51
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
52
|
Wang YT, Liu TY, Shen CH, Lin SY, Hung CC, Hsu LC, Chen GC. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep 2022; 38:110354. [PMID: 35196483 DOI: 10.1016/j.celrep.2022.110354] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Excessive generation and accumulation of highly reactive oxidizing molecules causes oxidative stress and oxidative damage to cellular components. Accumulating evidence indicates that autophagy diminishes oxidative damage in cells and maintains redox homeostasis by degrading and recycling intracellular damaged components. Here, we show that TRAF6 E3 ubiquitin ligase and A20 deubiquitinase coordinate to regulate ATG9A ubiquitination and autophagy activation in cells responding to oxidative stress. The ROS-dependent TRAF6-mediated non-proteolytic, K48/63-linked ubiquitination of ATG9A enhances its association with Beclin 1 and the assembly of VPS34-UVRAG complex, thereby stimulating autophagy. Notably, expression of the ATG9A ubiquitination mutants impairs ROS-induced VPS34 activation and autophagy. We further find that lipopolysaccharide (LPS)-induced ROS production also stimulates TRAF6-mediated ATG9A ubiquitination. Ablation of ATG9A causes aberrant TLR4 endosomal trafficking and decreases IRF-3 phosphorylation in LPS-stimulated macrophages. Our findings provide important insights into how K48/K63-linked ubiquitination of ATG9A contributes to the regulation of oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yu Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Hsing Shen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
53
|
Dodson M, Benavides GA, Darley-Usmar V, Zhang J. Differential Effects of 2-Deoxyglucose and Glucose Deprivation on 4-Hydroxynonenal Dependent Mitochondrial Dysfunction in Primary Neurons. FRONTIERS IN AGING 2022; 3:812810. [PMID: 35821809 PMCID: PMC9261388 DOI: 10.3389/fragi.2022.812810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction and metabolic decline are prevalent features of aging and age-related disorders, including neurodegeneration. Neurodegenerative diseases are associated with a progressive loss of metabolic homeostasis. This pathogenic decline in metabolism is the result of several factors, including decreased mitochondrial function, increased oxidative stress, inhibited autophagic flux, and altered metabolic substrate availability. One critical metabolite for maintaining neuronal function is glucose, which is utilized by the brain more than any other organ to meet its substantial metabolic demand. Enzymatic conversion of glucose into its downstream metabolites is critical for maintaining neuronal cell growth and overall metabolic homeostasis. Perturbation of glycolysis could significantly hinder neuronal metabolism by affecting key metabolic pathways. Here, we demonstrate that the glucose analogue 2-deoxyglucose (2DG) decreases cell viability, as well as both basal and maximal mitochondrial oxygen consumption in response to the neurotoxic lipid 4-hydroxynonenal (HNE), whereas glucose deprivation has a minimal effect. Furthermore, using a cell permeabilization assay we found that 2DG has a more pronounced effect on HNE-dependent inhibition of mitochondrial complex I and II than glucose deprivation. Importantly, these findings indicate that altered glucose utilization plays a critical role in dictating neuronal survival by regulating the mitochondrial response to electrophilic stress.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gloria A. Benavides
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
54
|
Packialakshmi B, Stewart IJ, Burmeister DM, Feng Y, McDaniel DP, Chung KK, Zhou X. Tourniquet-induced lower limb ischemia/reperfusion reduces mitochondrial function by decreasing mitochondrial biogenesis in acute kidney injury in mice. Physiol Rep 2022; 10:e15181. [PMID: 35146957 PMCID: PMC8831939 DOI: 10.14814/phy2.15181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023] Open
Abstract
The mechanisms by which lower limb ischemia/reperfusion induces acute kidney injury (AKI) remain largely uncharacterized. We hypothesized that tourniquet-induced lower limb ischemia/reperfusion (TILLIR) would inhibit mitochondrial function in the renal cortex. We used a murine model to show that TILLIR of the high thigh regions inflicted time-dependent AKI as determined by renal function and histology. This effect was associated with decreased activities of mitochondrial complexes I, II, V and citrate synthase in the kidney cortex. Moreover, TILLIR reduced mRNA levels of a master regulator of mitochondrial biogenesis PGC-1α, and its downstream genes NDUFS1 and ATP5o in the renal cortex. TILLIR also increased serum corticosterone concentrations. TILLIR did not significantly affect protein levels of the critical regulators of mitophagy PINK1 and PARK2, mitochondrial transport proteins Tom20 and Tom70, or heat-shock protein 27. TILLIR had no significant effect on mitochondrial oxidative stress as determined by mitochondrial ability to generate reactive oxygen species, protein carbonylation, or protein levels of MnSOD and peroxiredoxin1. However, TILLIR inhibited classic autophagic flux by increasing p62 protein abundance and preventing the conversion of LC3-I to LC3-II. TILLIR increased phosphorylation of cytosolic and mitochondrial ERK1/2 and mitochondrial AKT1, as well as mitochondrial SGK1 activity. In conclusion, lower limb ischemia/reperfusion induces distal AKI by inhibiting mitochondrial function through reducing mitochondrial biogenesis. This AKI occurs without significantly affecting PINK1-PARK2-mediated mitophagy or mitochondrial oxidative stress in the kidney cortex.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
- The Henry Jackson M. Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Ian J. Stewart
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - David M. Burmeister
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Yuanyi Feng
- Department of BiochemistryUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Dennis P. McDaniel
- Biomedical Instrumentation CenterUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Kevin K. Chung
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Xiaoming Zhou
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| |
Collapse
|
55
|
Luengo E, Trigo-Alonso P, Fernández-Mendívil C, Nuñez Á, Campo MD, Porrero C, García-Magro N, Negredo P, Senar S, Sánchez-Ramos C, Bernal JA, Rábano A, Hoozemans J, Casas AI, Schmidt HHHW, López MG. Implication of type 4 NADPH oxidase (NOX4) in tauopathy. Redox Biol 2022; 49:102210. [PMID: 34922273 PMCID: PMC8686076 DOI: 10.1016/j.redox.2021.102210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022] Open
Abstract
Aggregates of the microtubule-associated protein tau are a common marker of neurodegenerative diseases collectively termed as tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia. Therapeutic strategies based on tau have failed in late stage clinical trials, suggesting that tauopathy may be the consequence of upstream causal mechanisms. As increasing levels of reactive oxygen species (ROS) may trigger protein aggregation or modulate protein degradation and, we had previously shown that the ROS producing enzyme NADPH oxidase 4 (NOX4) is a major contributor to cellular autotoxicity, this study was designed to evaluate if NOX4 is implicated in tauopathy. Our results show that NOX4 is upregulated in patients with frontotemporal lobar degeneration and AD patients and, in a humanized mouse model of tauopathy induced by AVV-TauP301L brain delivery. Both, global knockout and neuronal knockdown of the Nox4 gene in mice, diminished the accumulation of pathological tau and positively modified established tauopathy by a mechanism that implicates modulation of the autophagy-lysosomal pathway (ALP) and, consequently, improving the macroautophagy flux. Moreover, neuronal-targeted NOX4 knockdown was sufficient to reduce neurotoxicity and prevent cognitive decline, even after induction of tauopathy, suggesting a direct and causal role for neuronal NOX4 in tauopathy. Thus, NOX4 is a previously unrecognized causative, mechanism-based target in tauopathies and blood-brain barrier permeable specific NOX4 inhibitors could have therapeutic potential even in established disease.
Collapse
Affiliation(s)
- Enrique Luengo
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Paula Trigo-Alonso
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Del Campo
- Department of Health and Pharmaceutical Science, Faculty of Pharmacy, San Pablo CEU University, Montepríncipe, Alcorcón, Spain
| | - César Porrero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Senar
- Dr. Target Machine Learning. Calle Alejo Carpentier 13, Alcala de Henares, 28806, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Hoozemans
- Department of Pathology, Amsterdam University Medical Centers Location VUmc, Amsterdam, the Netherlands
| | - Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, University Hospital Essen, Essen, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Manuela G López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain.
| |
Collapse
|
56
|
Snyder B, Wu HK, Tillman B, Floyd TF. Aged Mouse Hippocampus Exhibits Signs of Chronic Hypoxia and an Impaired HIF-Controlled Response to Acute Hypoxic Exposures. Cells 2022; 11:cells11030423. [PMID: 35159233 PMCID: PMC8833982 DOI: 10.3390/cells11030423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Altered hypoxia-inducible factor-alpha (HIF-α) activity may have significant consequences in the hippocampus, which mediates declarative memory, has limited vascularization, and is vulnerable to hypoxic insults. Previous studies have reported that neurovascular coupling is reduced in aged brains and that diseases which cause hypoxia increase with age, which may render the hippocampus susceptible to acute hypoxia. Most studies have investigated the actions of HIF-α in aging cortical structures, but few have focused on the role of HIF-α within aged hippocampus. This study tests the hypothesis that aging is associated with impaired hippocampal HIF-α activity. Dorsal hippocampal sections from mice aged 3, 9, 18, and 24 months were probed for the presence of HIF-α isoforms or their associated gene products using immunohistochemistry and fluorescent in situ hybridization (fISH). A subset of each age was exposed to acute hypoxia (8% oxygen) for 3 h to investigate changes in the responsiveness of HIF-α to hypoxia. Basal mean intensity of fluorescently labeled HIF-1α protein increases with age in the hippocampus, whereas HIF-2α intensity only increases in the 24-month group. Acute hypoxic elevation of HIF-1α is lost with aging and is reversed in the 24-month group. fISH reveals that glycolytic genes induced by HIF-1α (lactose dehydrogenase-a, phosphoglycerate kinase 1, and pyruvate dehydrogenase kinase 1) are lower in aged hippocampus than in 3-month hippocampus, and mRNA for monocarboxylate transporter 1, a lactose transporter, increases. These results indicate that lactate, used in neurotransmission, may be limited in aged hippocampus, concurrent with impaired HIF-α response to hypoxic events. Therefore, impaired HIF-α may contribute to age-associated cognitive decline during hypoxic events.
