total citrate synthase activity in both relatively anoxia-tolerant and anoxia-sensitive embryonic stages. Our cross-species comparative approach identifies unique features of ND1, ND5, ND6, and ATPase-6 that may facilitate the unique phenotype of A. limnaeus embryos. Additionally, we do not find evidence for mitochondrial degradation or biogenesis during anoxia/reoxygenation treatment in A. limnaeus embryos, suggesting that anoxia-tolerant mitochondria do not respond to anoxia in a manner similar to anoxia-sensitive mitochondria.
Collapse
Affiliation(s)
- Josiah T Wagner
- Department of Biology, Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | - Florisela Herrejon Chavez
- Department of Biology, Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | - Jason E Podrabsky
- Department of Biology, Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| |
Collapse
|
87
|
Trinity JD, Broxterman RM, Richardson RS. Regulation of exercise blood flow: Role of free radicals. Free Radic Biol Med 2016; 98:90-102. [PMID: 26876648 PMCID: PMC4975999 DOI: 10.1016/j.freeradbiomed.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
Abstract
During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
88
|
Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium 2016; 60:88-101. [PMID: 27130902 PMCID: PMC4996709 DOI: 10.1016/j.ceca.2016.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic and responsive organelles that respond to environmental cues with fission and fusion. They undergo mitophagy and biogenesis, and are subject to extensive post-translational modifications. Calcium plays an important role in regulating mitochondrial functions. Mitochondria play a central role in metabolism of glucose, fatty acids, and amino acids, and generate ATP with effects on redox poise, oxidative stress, pH, and other metabolites including acetyl-CoA and NAD(+) which in turn have effects on chromatin remodeling. The complex interplay of mitochondria, cytosolic factors, and the nucleus ensure a well-coordinated response to environmental stresses.
Collapse
Affiliation(s)
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and the Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
89
|
Affourtit C. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1678-93. [PMID: 27473535 DOI: 10.1016/j.bbabio.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/19/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK.
| |
Collapse
|
90
|
Korge P, Calmettes G, Weiss JN. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Free Radic Biol Med 2016; 96:22-33. [PMID: 27068062 PMCID: PMC4912463 DOI: 10.1016/j.freeradbiomed.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS) production by isolated complex I is steeply dependent on the NADH/NAD(+) ratio. We used alamethicin-permeabilized mitochondria to study the substrate-dependence of matrix NADH and ROS production when complex I is inhibited by piericidin or rotenone. When complex I was inhibited in the presence of malate/glutamate, membrane permeabilization accelerated O2 consumption and ROS production due to a rapid increase in NADH generation that was not limited by matrix NAD(H) efflux. In the presence of inhibitor, both malate and glutamate were required to generate a high enough NADH/NAD(+) ratio to support ROS production through the coordinated activity of malate dehydrogenase (MDH) and aspartate aminotransferase (AST). With malate and glutamate present, the rate of ROS production was closely related to local NADH generation, whereas in the absence of substrates, ROS production was accelerated by increase in added [NADH]. With malate alone, oxaloacetate accumulation limited NADH production by MDH unless glutamate was also added to promote oxaloacetate removal via AST. α-ketoglutarate (KG) as well as AST inhibition also reversed NADH generation and inhibited ROS production. If malate and glutamate were provided before rather than after piericidin or rotenone, ROS generation was markedly reduced due to time-dependent efflux of CoA. CoA depletion decreased KG oxidation by α-ketoglutarate dehydrogenase (KGDH), such that the resulting increase in [KG] inhibited oxaloacetate removal by AST and NADH generation by MDH. These findings were largely obscured in intact mitochondria due to robust H2O2 scavenging and limited ability to control substrate concentrations in the matrix. We conclude that in mitochondria with inhibited complex I, malate/glutamate-stimulated ROS generation depends strongly on oxaloacetate removal and on the ability of KGDH to oxidize KG generated by AST.
