51
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione - A review. Anal Chim Acta 2019; 1062:1-27. [PMID: 30947984 DOI: 10.1016/j.aca.2019.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
The present paper is aimed at providing an overview of the recent advances in the electrochemical sensing of glutathione (GSH), an important electrochemically and biologically active molecule, for the period 2012-2018. Herein, the analytical performances of newly developed electrochemical methods, procedures and protocols for GSH sensing are comprehensively and critically discussed with respect to the type of method, electrodes used (new electrode modifications, advanced materials and formats), sample matrices, and basic validation parameters obtained (limit of detection, linear dynamic range, precision, selectivity/evaluation of interferences). This paper considers electrochemical methods used alone as well as the hyphenated methods with electrochemical detection (ECD), such as HPLC-ECD or CE-ECD. The practical applicability of the platforms developed for GSH detection and quantification is mostly focused on pharmaceutical and biomedical analysis. The most significant electrochemical approaches for GSH detection in multicomponent analyte samples and multicomponent matrices and for real-time in vivo GSH analysis are highlighted. The great variability in the electrochemical techniques, electrode approaches, and obtainable performance parameters, discussed in this review, brought new insights not only on current GSH and glutathione disulfide (GSSG) determinations, but, along with this, on the advances in electrochemical analysis from a more general point of view.
Collapse
Affiliation(s)
- Michal Hanko
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Alexandra Planková
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Peter Mikuš
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Center, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
52
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
53
|
Chandler JD, Margaroli C, Horati H, Kilgore MB, Veltman M, Liu HK, Taurone AJ, Peng L, Guglani L, Uppal K, Go YM, Tiddens HAWM, Scholte BJ, Tirouvanziam R, Jones DP, Janssens HM. Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur Respir J 2018; 52:13993003.01118-2018. [PMID: 30190273 DOI: 10.1183/13993003.01118-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) lung disease progressively worsens from infancy to adulthood. Disease-driven changes in early CF airway fluid metabolites may identify therapeutic targets to curb progression.CF patients aged 12-38 months (n=24; three out of 24 later denoted as CF screen positive, inconclusive diagnosis) received chest computed tomography scans, scored by the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) method to quantify total lung disease (PRAGMA-%Dis) and components such as bronchiectasis (PRAGMA-%Bx). Small molecules in bronchoalveolar lavage fluid (BALF) were measured with high-resolution accurate-mass metabolomics. Myeloperoxidase (MPO) was quantified by ELISA and activity assays.Increased PRAGMA-%Dis was driven by bronchiectasis and correlated with airway neutrophils. PRAGMA-%Dis correlated with 104 metabolomic features (p<0.05, q<0.25). The most significant annotated feature was methionine sulfoxide (MetO), a product of methionine oxidation by MPO-derived oxidants. We confirmed the identity of MetO in BALF and used reference calibration to confirm correlation with PRAGMA-%Dis (Spearman's ρ=0.582, p=0.0029), extending to bronchiectasis (PRAGMA-%Bx; ρ=0.698, p=1.5×10-4), airway neutrophils (ρ=0.569, p=0.0046) and BALF MPO (ρ=0.803, p=3.9×10-6).BALF MetO associates with structural lung damage, airway neutrophils and MPO in early CF. Further studies are needed to establish whether methionine oxidation directly contributes to early CF lung disease and explore potential therapeutic targets indicated by these findings.
Collapse
Affiliation(s)
- Joshua D Chandler
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Camilla Margaroli
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Hamed Horati
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Matthew B Kilgore
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Mieke Veltman
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - H Ken Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander J Taurone
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Limin Peng
- Dept of Biostatistics, Emory University School of Public Health, Atlanta, GA, USA
| | - Lokesh Guglani
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Harm A W M Tiddens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Bob J Scholte
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep Medicine, Dept of Pediatrics, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA.,These authors are joint senior authors
| | - Hettie M Janssens
- Division of Respiratory Medicine and Allergology, Dept of Pediatrics, University Medical Center Rotterdam, Erasmus MC-Sophia, Rotterdam, The Netherlands.,These authors are joint senior authors
| |
Collapse
|
56
|
Abstract
Defining features of chronic airway diseases include abnormal and persistent inflammatory processes, impaired airway epithelial integrity and function, and increased susceptibility to recurrent respiratory infections. Phosphoinositide 3-kinases (PI3K) are lipid kinases, which contribute to multiple physiological and pathological processes within the airway, with abnormal PI3K signalling contributing to the pathogenesis of several respiratory diseases. Consequently, the potential benefit of targeting PI3K isoforms has received considerable attention, being viewed as a viable therapeutic option in inflammatory and infectious lung disorders. The class I PI3K isoform, PI3Kδ (Phosphoinositide 3-kinases δ) is of particular interest given its multiple roles in modulating innate and adaptive immune cell functions, airway inflammation and corticosteroid sensitivity. In this mini-review, we explore the role of PI3Kδ in airway inflammation and infection, focusing on oxidative stress, ER stress, histone deacetylase 2 and neutrophil function. We also describe the importance of PI3Kδ in adaptive immune cell function, as highlighted by the recently described Activated PI3K Delta Syndrome, and draw attention to some of the potential clinical applications and benefits of targeting this molecule.
Collapse
|