Collapse
Affiliation(s)
- Brina Snyder
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Hua-Kang Wu
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Brianna Tillman
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Thomas F. Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
- Department of Cardiothoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
57
|
Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species. Sci Rep 2022; 12:121. [PMID: 34996900 PMCID: PMC8742038 DOI: 10.1038/s41598-021-03306-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Herein, the effect of dietary inclusion of insect (Tenebrio molitor) meal on hepatic pathways of apoptosis and autophagy in three farmed fish species, gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss), fed diets at 25%, 50% and 60% insect meal inclusion levels respectively, was investigated. Hepatic proteome was examined by liver protein profiles from the three fish species, obtained by two-dimensional gel electrophoresis. Although cellular stress was evident in the three teleost species following insect meal, inclusion by T. molitor, D. labrax and O. mykiss suppressed apoptosis through induction of hepatic autophagy, while in S. aurata both cellular procedures were activated. Protein abundance showed that a total of 30, 81 and 74 spots were altered significantly in seabream, European seabass and rainbow trout, respectively. Insect meal inclusion resulted in individual protein abundance changes, with less number of proteins altered in gilthead seabream compared to European seabass and rainbow trout. This is the first study demonstrating that insect meal in fish diets is causing changes in liver protein abundances. However, a species-specific response both in the above mentioned bioindicators, indicates the need to strategically manage fish meal replacement in fish diets per species.
Collapse
|
58
|
Saito-Nakano Y, Makiuchi T, Tochikura M, Gilchrist CA, Petri WA, Nozaki T. ArfX2 GTPase Regulates Trafficking From the Trans-Golgi to Lysosomes and Is Necessary for Liver Abscess Formation in the Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:794152. [PMID: 34976870 PMCID: PMC8719317 DOI: 10.3389/fcimb.2021.794152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess in humans. The parasitic lifestyle and the virulence of the protist require elaborate biological processes, including vesicular traffic and stress management against a variety of reactive oxygen and nitrogen species produced by the host immune response. Although the mechanisms for intracellular traffic of representative virulence factors have been investigated at molecular levels, it remains poorly understood whether and how intracellular traffic is involved in the defense against reactive oxygen and nitrogen species. Here, we demonstrate that EhArfX2, one of the Arf family of GTPases known to be involved in the regulation of vesicular traffic, was identified by comparative transcriptomic analysis of two isogenic strains: an animal-passaged highly virulent HM-1:IMSS Cl6 and in vitro maintained attenuated avirulent strain. EhArfX2 was identified as one of the most highly upregulated genes in the highly virulent strain. EhArfX2 was localized to small vesicle-like structures and largely colocalized with the marker for the trans-Golgi network SNARE, EhYkt6, but neither with the endoplasmic reticulum (ER)-resident chaperon, EhBip, nor the cis-Golgi SNARE, EhSed5, and Golgi-luminal galactosyl transferase, EhGalT. Expression of the dominant-active mutant form of EhArfX2 caused an increase in the number of lysosomes, while expression of the dominant-negative mutant led to a defect in lysosome formation and cysteine protease transport to lysosomes. Expression of the dominant-negative mutant in the virulent E. histolytica strain caused a reduction of the size of liver abscesses in a hamster model. This defect in liver abscess formation was likely at least partially attributed to reduced resistance to nitrosative, but not oxidative stress in vitro. These results showed that the EhArfX2-mediated traffic is necessary for the nitrosative stress response and virulence in the host.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Mami Tochikura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Carol A Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
59
|
Huang T, Zhang W, Lin T, Liu S, Sun Z, Liu F, Yuan Y, Xiang X, Kuang H, Yang B, Zhang D. Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring. Food Chem Toxicol 2022; 160:112803. [PMID: 34990788 DOI: 10.1016/j.fct.2021.112803] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
Nanoplastics have raised considerable concerns since their ubiquity in the environment and potential hazard to health. It has been proven that polystyrene nanoparticles (PS-NPs) can be maternally transferred to the offspring. In this study, mice were exposed gestationally and lactationally to PS-NPs (size 100 nm) at different doses (0.1, 1 and 10 mg/L) to investigate the trans-generational poisonousness. Our data illustrated that maternal PS-NPs exposure in pregnancy and lactation resulted in a decline in birth and postnatal body weight in offspring mice. Furthermore, high-dose PS-NPs reduced liver weight, triggered oxidative stress, caused inflammatory cell infiltration, up-regulated proinflammatory cytokine expression, and disturbed glycometabolism in the liver of male offspring mice. In addition, pre- and postnatal PS-NPs exposure diminished testis weight, disrupted seminiferous epithelium and decreased sperm count in mouse offspring. Moreover, PS-NPs induced testicular oxidative injury, as presented by increased malondialdehyde generation and altered superoxide dismutase and catalase activities in the testis of offspring mice. These findings declared that maternal exposure to PS-NPs in pregnancy and lactation can cause hepatic and testicular toxicity in male mouse pups, which put forward new understanding into the detrimental effects of nanoplastics on mammalian offspring.
Collapse
Affiliation(s)
- Tao Huang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Wenjuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Tingting Lin
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Shujuan Liu
- Reproductive Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Zhangbei Sun
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Fangming Liu
- Nursing School of Nanchang University, Nanchang, 330006, PR China
| | - Yangyang Yuan
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Xiting Xiang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China
| | - Dalei Zhang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
60
|
Ripszky Totan A, Greabu M, Stanescu-Spinu II, Imre M, Spinu TC, Miricescu D, Ilinca R, Coculescu EC, Badoiu SC, Coculescu BI, Albu C. The Yin and Yang dualistic features of autophagy in thermal burn wound healing. Int J Immunopathol Pharmacol 2022; 36:3946320221125090. [PMID: 36121435 PMCID: PMC9490459 DOI: 10.1177/03946320221125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Burn healing should be regarded as a dynamic process consisting of two main, interrelated phases: (a) the inflammatory phase when neutrophils and monocytes infiltrate the injury site, through localized vasodilation and fluid extravasation, and (b) the proliferative-remodeling phase, which represents a key event in wound healing. In the skin, both canonical autophagy (induced by starvation, oxidative stress, and environmental aggressions) and non-canonical or selective autophagy have evolved to play a discrete, but, essential, “housekeeping” role, for homeostasis, immune tolerance, and survival. Experimental data supporting the pro-survival roles of autophagy, highlighting its Yang, luminous and positive feature of this complex but insufficient explored molecular pathway, have been reported. Autophagic cell death describes an “excessive” degradation of important cellular components that are necessary for normal cell function. This deadly molecular mechanism brings to light the darker, concealed, Yin feature of autophagy. Autophagy seems to perform dual, conflicting roles in the angiogenesis context, revealing once again, its Yin–Yang features. Autophagy with its Yin–Yang features remains the shadow player, able to decide quietly whether the cell survives or dies.