Collapse
Affiliation(s)
- Paavo Korge
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guillaume Calmettes
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
91
|
Munro D, Banh S, Sotiri E, Tamanna N, Treberg JR. The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays. Free Radic Biol Med 2016; 96:334-46. [PMID: 27101737 DOI: 10.1016/j.freeradbiomed.2016.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 11/25/2022]
Abstract
The most common methods of measuring mitochondrial hydrogen peroxide production are based on the extramitochondrial oxidation of a fluorescent probe such as amplex ultra red (AUR) by horseradish peroxidase (HRP). These traditional HRP-based assays only detect H2O2 that has escaped the matrix, raising the potential for substantial underestimation of production if H2O2 is consumed by matrix antioxidant pathways. To measure this underestimation, we characterized matrix consumers of H2O2 in rat skeletal muscle mitochondria, and developed specific means to inhibit these consumers. Mitochondria removed exogenously added H2O2 (2.5µM) at rates of 4.7 and 5.0nmol min(-1) mg protein(-1) when respiring on glutamate+malate and succinate+rotenone, respectively. In the absence of respiratory substrate, or after disrupting membranes by cycles of freeze-thaw, rates of H2O2 consumption were negligible. We concluded that matrix consumers are respiration-dependent (requiring respiratory substrates), suggesting the involvement of either the thioredoxin (Trx) and/or glutathione (GSH)-dependent enzymatic pathways. The Trx-reductase inhibitor auranofin (2µM), and a pre-treatment of mitochondria with 35µM of 1-chloro-2,4-dintrobenzene (CDNB) to deplete GSH specifically compromise these two consumption pathways. These inhibition approaches presented no undesirable "off-target" effects during extensive preliminary tests. These inhibition approaches independently and additively decreased the rate of consumption of H2O2 exogenously added to the medium (2.5µM). During traditional HRP-based H2O2 efflux assays, these inhibition approaches independently and additively increased apparent efflux rates. When used in combination (double inhibition), these inhibition approaches allowed accumulation of (endogenously produced) H2O2 in the medium at a comparable rate whether it was measured with an end point assay where 2.5µM H2O2 is initially added to the medium or with traditional HRP-based efflux assays. This finding confirms that a high degree of inhibition of all matrix consumers is attained with the double inhibition. Importantly, this double inhibition of the matrix consumers allowed revealing that a large part of the H2O2 produced in muscle mitochondria is consumed before escaping the matrix during traditional HRP-based efflux assays. The degree of this underestimation was substrate dependent, reaching >80% with malate, which complicates comparisons of substrates for their capacity to generate H2O2 in normal conditions i.e. when matrix consumers are active. Our results also urge caution in interpreting changes in H2O2 efflux in response to a treatment; when HRP-based assays are used, large changes in apparent H2O2 efflux may come from altered capacity of the matrix consumers.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.
| | - Sheena Banh
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Emianka Sotiri
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Nahid Tamanna
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
92
|
Rinaldi M, Caffo M, Minutoli L, Marini H, Abbritti RV, Squadrito F, Trichilo V, Valenti A, Barresi V, Altavilla D, Passalacqua M, Caruso G. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies. Int J Mol Sci 2016; 17:ijms17060984. [PMID: 27338365 PMCID: PMC4926513 DOI: 10.3390/ijms17060984] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) represent reactive products belonging to the partial reduction of oxygen. It has been reported that ROS are involved in different signaling pathways to control cellular stability. Under normal conditions, the correct function of redox systems leads to the prevention of cell oxidative damage. When ROS exceed the antioxidant defense system, cellular stress occurs. The cellular redox impairment is strictly related to tumorigenesis. Tumor cells, through the generation of hydrogen peroxide, tend to the alteration of cell cycle phases and, finally to cancer progression. In adults, the most common form of primary malignant brain tumors is represented by gliomas. The gliomagenesis is characterized by numerous molecular processes all characterized by an altered production of growth factor receptors. The difficulty to treat brain cancer depends on several biological mechanisms such as failure of drug delivery through the blood-brain barrier, tumor response to chemotherapy, and intrinsic resistance of tumor cells. Understanding the mechanisms of ROS action could allow the formulation of new therapeutic protocols to treat brain gliomas.
Collapse
Affiliation(s)
- Mariagrazia Rinaldi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Herbert Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Rosaria Viola Abbritti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Vincenzo Trichilo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Valeria Barresi
- Department of Human Pathology, University of Messina, 98125 Messina, Italy.
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Marcello Passalacqua
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
93
|
Amoedo ND, Punzi G, Obre E, Lacombe D, De Grassi A, Pierri CL, Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2394-412. [PMID: 27132995 DOI: 10.1016/j.bbamcr.2016.04.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- N D Amoedo
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Instituto de Bioquímica Médica Leopoldo De Meis, UFRJ, Rio de Janeiro, Brazil
| | - G Punzi
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - E Obre
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - D Lacombe
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - A De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - C L Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari.
| | - R Rossignol
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France.
| |
Collapse
|
94
|
Li S, Li Y, Chen G, Zhang J, Xu F, Wu M. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells. Redox Rep 2016; 22:190-196. [PMID: 27120397 DOI: 10.1080/13510002.2016.1173327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. METHODS Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. RESULTS DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. DISCUSSION Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.
