51
|
Nediani C, Giovannelli L. Oxidative Stress and Inflammation as Targets for Novel Preventive and Therapeutic Approches in Non Communicable Diseases. Antioxidants (Basel) 2020; 9:antiox9040290. [PMID: 32244285 PMCID: PMC7222209 DOI: 10.3390/antiox9040290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
As recently reported by the World Health Organization (WHO), Non-Communicable Diseases (NCDs) has been rising over the last century representing the main cause of death and disability for the general population regardless of age, region, or gender [...].
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", viale Morgagni 50, 50134 Florence, Italy
- Correspondence:
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
52
|
Acrocomia aculeata (Jacq.) Lodd. ex Mart. Leaves Increase SIRT1 Levels and Improve Stress Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5238650. [PMID: 32256951 PMCID: PMC7085880 DOI: 10.1155/2020/5238650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress is a metabolic disorder linked with several chronic diseases, and this condition can be improved by natural antioxidants. The fruit pulp of the palm Acrocomia aculeata (Jacq.) Lodd. ex Mart. is widely used in the treatment of various illnesses, but as far as we know, there are no reports regarding the properties of its leaves. Thus, we aimed to evaluate the antioxidant activity of A. aculeata leaf extracts obtained with water (EA-Aa), ethanol (EE-Aa), and methanol (EM-Aa) solvents. The extracts were chemically characterized, and their antioxidant activity was assessed through the scavenging of the free radicals DPPH and ABTS. EE-Aa and EM-Aa showed the highest amounts of phenolic compounds and free radical scavenging activity. However, EA-Aa was more efficient to protect human erythrocytes against AAPH-induced hemolysis and lipid peroxidation. Thus, we further show the antioxidant effect of EA-Aa in preventing AAPH-induced protein oxidation, H2O2-induced DNA fragmentation, and ROS generation in Cos-7 cells. Increased levels of Sirt1, catalase, and activation of ERK and Nrf2 were observed in Cos-7 treated with EA-Aa. We also verify increased survival in nematodes C. elegans, when induced to the oxidative condition by Juglone. Therefore, our results showed a typical chemical composition of plants for all extracts, but the diversity of compounds presented in EA-Aa is involved in the lower toxicity and antioxidant properties provided to the macromolecules tested, proteins, DNA, and lipids. This protective effect also proven in Cos-7 and in C. elegans was probably due to the activation of the Sirt1/Nrf2 pathway. Altogether, the low toxicity and the antioxidant properties of EA-Aa showed in all the experimental models support its further use in the treatment of oxidative stress-related diseases.
Collapse
|
53
|
Llanos-González E, Henares-Chavarino ÁA, Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Sancho-Bielsa FJ, Alcain FJ, Peinado JR, Rabanal-Ruíz Y, Durán-Prado M. Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer's Disease. Front Neurosci 2020; 13:1444. [PMID: 32063825 PMCID: PMC7000623 DOI: 10.3389/fnins.2019.01444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Although the basis of Alzheimer’s disease (AD) etiology remains unknown, oxidative stress (OS) has been recognized as a prodromal factor associated to its progression. OS refers to an imbalance between oxidant and antioxidant systems, which usually consist in an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which overwhelms the intrinsic antioxidant defenses. Due to this increased production of ROS and RNS, several biological functions such as glucose metabolism or synaptic activity are impaired. In AD, growing evidence links the ROS-mediated damages with molecular targets including mitochondrial dynamics and function, protein quality control system, and autophagic pathways, affecting the proteostasis balance. In this scenario, OS should be considered as not only a major feature in the pathophysiology of AD but also a potential target to combat the progression of the disease. In this review, we will discuss the role of OS in mitochondrial dysfunction, protein quality control systems, and autophagy associated to AD and suggest innovative therapeutic strategies based on a better understanding of the role of OS and proteostasis.