Collapse
Affiliation(s)
- Alexandra Ripszky Totan
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Maria Greabu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Marina Imre
- Department of Complete Denture, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Tudor-Claudiu Spinu
- Department of Fixed Prosthodontics and Occlusology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Daniela Miricescu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Radu Ilinca
- Department of Biophysics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Elena Claudia Coculescu
- Department of Oral Pathology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Crenguta Albu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Bucharest, Romania
| |
Collapse
|
61
|
Lima JEBF, Moreira NCS, Takahashi P, Xavier DJ, Sakamoto-Hojo ET. Oxidative Stress, DNA Damage, and Transcriptional Expression of DNA Repair and Stress Response Genes in Diabetes Mellitus. TRANSCRIPTOMICS IN HEALTH AND DISEASE 2022:341-365. [DOI: 10.1007/978-3-030-87821-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
62
|
Autophagy Is Involved in the Viability of Overexpressing Thioredoxin o1 Tobacco BY-2 Cells under Oxidative Conditions. Antioxidants (Basel) 2021; 10:antiox10121884. [PMID: 34942987 PMCID: PMC8698322 DOI: 10.3390/antiox10121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023] Open
Abstract
Autophagy is an essential process for the degradation of non-useful components, although the mechanism involved in its regulation is less known in plants than in animal systems. Redox regulation of autophagy components is emerging as a possible key mechanism with thioredoxins (TRXs) proposed as involved candidates. In this work, using overexpressing PsTRXo1 tobacco cells (OEX), which present higher viability than non-overexpressing cells after H2O2 treatment, we examine the functional interaction of autophagy and PsTRXo1 in a collaborative response. OEX cells present higher gene expression of the ATG (Autophagy related) marker ATG4 and higher protein content of ATG4, ATG8, and lipidated ATG8 as well as higher ATG4 activity than control cells, supporting the involvement of autophagy in their response to H2O2. In this oxidative situation, autophagy occurs in OEX cells as is evident from an accumulation of autolysosomes and ATG8 immunolocalization when the E-64d autophagy inhibitor is used. Interestingly, cell viability decreases in the presence of the inhibitor, pointing to autophagy as being involved in cell survival. The in vitro interaction of ATG4 and PsTRXo1 proteins is confirmed by dot-blot and co-immunoprecipitation assays as well as the redox regulation of ATG4 activity by PsTRXo1. These findings extend the role of TRXs in mediating the redox regulation of the autophagy process in plant cells.
Collapse
|
63
|
Kaloyianni M, Bobori DC, Xanthopoulou D, Malioufa G, Sampsonidis I, Kalogiannis S, Feidantsis K, Kastrinaki G, Dimitriadi A, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Toxicity and Functional Tissue Responses of Two Freshwater Fish after Exposure to Polystyrene Microplastics. TOXICS 2021; 9:289. [PMID: 34822680 PMCID: PMC8625933 DOI: 10.3390/toxics9110289] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 02/04/2023]
Abstract
Microplastics (MPs)' ingestion has been demonstrated in several aquatic organisms. This process may facilitate the hydrophobic waterborne pollutants or chemical additives transfer to biota. In the present study the suitability of a battery of biomarkers on oxidative stress, physiology, tissue function and metabolic profile was investigated for the early detection of adverse effects of 21-day exposure to polystyrene microplastics (PS-MPs, sized 5-12 μm) in the liver and gills of zebrafish Danio rerio and perch, Perca fluviatilis, both of which are freshwater fish species. An optical volume map representation of the zebrafish gill by Raman spectroscopy depicted 5 μm diameter PS-MP dispersed in the gill tissue. Concentrations of PS-MPs close to the EC50 of each fish affected fish physiology in all tissues studied. Increased levels of biomarkers of oxidative damage in exposed fish in relation to controls were observed, as well as activation of apoptosis and autophagy processes. Malondialdehyde (MDA), protein carbonyls and DNA damage responses differed with regard to the sensitivity of each tissue of each fish. In the toxicity cascade gills seemed to be more liable to respond to PS-MPs than liver for the majority of the parameters measured. DNA damage was the most susceptible biomarker exhibiting greater response in the liver of both species. The interaction between MPs and cellular components provoked metabolic alterations in the tissues studied, affecting mainly amino acids, nitrogen and energy metabolism. Toxicity was species and tissue specific, with specific biomarkers responding differently in gills and in liver. The fish species that seemed to be more susceptible to MPs at the conditions studied, was P. fluviatilis compared to D. rerio. The current findings add to a holistic approach for the identification of small sized PS-MPs' biological effects in fish, thus aiming to provide evidence regarding PS-MPs' environmental impact on wild fish populations and food safety and adequacy.
Collapse
Affiliation(s)
- Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Dimitra C. Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Xanthopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Glykeria Malioufa
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Georgia Kastrinaki
- Laboratory of Inorganic Materials, CERTH/CPERI, 57001 Thessaloniki, Greece;
| | - Anastasia Dimitriadi
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - George Koumoundouros
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
64
|
Yin H, Zuo Z, Yang Z, Guo H, Fang J, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y. Nickel induces autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112583. [PMID: 34352574 DOI: 10.1016/j.ecoenv.2021.112583] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Nickel (Ni), a widely distributed metal, is an important pollutant in the environment. Although kidney is a crucial target of Ni toxicity, information on autophagy and the potential mechanisms of Ni-induced renal toxicity are still poorly described. As we discovered, NiCl2 could induce renal damage including decrease in renal weight, renal histological alterations, and renal function injury. According to the obtained results, NiCl2 could obviously increase autophagy, which was characterized by increase of LC3 expression and decrease of p62 expression. Meanwhile, the result of ultrastructure observation showed increased autolysosomes numbers in the kidney of NiCl2-treated mice. In addition, NiCl2 increased mRNA and protein levels of autophagy flux proteins including Beclin1, Atg5, Atg12, Atg16L1, Atg7, and Atg3. Furthermore, NiCl2 induced autophagy through AMPK and PI3K/AKT/mTOR pathways which featured down-regulated expression levels of p-PI3K, p-AKT and p-mTOR and up-regulated expression levels of p-AMPK and p-ULK1. In summary, the above results indicate involvement of autophagy in renal injury induced by NiCl2, and NiCl2 induced autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney.
Collapse
Affiliation(s)
- Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
65
|
Forte M, Bianchi F, Cotugno M, Marchitti S, Stanzione R, Maglione V, Sciarretta S, Valenti V, Carnevale R, Versaci F, Frati G, Volpe M, Rubattu S. An interplay between UCP2 and ROS protects cells from high-salt-induced injury through autophagy stimulation. Cell Death Dis 2021; 12:919. [PMID: 34625529 PMCID: PMC8501098 DOI: 10.1038/s41419-021-04188-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
The mitochondrial uncoupling protein 2 (UCP2) plays a protective function in the vascular disease of both animal models and humans. UCP2 downregulation upon high-salt feeding favors vascular dysfunction in knock-out mice, and accelerates cerebrovascular and renal damage in the stroke-prone spontaneously hypertensive rat. Overexpression of UCP2 counteracts the negative effects of high-salt feeding in both animal models. We tested in vitro the ability of UCP2 to stimulate autophagy and mitophagy as a mechanism mediating its protective effects upon high-salt exposure in endothelial and renal tubular cells. UCP2 silencing reduced autophagy and mitophagy, whereas the opposite was true upon UCP2 overexpression. High-salt exposure increased level of reactive oxygen species (ROS), UCP2, autophagy and autophagic flux in both endothelial and renal tubular cells. In contrast, high-salt was unable to induce autophagy and autophagic flux in UCP2-silenced cells, concomitantly with excessive ROS accumulation. The addition of an autophagy inducer, Tat-Beclin 1, rescued the viability of UCP2-silenced cells even when exposed to high-salt. In summary, UCP2 mediated the interaction between high-salt-induced oxidative stress and autophagy to preserve viability of both endothelial and renal tubular cells. In the presence of excessive ROS accumulation (achieved upon UCP2 silencing and high-salt exposure of silenced cells) autophagy was turned off. In this condition, an exogenous autophagy inducer rescued the cellular damage induced by excess ROS level. Our data confirm the protective role of UCP2 toward high-salt-induced vascular and renal injury, and they underscore the role of autophagy/mitophagy as a mechanism counteracting the high-salt-induced oxidative stress damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Isernia, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | | | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, Isernia, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy. .,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
66
|
Tang Z, Wei X, Li T, Wang W, Wu H, Dong H, Liu Y, Wei F, Shi L, Li X, Guo Z, Xiao X. Sestrin2-Mediated Autophagy Contributes to Drug Resistance via Endoplasmic Reticulum Stress in Human Osteosarcoma. Front Cell Dev Biol 2021; 9:722960. [PMID: 34646824 PMCID: PMC8502982 DOI: 10.3389/fcell.2021.722960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
One contributor to the high mortality of osteosarcoma is its reduced sensitivity to chemotherapy, but the mechanism involved is unclear. Improving the sensitivity of osteosarcoma to chemotherapy is urgently needed to improve patient survival. We found that chemotherapy triggered apoptosis of human osteosarcoma cells in vitro and in vivo; this was accompanied by increased Sestrin2 expression. Importantly, autophagy was also enhanced with increased Sestrin2 expression. Based on this observation, we explored the potential role of Sestrin2 in autophagy of osteosarcoma. We found that Sestrin2 inhibited osteosarcoma cell apoptosis by promoting autophagy via inhibition of endoplasmic reticulum stress, and this process is closely related to the PERK-eIF2α-CHOP pathway. In addition, our study showed that low Sestrin2 expression can effectively reduce autophagy of human osteosarcoma cells after chemotherapy, increase p-mTOR expression, decrease Bcl-2 expression, promote osteosarcoma cell apoptosis, and slow down tumour progression in NU/NU mice. Sestrin2 activates autophagy by inhibiting mTOR via the PERK-eIF2α-CHOP pathway and inhibits apoptosis via Bcl-2. Therefore, our results explain one underlying mechanism of increasing the sensitivity of osteosarcoma to chemotherapy and suggest that Sestrin2 is a promising gene target.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinghui Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Hao Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hui Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yichao Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Feilong Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
67
|
Carpentieri G, Leoni C, Pietraforte D, Cecchetti S, Iorio E, Belardo A, Pietrucci D, Di Nottia M, Pajalunga D, Megiorni F, Mercurio L, Tatti M, Camero S, Marchese C, Rizza T, Tirelli V, Onesimo R, Carrozzo R, Rinalducci S, Chillemi G, Zampino G, Tartaglia M, Flex E. Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species. Hum Mol Genet 2021; 31:561-575. [PMID: 34508588 DOI: 10.1093/hmg/ddab270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Germline activating mutations in HRAS cause Costello Syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via ROS-dependent AMPKα and p38 hyperactivation, occurs in CS, resulting in accelerated glycolysis, and increased fatty acid synthesis and storage as lipid droplets in primary fibroblasts. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.