Collapse
Affiliation(s)
- Sen Li
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Yixuan Li
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Guowei Chen
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Jingchen Zhang
- b Certification and Review Center, Shanghai Municipal Food and Drug, Administration , Shanghai 200020 , China
| | - Fei Xu
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Man Wu
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| |
Collapse
|
95
|
Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol 2016; 594:5149-60. [PMID: 26857536 DOI: 10.1113/jp270650] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
The production of reactive oxygen/nitrogen species (ROS/RNS) is generally considered to increase during physical exercise. Nevertheless, direct measurements of ROS/RNS often show modest increases in ROS/RNS in muscle fibres even during intensive fatiguing stimulation, and the major source(s) of ROS/RNS during exercise is still being debated. In rested muscle fibres, mild and acute exposure to exogenous ROS/RNS generally increases myofibrillar submaximal force, whereas stronger or prolonged exposure has the opposite effect. Endogenous production of ROS/RNS seems to preferentially decrease submaximal force and positive effects of antioxidants are mainly observed during fatigue induced by submaximal contractions. Fatigued muscle fibres frequently enter a prolonged state of reduced submaximal force, which is caused by a ROS/RNS-dependent decrease in sarcoplasmic reticulum Ca(2+) release and/or myofibrillar Ca(2+) sensitivity. Increased ROS/RNS production during exercise can also be beneficial and recent human and animal studies show that antioxidant supplementation can hamper the beneficial effects of endurance training. In conclusion, increased ROS/RNS production have both beneficial and detrimental effects on skeletal muscle function and the outcome depends on a combination of factors: the type of ROS/RNS; the magnitude, duration and location of ROS/RNS production; and the defence systems, including both endogenous and exogenous antioxidants.
Collapse
Affiliation(s)
| | | | - Dilson E Rassier
- McGill University, 475 Pine Avenue West, Montreal, QC, Canada, H2W1S4
| | | | | | | |
Collapse
|
96
|
Goncalves RLS, Bunik VI, Brand MD. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radic Biol Med 2016; 91:247-55. [PMID: 26708453 DOI: 10.1016/j.freeradbiomed.2015.12.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/28/2015] [Accepted: 12/16/2015] [Indexed: 01/12/2023]
Abstract
In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.
Collapse
Affiliation(s)
| | - Victoria I Bunik
- A.N. Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Martin D Brand
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
97
|
Dröse S, Stepanova A, Galkin A. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:946-57. [PMID: 26777588 PMCID: PMC4893024 DOI: 10.1016/j.bbabio.2015.12.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. The current knowledge on active/deactive (A/D) transition of complex I is reviewed. The mechanism and driving force of the A/D conformational change are discussed. The A/D transition can affect ROS production and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main 60590, Germany.
| | - Anna Stepanova
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Medical Biology Centre, School of Biological Sciences, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
98
|
Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1616781. [PMID: 26881012 PMCID: PMC4735911 DOI: 10.1155/2016/1616781] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy.
Collapse
|
99
|
Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress. Comp Biochem Physiol B Biochem Mol Biol 2016; 191:99-107. [DOI: 10.1016/j.cbpb.2015.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/24/2022]
|
100
|
Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria. Mol Cell Biochem 2015; 411:261-70. [PMID: 26472730 DOI: 10.1007/s11010-015-2588-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor of cardiovascular disease, but the mechanisms of tissue injury are poorly understood. In the present study, we investigated the effect of HHcy on rat heart function, activities electron transport chain (ETC) complexes, mitochondrial protein expression, and protein oxidative damage. HHcy was induced by subcutaneous injection of Hcy (0.45 μmol/g of body weight) twice a day for a period of 2 weeks. Performance of hearts excised after the Hcy treatment was examined according to the Langendorff method at a constant pressure. Left ventricular developed pressure, as well as maximal rates of contraction (+dP/dt) and relaxation (-dP/dt), was significantly depressed in HHcy rats. HHcy was accompanied by significant inhibition of ETC complexes II-IV, whereas activity of the complex I was unchanged. The decline in ETC activities was not associated with elevated protein oxidative damage, as indicated by unchanged protein carbonyl, thiol, and dityrosine contents. Moreover, the level of protein adducts with 4-hydroxynonenal was decreased in HHcy rats. Additionally, 2D-gel electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not show alterations in contents of inhibited ETC complexes. However, mass spectrometry analyses identified 8 proteins whose expression was significantly increased by HHcy. These proteins are known to play important roles in the cellular stress response, bioenergetics, and redox balance. Altogether, the results suggest that oxidative damage and altered protein expression are not possible causes of ETC dysfunction in HHcy rats. Increased expression of the other mitochondrial proteins indicates a protective response to Hcy-induced myocardial injury.
Collapse
|