Collapse
Affiliation(s)
- Giovanna Carpentieri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | | | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Michela Di Nottia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Rome, Italy
| | - Massimo Tatti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simona Camero
- Department Maternal Infantile and Urological Sciences, SAPIENZA University, 00161 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Teresa Rizza
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rosalba Carrozzo
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
68
|
Pashinskaya KO, Samodova AV, Dobrodeeva LK. The effect of the content of ApoA-I in peripheral blood on the state of immune homeostasis in people living in extreme climatic conditions of the Arctic. Klin Lab Diagn 2021; 66:539-545. [PMID: 34543532 DOI: 10.51620/0869-2084-2021-66-9-539-545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The paper presents data on the impacts of the content of ApoA-I in peripheral blood on the state of immune homeostasis in people living in extreme climatic conditions of the Arctic. From the village of Revda, Murmansk region, 191 people were examined, 160 women and 31 men, aged from 21 to 55 years. The analysis of the results was carried out depending on the level of ApoA-I content: 111 examined people had a low content of ApoA-I (< 115 mg/dl) and 80 people had a concentration of ApoA-I - within the physiological norm (115-220 mg/dl). Deficiency of ApoA-I is associated with an increase in plasma concentrations of total cholesterol in 37.5% and triglycerides in 62.5% of cases. Low content of ApoA-I is associated with a decrease in the content of neutrophilic granulocytes and an increase in the concentration of small lymphocytes, IL-10 and IgE. Deficiency of ApoA-I is associated with an increase in the content of CD45RA+, CD16+, CD56+ lymphocyte phenotypes in blood. Low concentrations of ApoA-I are associated with low expression activity of L-selectin gene and free L-selectin ligand. Due to deficiency of ApoA-I, no significant differences were detected in the content of transferrin, free transferrin receptor, haptoglobin, free calcium-dependent cell adhesion protein, and free pool of receptors involved in apoptosis. Conclusion: deficiency of ApoA-I in blood plasma is associated with increased migration of neutrophils into the tissue and cell-mediated cytotoxicity of lymphocytes and occurs because of the effect of decreased activity of the level of antioxidant defense, changes in the structure of cell membranes and the participation of adhesion molecules.
Collapse
Affiliation(s)
- Ksenia Olegovna Pashinskaya
- Federal State Budgetary Institution of Science N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - A V Samodova
- Federal State Budgetary Institution of Science N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| | - L K Dobrodeeva
- Federal State Budgetary Institution of Science N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
| |
Collapse
|
69
|
Effect of Chronic Stress Present in Fibroblasts Derived from Patients with a Sporadic Form of AD on Mitochondrial Function and Mitochondrial Turnover. Antioxidants (Basel) 2021; 10:antiox10060938. [PMID: 34200581 PMCID: PMC8229029 DOI: 10.3390/antiox10060938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Although the sporadic form of Alzheimer’s disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.
Collapse
|
70
|
SARS-CoV2 infection impairs the metabolism and redox function of cellular glutathione. Redox Biol 2021; 45:102041. [PMID: 34146958 PMCID: PMC8190457 DOI: 10.1016/j.redox.2021.102041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Viral infections sustain their replication cycle promoting a pro-oxidant environment in the host cell. In this context, specific alterations of the levels and homeostatic function of the tripeptide glutathione have been reported to play a causal role in the pro-oxidant and cytopathic effects (CPE) of the virus. In this study, these aspects were investigated for the first time in SARS-CoV2-infected Vero E6 cells, a reliable and well-characterized in vitro model of this infection. SARS-CoV2 markedly decreased the levels of cellular thiols, essentially lowering the reduced form of glutathione (GSH). Such an important defect occurred early in the CPE process (in the first 24 hpi). Thiol analysis in N-acetyl-Cys (NAC)-treated cells and membrane transporter expression data demonstrated that both a lowered uptake of the GSH biosynthesis precursor Cys and an increased efflux of cellular thiols, could play a role in this context. Increased levels of oxidized glutathione (GSSG) and protein glutathionylation were also observed along with upregulation of the ER stress marker PERK. The antiviral drugs Remdesivir (Rem) and Nelfinavir (Nel) influenced these changes at different levels, essentially confirming the importance or blocking viral replication to prevent GSH depletion in the host cell. Accordingly, Nel, the most potent antiviral in our in vitro study, produced a timely activation of Nrf2 transcription factor and a GSH enhancing response that synergized with NAC to restore GSH levels in the infected cells. Despite poor in vitro antiviral potency and GSH enhancing function, Rem treatment was found to prevent the SARS-CoV2-induced glutathionylation of cellular proteins. In conclusion, SARS-CoV2 infection impairs the metabolism of cellular glutathione. NAC and the antiviral Nel can prevent such defect in vitro.
Collapse
|
71
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
72
|
Feidantsis K, Pörtner HO, Giantsis IA, Michaelidis B. Advances in understanding the impacts of global warming on marine fishes farmed offshore: Sparus aurata as a case study. JOURNAL OF FISH BIOLOGY 2021; 98:1509-1523. [PMID: 33161577 DOI: 10.1111/jfb.14611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Monitoring variations in proteins involved in metabolic processes, oxidative stress responses, cell signalling and protein homeostasis is a powerful tool for developing hypotheses of how environmental variations affect marine organisms' physiology and biology. According to the oxygen- and capacity-limited thermal tolerance hypothesis, thermal acclimation mechanisms such as adjusting the activities of enzymes of intermediary metabolism and of antioxidant defence mechanisms, inducing heat shock proteins (Hsps) or activating mitogen-activated protein kinases may all shift tolerance windows. Few studies have, however, investigated the molecular, biochemical and organismal responses by fishes to seasonal temperature variations in the field to link these to laboratory findings. Investigation of the impacts of global warming on fishes farmed offsore, in the open sea, can provide a stepping stone towards understanding effects on wild populations because they experience similar environmental fluctuations. Over the last 30 years, farming of the gilthead sea bream Sparus aurata (Linnaeus 1758) has become widespread along the Mediterranean coastline, rendering this species a useful case study. Based on available information, the prevailing seasonal temperature variations expose the species to the upper and lower limits of its thermal range. Evidence for this includes oxygen restriction, reduced feeding, reduced responsiveness to environmental stimuli, plus a range of molecular and biochemical indicators that change across the thermal range. Additionally, close relationships between biochemical pathways and seasonal patterns of metabolism indicate a connection between energy demand and metabolic processes on the one hand, and cellular stress responses such as oxidative stress, inflammation and autophagy on the other. Understanding physiological responses to temperature fluctuations in fishes farmed offshore can provide crucial background information for the conservation and successful management of aquaculture resources in the face of global change.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans O Pörtner
- Alfred-Wegener-Institut für Polar-und Meeresforschung, Physiologie Mariner Tiere, Bremerhaven, Germany
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
73
|
Yang J, Sun Y, Xu F, Liu W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Autophagy and glycolysis independently attenuate silibinin-induced apoptosis in human hepatocarcinoma HepG2 and Hep3B cells. Hum Exp Toxicol 2021; 40:2048-2062. [PMID: 34053323 DOI: 10.1177/09603271211017609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE The mechanism of cytotoxicity of silibinin on two human hepatocellular carcinoma (HCC) cell lines, HepG2 (p53 wild-type) and Hep3B cells (p53 null), is examined in relation with the induction of autophagy and phosphorylation of AMP-activated protein kinase (p-AMPK). MATERIALS AND METHODS Levels of apoptosis in relation to the levels of autophagy and those of glycolysis-related proteins, glucose transporter 1/4 (Glut1/4) and hexokinase-II (HK2), in HepG2 and Hep3B cells were examined. RESULTS Silibinin-induced apoptosis was incomplete for HCC cell death in that up-regulated autophagy and/or reduced level of glycolysis, which are induced by silibinin treatment, antagonized silibinin-induced apoptosis. Inhibition of autophagy with 3-methyl adenine (3MA) or blocking of AMP-activated protein kinase (AMPK) activation with Compound C (CC) enhanced silibinin-induced apoptosis. The results confirm that AMPK involved in autophagy as well as in glycolysis remaining with silibinin is responsible for attenuation of silibinin-induced apoptosis. Blocking of AMPK or autophagy contributes to the enhancement of silibinin's cytotoxicity to HepG2 and Hep3B cells. CONCLUSION This study shows that incomplete apoptosis of HCC by silibinin treatment becomes complete by repression of autophagy and/or glycolysis.
Collapse
Affiliation(s)
- J Yang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Y Sun
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - F Xu
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - W Liu
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - T Hayashi
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China.,Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo, Japan.,Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - K Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - S Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - H Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - T Ikejima
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
74
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
75
|
Yadav M, Niveria K, Sen T, Roy I, Verma AK. Targeting nonapoptotic pathways with functionalized nanoparticles for cancer therapy: current and future perspectives. Nanomedicine (Lond) 2021; 16:1049-1065. [PMID: 33970686 DOI: 10.2217/nnm-2020-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptotic death evasion is a hallmark of cancer progression. In this context, past decades have witnessed cytotoxic agents targeting apoptosis. However, owing to cellular defects in the apoptotic machinery, tumors develop resistance to apoptosis-based cancer therapies. Hence, targeting nonapoptotic cell-death pathways displays enhanced therapeutic success in apoptosis-defective tumor cells. Exploitation of multifunctional properties of engineered nanoparticles may allow cancer therapeutics to target yet unexplored pathways such as ferroptosis, autophagy and necroptosis. Necroptosis presents a programmed necrotic death initiated by same apoptotic death signals that are caspase independent, whereas autophagy is self-degradative causing vacuolation, and ferroptosis is an iron-dependent form driven by lipid peroxidation. Targeting these tightly regulated nonapoptotic pathways may emerge as a new direction in cancer drug development, diagnostics and novel cancer nanotherapeutics. This review highlights the current challenges along with the advancement in this field of research and finally summarizes the future perspective in terms of their clinical merits.
Collapse
Affiliation(s)
- Monika Yadav
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Karishma Niveria
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Tapas Sen
- School of Natural Sciences, University of Central Lancashire, PR1 2HE, UK
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anita K Verma
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| |
Collapse
|
76
|
Treatment with ascorbic acid normalizes the aerobic capacity, antioxidant defence, and cell death pathways in thermally stressed Mytilus galloprovincialis. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110611. [PMID: 33965617 DOI: 10.1016/j.cbpb.2021.110611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Considering temperature's upcoming increase due to climate change, combined with the fact that Mediterranean mussels Mytilus galloprovincialis (Lamarck, 1819) live at their upper limits [critical temperatures (Tc) beyond 25 °C], we cannot be sure of this species' sustainable future in the Mediterranean Sea. Deviation from optimum temperatures leads to cellular damage due to oxidative stress. Although ascorbic acid (AA) is a major scavenger of reactive oxygen species (ROS), its capacity to minimize oxidative stress effects is scarcely studied in aquatic organisms. Thus, treatment with 5 mM and 10 mM AA of thermally stressed molluscs had been employed in order to examine its antioxidant capacity. While 5 mM had no effect, 10 mM normalized COX1 and ND2 relative mRNA levels, and superoxide dismutase (SOD), catalase, and glutathione reductase (GR) enzymatic activity levels in both examined tissues: posterior adductor muscle (PAM) and mantle. ATP levels, probably providing the adequate energy for antioxidant defence in thermally stressed mussels, is also normalized under 10 mM AA treatment. Moreover, autophagic indicators such as LC3 II/I and SQSTM1/p62 levels are normalized, indicating autophagy amelioration. Apoptosis also seems to be inhibited since both Bax/Bcl-2 and cleaved caspase substrate levels decrease with 10 mM AA treatment. Therefore, treatment of mussels with AA seems to produce threshold effects, although the precise underlying mechanisms must be elucidated in future studies. These findings show that treatment of mussels with effective antioxidants can be useful as a strategic approach for the reduction of the deleterious effects on mussels' summer mortality in aquaculture zones.
Collapse
|
77
|
Lu C, Wu B, Liao Z, Xue M, Zou Z, Feng J, Sheng J. DUSP1 overexpression attenuates renal tubular mitochondrial dysfunction by restoring Parkin-mediated mitophagy in diabetic nephropathy. Biochem Biophys Res Commun 2021; 559:141-147. [PMID: 33940385 DOI: 10.1016/j.bbrc.2021.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy (DN) is the primary cause of end-stage renal disease, and renal tubular cell dysfunction contributes to the pathogenesis of many kidney diseases. Our previous study demonstrated that dual-specificity protein phosphatase 1 (DUSP1) reduced hyperglycemia-mediated mitochondrial damage; however, its role in hyperglycemia-driven dysfunction of tubular cells is still not fully understood. In this study, we found that DUSP1 is reduced in human proximal tubular epithelial (HK-2) cells under high-glucose conditions. DUSP1 overexpression in HK-2 cells partially restored autophagic flux, improved mitochondrial function, and reduced reactive oxygen species generation and cell apoptosis under high-glucose conditions. Surprisingly, overexpressing DUSP1 abolished the decrease in mitochondrial parkin expression caused by high-glucose stimulation. In addition, knockdown of parkin in HK-2 cells reversed the effects of DUSP1 overexpression on mitophagy and apoptosis under high-glucose conditions. Overall, these data indicate that DUSP1 plays a defensive role in the pathogenesis of DN by restoring parkin-mediated mitophagy, suggesting that it may be considered a prospective therapeutic strategy for the amelioration of DN.
Collapse
Affiliation(s)
- Chang Lu
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Bo Wu
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuojun Liao
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Ming Xue
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Zhouping Zou
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China
| | - Jianxun Feng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| | - Junqin Sheng
- Department of Nephrology, Xuhui District Central Hospital of Shanghai, Shanghai, 200003, China.
| |
Collapse
|
78
|
Valek L, Tegeder I. Nucleoredoxin Knockdown in SH-SY5Y Cells Promotes Cell Renewal. Antioxidants (Basel) 2021; 10:antiox10030449. [PMID: 33805811 PMCID: PMC7999887 DOI: 10.3390/antiox10030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Nucleoredoxin (NXN) is a redox regulator of Disheveled and thereby of WNT signaling. Deficiency in mice leads to cranial dysmorphisms and defects of heart, brain, and bone, suggesting defects of cell fate determination. We used shRNA-mediated knockdown of NXN in SH-SY5Y neuroblastoma cells to study its impact on neuronal cells. We expected that shNXN cells would easily succumb to redox stress, but there were no differences in viability on stimulation with hydrogen peroxide. Instead, the proliferation of naïve shNXN cells was increased with a higher rate of mitotic cells in cell cycle analyses. In addition, basal respiratory rates were higher, whereas the relative change in oxygen consumption upon mitochondrial stressors was similar to control cells. shNXN cells had an increased expression of redox-sensitive heat shock proteins, Hsc70/HSPA8 and HSP90, and autophagy markers suggested an increase in autophagosome formation upon stimulation with bafilomycin and higher flux under low dose rapamycin. A high rate of self-renewal, autophagy, and upregulation of redox-sensitive chaperones appears to be an attractive anti-aging combination if it were to occur in neurons in vivo for which SH-SY5Y cells are a model.
Collapse
|
79
|
D'Orazi G, Cordani M, Cirone M. Oncogenic pathways activated by pro-inflammatory cytokines promote mutant p53 stability: clue for novel anticancer therapies. Cell Mol Life Sci 2021; 78:1853-1860. [PMID: 33070220 PMCID: PMC11072129 DOI: 10.1007/s00018-020-03677-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Inflammation and cancerogenesis are strongly interconnected processes, not only because inflammation promotes DNA instability, but also because both processes are driven by pathways such as NF-kB, STAT3, mTOR and MAPKs. Interestingly, these pathways regulate the release of pro-inflammatory cytokines such as IL-6, TNF-α and IL-1β that in turn control their activation and play a crucial role in shaping immune response. The transcription factor p53 is the major tumor suppressor that is often mutated in cancer, contributing to tumor progression. In this overview, we highlight how the interplay between pro-inflammatory cytokines and pro-inflammatory/pro-oncogenic pathways, regulating and being regulated by UPR signaling and autophagy, affects the stability of mutp53 that in turn is able to control autophagy, UPR signaling, cytokine release and the activation of the same oncogenic pathways to preserve its own stability and promote tumorigenesis. Interrupting these positive feedback loops may represent a promising strategy in anticancer therapy, particularly against cancers carrying mutp53.
Collapse
Affiliation(s)
- Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Cordani
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Mara Cirone
- Department of Experimental Medicine, Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
80
|
Huang H, Wang M, Hou L, Lin X, Pan S, Zheng P, Zhao Q. A potential mechanism associated with lead-induced spermatogonia and Leydig cell toxicity and mitigative effect of selenium in chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111671. [PMID: 33360290 DOI: 10.1016/j.ecoenv.2020.111671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/25/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a toxic heavy metal pollutants and can damage male reproductive function. Selenium (Se) possesses an ability of antagonizing Pb toxicity. However, biological events in the process of Pb toxicity and mitigative effect of Se are not well understood. The aim of present research was to investigate potential mechanism of Se against Pb toxicity from the perspective of oxidative stress, heat shock response and autophagy in the spermatogonia and Leydig cell of chicken. The cells from one-day-old male Hyline chickens were treated with Se (0.5 μmol/L) and/or Pb (20 μmol/L) for 24 h, respectively. Cell viability, cell ultrastucture, Pb and Se concentrations, testosterone level, oxidative stress indicators and relative expression of heat shock proteins (HSPs) and autophagy-related genes were measured. The results showed that spermatogonia was more tolerant to Pb than Leydig cell; cell injury was confirmed via histological assessment, cell viability and testosterone level; oxidative stress was further indicated by the decrease of catalase, glutathione peroxidase, glutathione-s-transferase and superoxide dismutase activities and the increase of malondialdehyde and reactive oxygen species contents. Pb increased expression of HSPs (27, 40, 60, 70 and 90). Meanwhile Pb induced autophagy through up-regulation of autophagy-related proteins 5, Beclin 1, Dynein, light chain 3 (LC3)-I and LC3-II and down-regulation of mammalian target of rapamycin in two type cells of chicken. However, Se intervention mitigated the aforementioned alterations caused by Pb. In conclusion, Pb led to oxidative stress, which triggered heat shock response and autophagy; Se administration mitigated reproductive toxicity of Pb through strengthening antioxidant defense in the spermatogonia and Leydig cell of chicken.
Collapse
Affiliation(s)
- He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Min Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lulu Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, People's Republic of China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
81
|
Hou X, Han L, An B, Cai J. Autophagy induced by Vip3Aa has a pro-survival role in Spodoptera frugiperda Sf9 cells. Virulence 2021; 12:509-519. [PMID: 33509041 PMCID: PMC7849784 DOI: 10.1080/21505594.2021.1878747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vip3Aa is an insecticidal protein that can effectively control certain lepidopteran pests and has been used widely in biological control. However, the mechanism of action of Vip3Aa is unclear. In the present study, we showed that Vip3Aa could cause autophagy in Sf9 cells, which was confirmed by the increased numbers of GFP-Atg8 puncta, the appearance of autophagic vacuoles, and an elevated Atg8-II protein level. Moreover, we found that the AMPK-mTOR-ULK1 pathway is involved in Vip3Aa-induced autophagy, which might be associated with the destruction of ATP homeostasis in Vip3Aa-treated cells. Both the elevated p62 level and the increased numbers of GFP-RFP-Atg8 yellow fluorescent spots demonstrated that autophagy in Sf9 cells was inhibited at 24 h after Vip3Aa treatment. With the prolongation of Vip3Aa treatment time, this inhibition became more serious and led to autophagosome accumulation. Genetic knockdown of ATG5 or the use of the autophagy inhibitor 3-MA further increased the sensitivity of Sf9 cells to Vip3Aa. Overexpression of ATG5 reduced the cell mortality of Vip3Aa-treated cells. In summary, the results revealed that autophagy induced by Vip3Aa has a pro-survival role, which might be related to the development of insect resistance.
Collapse
Affiliation(s)
- Xiaoyue Hou
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University , Lianyungang, China.,College of Food Science and Engineering, Jiangsu Ocean University , Lianyungang, China
| | - Lu Han
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China
| | - Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University , Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics , Tianjin, China
| |
Collapse
|
82
|
|
83
|
Zhang J. The Promise of a Golden Era for Exploring the Frontiers of Aging, Metabolism and Redox Biology. FRONTIERS IN AGING 2020; 1:610406. [PMID: 36212526 PMCID: PMC9541140 DOI: 10.3389/fragi.2020.610406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
84
|
Pterostilbene Sensitizes Cisplatin-Resistant Human Bladder Cancer Cells with Oncogenic HRAS. Cancers (Basel) 2020; 12:cancers12102869. [PMID: 33036162 PMCID: PMC7650649 DOI: 10.3390/cancers12102869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary RAS oncoproteins are considered undruggable cancer targets. Nearly 15% of cases of bladder cancer have a mutation of HRAS. The active HRAS contributes to the tumor progression and the risk of recurrence. Using our novel gene expression screening platform, pterostilbene was identified to sensitize cisplatin-resistant bladder cancer cells with HRAS alterations via RAS-related autophagy and cell senescence pathways, suggesting a potentially chemotherapeutic role of pterostilbene for cisplatin treatment of human bladder cancer with oncogenic HRAS. Pterostilbene is a safe and readily available food ingredient in edible plants worldwide. Exploiting the principle of combination therapy on pterostilbene-enhanced biosensitivity to identify undruggable molecular targets for cancer therapy may have a great possibility to overcome the cisplatin resistance of bladder cancer. Our data make HRAS a good candidate for modulation by pterostilbene for targeted cancer therapy in combination with conventional chemotherapeutic agents cisplatin plus gemcitabine. Abstract Analysis of various public databases revealed that HRAS gene mutation frequency and mRNA expression are higher in bladder urothelial carcinoma. Further analysis revealed the roles of oncogenic HRAS, autophagy, and cell senescence signaling in bladder cancer cells sensitized to the anticancer drug cisplatin using the phytochemical pterostilbene. A T24 cell line with the oncogenic HRAS was chosen for further experiments. Indeed, coadministration of pterostilbene increased stronger cytotoxicity on T24 cells compared to HRAS wild-type E7 cells, which was paralleled by neither elevated apoptosis nor induced cell cycle arrest, but rather a marked elevation of autophagy and cell senescence in T24 cells. Pterostilbene-induced autophagy in T24 cells was paralleled by inhibition of class I PI3K/mTOR/p70S6K as well as activation of MEK/ERK (a RAS target) and class III PI3K pathways. Pterostilbene-induced cell senescence on T24 cells was paralleled by increased pan-RAS and decreased phospho-RB expression. Coadministration of PI3K class III inhibitor 3-methyladenine or MEK inhibitor U0126 suppressed pterostilbene-induced autophagy and reversed pterostilbene-enhanced cytotoxicity, but did not affect pterostilbene-elevated cell senescence in T24 cells. Animal study data confirmed that pterostilbene enhanced cytotoxicity of cisplatin plus gemcitabine. These results suggest a therapeutic application of pterostilbene in cisplatin-resistant bladder cancer with oncogenic HRAS.
Collapse
|
85
|
Yang J, Lin X, Wang L, Sun T, Zhao Q, Ma Q, Zhou Y. LncRNA MALAT1 Enhances ox-LDL-Induced Autophagy through the SIRT1/MAPK/NF-κB Pathway in Macrophages. Curr Vasc Pharmacol 2020; 18:652-662. [PMID: 32183682 DOI: 10.2174/1570161118666200317153124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular and cerebrovascular diseases. In
advanced atherosclerotic plaque, macrophage apoptosis coupled with inflammatory cytokine secretion
promotes the formation of necrotic cores. It has also been demonstrated that the long-noncoding Ribonucleic
Acid (lnc RNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with its
potent function on gene transcription modulation, maintains oxidized low-density lipoprotein (ox-LDL)-
induced macrophage autophagy (i.e., helps with cholesterol efflux). It also showed that MALAT1 activated
Sirtuin 1 (SIRT1), which subsequently inhibited the mitogen-activated protein kinase (MAPK)
and nuclear factor kappa-B (NF-κB) signaling pathways. ox-LDL has been used to incubate human
myeloid leukemia mononuclear cells (THP-1)-derived macrophages to establish an in vitro foam cell
model. Quantitative reverse-transcription polymerase chain reaction and Western blot analyses confirmed
the increased expression level of MALAT1 and the autophagy-related protein Microtubuleassociated
protein light chain 3 (LC-3), beclin-1. The small interfering RNA study showed a significant
decrease in autophagy activity and an increase in apoptotic rate when knocking down MALAT1. Further
study demonstrated that MALAT1 inhibited the expression of MAPK and NF-κB (p65) by upregulating
SIRT1.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xuze Lin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Liangshan Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tienan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qi Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
86
|
Lee YR, Wu SY, Chen RY, Lin YS, Yeh TM, Liu HS. Regulation of autophagy, glucose uptake, and glycolysis under dengue virus infection. Kaohsiung J Med Sci 2020; 36:911-919. [PMID: 32783363 DOI: 10.1002/kjm2.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
We previously reported that dengue virus (DENV)-induced autophagy plays a promoting role in viral replication and pathogenesis both in vitro and in vivo. Although it is known that DENV infection increases glycolysis, which promotes viral replication, the role of glucose metabolism together with autophagic activity in DENV replication remains unclear. In this study, we reveal that DENV2 infection increased autophagic activity, glucose uptake, protein levels of glucose transporter-1 (GLUT1), and glycolysis rate-limiting enzyme hexokinase-2 (HK2) in cells. Furthermore, the protein levels of LC3-II and HK2 were increased in the brain tissues of the DENV2-infected suckling mice. However, DENV2 infection decreased ATP level and showed no effect on mRNA expression of HK2 and phosphofructokinase, as well as lactate production, indicating that DENV2-regulated glycolytic flux occurs at the post-transcriptional level and is lactate pathway-independent. Moreover, amiodarone-induced autophagic activity, glucose uptake, HK2 level, and viral titer were reversed by the autophagy inhibitor spautin-1 or silencing of Atg5 gene expression. Intriguingly, blocking of glycolysis, HK2 protein level, and viral titer were accordingly decreased, but autophagic activity was increased, suggesting the existence of another regulation mechanism that influences the relationship between glycolysis and autophagy. This is the first report to reveal that DENV2-induced autophagy positively regulates glycolysis and viral replication in vitro and in vivo. Our findings open a new avenue wherein metabolic modulation could be used as a target for the treatment of DENV infection.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Yi Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory, Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
87
|
Feidantsis K, Michaelidis B, Raitsos DΕ, Vafidis D. Seasonal cellular stress responses of commercially important invertebrates at different habitats of the North Aegean Sea. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110778. [PMID: 32745528 DOI: 10.1016/j.cbpa.2020.110778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
In many aquatic species, the negative effect of temperature variations has a significant impact on physiological performance since beyond Tp (upper pejus) and Tc (critical temperatures), according to the oxygen- and capacity-limited thermal tolerance (OCLTT), transition to hypoxemia and mitochondrial metabolism triggers the increase in reactive oxygen species (ROS) production. However, climate change may have different spatial impact, and as a result, areas with more favorable climatic conditions (refugia) can be identified. The aim of the present study, based on cellular stress responses, is the demarcation of these areas and the preservation of commercially important marine species. Under this prism, individuals of the species Callinectes sapidus (blue crab), Sepia officinalis (common cuttlefish), Holothuria tubulosa (sea cucumber) and Venus verrucosa (clam) from Thermaikos, Pagasitikos and Vistonikos gulf were collected seasonally. The results showed an increase in the levels of several stress indicators exhibiting the triggering of Heat Shock Response, MAPK activation, apoptotic phenomena and increased ubiquitilination during the summer sampling in relation to the spring and autumn samplings concerning blue crab and clam, while no changes were observed for common cuttlefish and sea cucumber. It seems that these cellular responses consist a cytoprotective mechanism against environmental thermal stress. Regarding collection sites, for all examined species, higher cellular stress levels were observed in Pagasitikos, and lower in Vistonikos gulf. This analysis of biochemical and molecular markers is expected to provide a clearer picture for the definition of "refugia" for the above species.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38445 Nea Ionia, Volos, Greece.
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dionysios Ε Raitsos
- Department of Zoology-Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Dimitris Vafidis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38445 Nea Ionia, Volos, Greece
| |
Collapse
|
88
|
Ma Y, Zhu S, Lv T, Gu X, Feng H, Zhen J, Xin W, Wan Q. SQSTM1/p62 Controls mtDNA Expression and Participates in Mitochondrial Energetic Adaption via MRPL12. iScience 2020; 23:101428. [PMID: 32805647 PMCID: PMC7452302 DOI: 10.1016/j.isci.2020.101428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) encodes thirteen core components of OXPHOS complexes, and its steady expression is crucial for cellular energy homeostasis. However, the regulation of mtDNA expression machinery, along with its sensing mechanism to energetic stresses, is not fully understood. Here, we identified SQSTM1/p62 as an important regulator of mtDNA expression machinery, which could effectively induce mtDNA expression and the effects were mediated by p38-dependent upregulation of mitochondrial ribosomal protein L12 (MRPL12) in renal tubular epithelial cells (TECs), a highly energy-demanding cell type related to OXPHOS. We further identified a direct binding site within the MRPL12 promoter to ATF2, the downstream effector of p38. Besides, SQSTM1/p62-induced mtDNA expression is involved in both serum deprivation and hypoxia-induced mitochondrial response, which was further highlighted by kidney injury phenotype of TECs-specific SQSTM1/p62 knockout mice. Collectively, these data suggest that SQSTM1/p62 is a key regulator and energetic sensor of mtDNA expression machinery. SQSTM1/p62 is an important regulator of mtDNA expression machinery SQSTM1/p62 induces MRPL12 expression via activating p38/ATF2 signaling pathway SQSTM1/p62 maintains TECs mitochondrial homeostasis and kidney function
Collapse
Affiliation(s)
- Yuan Ma
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
| | - Suwei Zhu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tingting Lv
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xia Gu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China.
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
89
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
90
|
Chen X, Lin Z, Su L, Cui X, Zhao B, Miao J. Discovery of a fluorescigenic pyrazoline derivative targeting ubiquitin. Biochem Biophys Res Commun 2020; 528:256-260. [PMID: 32473753 DOI: 10.1016/j.bbrc.2020.05.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
Despite significant process in ubiquitin modification by using traditional genetic methods, chemical small molecules that directly target and modify ubiquitin are little reported. Here, we find that a fluorescigenic pyrazoline derivative (FPD5) could do so effectively. Molecule docking revealed that lysine 11 of ubiquitin was the key contact residue. FPD5, with stronger fluorescence, elevated the ubiquitination of beclin 1 (BECN1) and promoted autophagy. This study highlights that targeting ubiquitin by chemical small molecules enables us to modulate ubiquitination and the downstream signaling in the ubiquitin system.
Collapse
Affiliation(s)
- XinPeng Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China; Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, School of Life Science, Hubei Normal University, Huangshi, 435002, PR China
| | - ZhaoMin Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, 250033, PR China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - XiaoLing Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, China.
| |
Collapse
|
91
|
Sepand MR, Ranjbar S, Kempson IM, Akbariani M, Muganda WCA, Müller M, Ghahremani MH, Raoufi M. Targeting non-apoptotic cell death in cancer treatment by nanomaterials: Recent advances and future outlook. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102243. [PMID: 32623018 DOI: 10.1016/j.nano.2020.102243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Many tumors develop resistance to most of the apoptosis-based cancer therapies. In this sense targeting non-apoptotic forms of cell death including necroptosis, autophagy and ferroptosis may have therapeutic benefits in apoptosis-defective cancer cells. Nanomaterials have shown great advantages in cancer treatment owing to their unique characteristics. Besides, the capability of nanomaterials to induce different forms of cell death has gained widespread attention in cancer treatment. Reports in this field reflect the therapeutic potential of necroptotic cell death induced by nanomaterials in cancer. Also, autophagic cell death induced by nanomaterials alone and as a part of chemo-, radio- and photothermal therapy holds great promise as anticancer therapeutic option. Besides, ferroptosis induction by iron-based nanomaterials in drug delivery, immunotherapy, hyperthermia and imaging systems shows promising results in malignancies. Hence, this review is devoted to the latest efforts and the challenges in this field of research and its clinical merits.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheyda Ranjbar
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia; School of Pharmacy and Medical Sciences, University of South Australia, SA, Australia
| | - Mostafa Akbariani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany.
| |
Collapse
|
92
|
Cui X, Zhou D, Du Q, Wan P, Dong K, Hou H, Geller DA. MicroRNA200a enhances antitumor effects in combination with doxorubicin in hepatocellular carcinoma. Transl Oncol 2020; 13:100805. [PMID: 32563177 PMCID: PMC7305444 DOI: 10.1016/j.tranon.2020.100805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is often treated with doxorubicin. MicroRNAs have been shown to have important regulatory roles in cancer and serve as a target in chemoresistance. In this study, we investigated the effects of specific microRNA-200a (miR-200a) on HCC tumor cell growth and effect of doxorubicin-mediated cytotoxicity. Our results show miR-200a is downregulated in human HCC and HCC tumor cell lines. Increasing miR-200a expression inhibited HCC growth and synergized with the antitumor effects of doxorubicin. Inhibiting endogenous miR-200a promoted tumor growth and chemotherapeutic resistance. Increasing miR-200a expression inhibited tumor metabolism (ATP production, mitochondrial respiration, glycolysis), while inhibition of endogenous miR-200a reversed these effects. MiR-200a expression also increased autophagy and synergized with doxorubicin-mediated cytotoxicity. This study identifies a novel role of miR-200a in potentiating doxorubicin-mediated therapeutic effects in HCC.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Dachen Zhou
- Department of Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Peiqi Wan
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Dong
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Hou
- Department of Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - David A Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
93
|
Hughes WE, Beyer AM, Gutterman DD. Vascular autophagy in health and disease. Basic Res Cardiol 2020; 115:41. [PMID: 32506214 DOI: 10.1007/s00395-020-0802-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Homeostasis is maintained within organisms through the physiological recycling process of autophagy, a catabolic process that is intricately involved in the mobilization of nutrients during starvation, recycling of cellular cargo, as well as initiation of cellular death pathways. Specific to the cardiovascular system, autophagy responds to both chemical (e.g. free radicals) and mechanical stressors (e.g. shear stress). It is imperative to note that autophagy is not a static process, and measurement of autophagic flux provides a more comprehensive investigation into the role of autophagy. The overarching themes emerging from decades of autophagy research are that basal levels of autophagic flux are critical, physiological stressors may increase or decrease autophagic flux, and more importantly, aberrant deviations from basal autophagy may elicit detrimental effects. Autophagy has predominantly been examined within cardiac or vascular smooth muscle tissue within the context of disease development and progression. Autophagic flux within the endothelium holds an important role in maintaining vascular function, demonstrated by the necessary role for intact autophagic flux for shear-induced release of nitric oxide however the underlying mechanisms have yet to be elucidated. Within this review, we theorize that autophagy itself does not solely control vascular homeostasis, rather, it works in concert with mitochondria, telomerase, and lipids to maintain physiological function. The primary emphasis of this review is on the role of autophagy within the human vasculature, and the integrative effects with physiological processes and diseases as they relate to the vascular structure and function.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA.
| | - Andreas M Beyer
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| | - David D Gutterman
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| |
Collapse
|
94
|
van Dam L, Dansen TB. Cross-talk between redox signalling and protein aggregation. Biochem Soc Trans 2020; 48:379-397. [PMID: 32311028 PMCID: PMC7200635 DOI: 10.1042/bst20190054] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
It is well established that both an increase in reactive oxygen species (ROS: i.e. O2•-, H2O2 and OH•), as well as protein aggregation, accompany ageing and proteinopathies such as Parkinson's and Alzheimer's disease. However, it is far from clear whether there is a causal relation between the two. This review describes how protein aggregation can be affected both by redox signalling (downstream of H2O2), as well as by ROS-induced damage, and aims to give an overview of the current knowledge of how redox signalling affects protein aggregation and vice versa. Redox signalling has been shown to play roles in almost every step of protein aggregation and amyloid formation, from aggregation initiation to the rapid oligomerization of large amyloids, which tend to be less toxic than oligomeric prefibrillar aggregates. We explore the hypothesis that age-associated elevated ROS production could be part of a redox signalling-dependent-stress response in an attempt to curb protein aggregation and minimize toxicity.
Collapse
Affiliation(s)
- Loes van Dam
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Tobias B. Dansen
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| |
Collapse
|
95
|
Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. J Comp Physiol B 2020; 190:403-418. [DOI: 10.1007/s00360-020-01278-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
96
|
Ma R, Chen JT, Ji XY, Xu XL, Mu Q. Hydroxypropyl- β-Cyclodextrin Complexes of Styryllactones Enhance the Anti-Tumor Effect in SW1116 Cell Line. Front Pharmacol 2020; 11:484. [PMID: 32390840 PMCID: PMC7188779 DOI: 10.3389/fphar.2020.00484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Styryllactones, a class of compounds obtained from the genus Goniothalamus (Annonaceae), have demonstrated in vitro antitumor activity. However, the aqueous solubility of these compounds is poor. In this study, we identified the absolute configurations of the previously isolated compounds, which were first isolated in our laboratory, by single-crystal X-ray diffraction analysis using Cu Kα radiation. Subsequently, the antitumor activities of the compounds were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide staining in four tumor cell lines. The induced apoptosis activity of leiocarpin E-7'-Monoacetate was studied by an annexin V fluorescein isothiocyanate/propidium iodide double-staining experiment, and the caspase activity was tested in the SW1116 cell line. The results demonstrated that the antitumor activities of cheliensisin A and goniodiol-7-monoacetate were limited by their poor water solubility. To address this issue, hydroxypropyl-β-cyclodextrin (HP-β-CD) complexes of the compounds were synthesized by the saturated aqueous method. The complexes were then analyzed using a differential scanning calorimeter. The IC50 of cheliensisin A was reduced by 45% and 58% against SW1116 and SMMC-7721 cell lines, respectively. Similarly, the IC50 of goniodiol-7-monoacetate was reduced by 55% and 34% against the two tumor cell lines, respectively. To further evaluate whether the styryllactones and complexes possessed selectivity against cancer cell lines and normal cell lines, toxicity against human normal cell line (HEK293T) was evaluated. The results demonstrated that the HP-β-CD complexes displayed more cytotoxicity than the respective pristine compounds against the HEK293T cell line. However, there existed a therapeutic window when the complexes were applied against cancer cell lines. In summary, the synthesis of several styryllactone compounds complexed with HP-β-CD was reported for the first time. These complexes could significantly enhance the cytotoxic effects of styryllactone compounds.
Collapse
Affiliation(s)
- Ru Ma
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jie-Tao Chen
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao-Yue Ji
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Xiao-Li Xu
- Cancer Hospital, Fudan University, Shanghai, China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
97
|
Pervaiz S, Bellot GL, Lemoine A, Brenner C. Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:189-214. [DOI: 10.1016/bs.ircmb.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
98
|
Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog Retin Eye Res 2020; 74:100771. [PMID: 31356876 PMCID: PMC6982593 DOI: 10.1016/j.preteyeres.2019.07.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Retinal remodeling is a progressive series of negative plasticity revisions that arise from retinal degeneration, and are seen in retinitis pigmentosa, age-related macular degeneration and other forms of retinal disease. These processes occur regardless of the precipitating event leading to degeneration. Retinal remodeling then culminates in a late-stage neurodegeneration that is indistinguishable from progressive central nervous system (CNS) proteinopathies. Following long-term deafferentation from photoreceptor cell death in humans, and long-lived animal models of retinal degeneration, most retinal neurons reprogram, then die. Glial cells reprogram into multiple anomalous metabolic phenotypes. At the same time, survivor neurons display degenerative inclusions that appear identical to progressive CNS neurodegenerative disease, and contain aberrant α-synuclein (α-syn) and phosphorylated α-syn. In addition, ultrastructural analysis indicates a novel potential mechanism for misfolded protein transfer that may explain how proteinopathies spread. While neurodegeneration poses a barrier to prospective retinal interventions that target primary photoreceptor loss, understanding the progression and time-course of retinal remodeling will be essential for the establishment of windows of therapeutic intervention and appropriate tuning and design of interventions. Finally, the development of protein aggregates and widespread neurodegeneration in numerous retinal degenerative diseases positions the retina as a ideal platform for the study of proteinopathies, and mechanisms of neurodegeneration that drive devastating CNS diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| | - Robert E Marc
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Bryan William Jones
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
99
|
Forouzanfar F, Read MI, Barreto GE, Sahebkar A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life 2019; 72:652-664. [DOI: 10.1002/iub.2209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research CenterMashhad University of Medical Sciences Mashhad Iran
- Department of Neuroscience, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Morgayn I. Read
- Department of PharmacologySchool of Medical Sciences, University of Otago Dunedin New Zealand
| | - George E. Barreto
- Department of Biological SciencesUniversity of Limerick Limerick Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA Tehran Iran
- Biotechnology Research CenterPharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
100
|
Wang W, Yang X, Chen Q, Guo M, Liu S, Liu J, Wang J, Huang F. Sinomenine attenuates septic-associated lung injury through the Nrf2-Keap1 and autophagy. ACTA ACUST UNITED AC 2019; 72:259-270. [PMID: 31729764 DOI: 10.1111/jphp.13202] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Our present study focused on assessing whether Sinomenine (SIN) could attenuate sepsis-induced acute lung injury (ALI). METHODS The mice were conditioned with SIN 1 h before intraperitoneal injection of lipopolysaccharide (LPS). Lung wet/dry (W/D) ratio, inflammatory level in bronchoalveolar lavage fluid (BALF), malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity and inflammatory cytokines production were detected. The expression of nuclear factor erythroid 2-like 2 (Nrf2) and autophagy-related proteins were detected by Western blot and immunohistochemical analyses. In addition, the RAW264.7 cells were treated with SIN 1 h before treatment with LPS. Inflammatory cytokines, iNOS and COX2 were detected. The expression of Nrf2 and autophagy-related proteins were explored by Western blot analysis. KEY FINDINGS Experiments in vivo and in vitro discovered that LPS significantly increased the degree of injury, inflammatory cytokines production and oxidative stress. However, the increase was significantly inhibited by treatment of SIN. In addition, SIN was found to upregulate the expression of Nrf2 and autophagy-related proteins both in vivo and in vitro. CONCLUSIONS Our data suggested that SIN could attenuate septic-associated ALI effectively, probably due to the inhibition of inflammation and oxidative stress through Nrf2 and autophagy pathways.
Collapse
Affiliation(s)
- Wanqiu Wang
- School of life science and technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoting Yang
- School of life science and technology, China Pharmaceutical University, Nanjing, China
| | - Qiuhua Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Guo
- School of life science and technology, China Pharmaceutical University, Nanjing, China
| | - Suzi Liu
- School of life science and technology, China Pharmaceutical University, Nanjing, China
| | - Junjun Liu
- School of life science and technology, China Pharmaceutical University, Nanjing, China
| | - Jintao Wang
- School of life science and technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- School of life science and technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|