Collapse
Affiliation(s)
- Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | | | - Cristina María Pedrero-Prieto
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan Ramón Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruíz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
54
|
Liang D, Zhuo Y, Guo Z, He L, Wang X, He Y, Li L, Dai H. SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 2019; 170:10-20. [PMID: 31830513 DOI: 10.1016/j.biochi.2019.12.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress leads to intestinal epithelial cells damage, which induces tight junction injury and systemic endogenous stress syndrome. The evidence suggests that SIRT1/PGC-1α pathway is closely associated with oxidative damage. However, the mechanism in protecting intestinal epithelial cells against oxidative stress dependant on autopahgy/mitophagy remains to be elucidated. In the current study, we investigated the functional role of SIRT1/PGC-1α pathway on regulation of autopahgy/mitophagy and tight junction protein expression underlying the oxidative dysfunction in porcine intestinal epithelial cells (IPEC-1). Results demonstrated that H2O2 exposure caused high accumulation of ROS, with a decrease of mitochondrial membrane potential and an inhibition of the tight junction molecules in IPEC-1 cells. Also, COX IV mRNA expression and SIRT1/PGC-1α pathway were suppressed. Autophagy and PINK1/Parkin dependant-mitophagy were activated following H2O2 treatment. Further research indicated that activation of SIRT1/PGC-1α pathway caused by specific activator SRT 1720 resulted in elevating autophagy/mitophagy related markers and SIRT1 inhibitor EX 527 reversed these effects. Additionally, SIRT1 activation significantly suppressed the ROS generation, leading to increase mitochondrial membrane potential and COX IV expression. Most importantly, the expression of tight junction molecules contributing to maintain intestinal barrier integrity was significantly up-regulated. Collectively, these findings indicated that autophagy/mitophagy elevation caused by SIRT1/PGC-1α pathway activation might be a protective mechanism to increase tight junction integrity against oxidative stress-mediated ROS production in IPEC-1 cells.
Collapse
Affiliation(s)
- Danyang Liang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lihua He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xueyi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yulong He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lexing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
55
|
Nediani C, Ruzzolini J, Romani A, Calorini L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants (Basel) 2019; 8:E578. [PMID: 31766676 PMCID: PMC6943788 DOI: 10.3390/antiox8120578] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Growing scientific literature data suggest that the intake of natural bioactive compounds plays a critical role in preventing or reducing the occurrence of human chronic non-communicable diseases (NCDs). Oleuropein, the main phenolic component of Olea europaea L., has attracted scientific attention for its several health beneficial properties such as antioxidant, anti-inflammatory, cardio- and neuro-protective, and anti-cancer. This article is a narrative review focused on the current literature concerning the effect of oleuropein in NCDs, such as neuro- and cardiovascular diseases, diabetes mellitus, chronic kidney diseases, and cancer, by its putative antioxidant and anti-inflammatory activity, but also for its other peculiar actions such as an autophagy inducer and amyloid fibril growth inhibitor and, finally, for its anti-cancer effect. Despite the increasing number of published studies, looking at the beneficial effects of oleuropein, there is limited clinical evidence focused on the benefits of this polyphenol as a nutraceutical product in humans, and many problems are still to be resolved about its bioavailability, bioaccessibility, and dosage. Thus, future clinical randomized trials are needed to establish the relation between the beneficial effects and the mechanisms of action occurring in the human body in response to the intake of oleuropein.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
- Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education (DENOTHE), University of Florence, Piazza di San Marco 4, 50121 Florence, Italy
| |
Collapse
|
56
|
Dai YJ, Cao XF, Zhang DD, Li XF, Liu WB, Jiang GZ. Chronic inflammation is a key to inducing liver injury in blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:28-37. [PMID: 30910418 DOI: 10.1016/j.dci.2019.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The aim of this article is to investigate the mechanism of lipotoxicity induced by high-fat diets (HFD) in Megalobrama amblycephala. In the present study, fish (average initial weight 40.0 ± 0.35 g) were fed with two fat levels (6% and 11%) diets with four replicates for 60 days. At the end of the feeding trial, fish were challenged by thioacetamide (TAA) and survival rate was recorded for the next 96 h. The result showed that long-term HFD feeding induced a significant increase (P < 0.05) in the levels of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) in plasma. In addition, liver histopathological analysis showed an increased dilation of the blood vessels, erythrocytes outside of the blood vessels and vacuolization in fish fed with high-fat diet. After TAA challenge, compared with group fed with normal-fat diets (NFD), fish fed with HFD showed a significantly (P < 0.05) low survival rate. After feeding Megalobrama amblycephala with HFD for 60 days, the protein content and gene expression of pro-inflammatory factors were significantly elevated (P < 0.05). The protein and gene relative expressions of a Caspase-3, Caspase-9 and CD68 were significantly increased (P < 0.05), while antioxidant-related enzyme activities were significantly reduced (P < 0.05) in the liver of fish fed with HFD. In addition, HFD feeding also induced genotoxicity. Comet assay showed a significantly (P < 0.05) elevated DNA damage in blunt snout bream fed with HFD. Compared with normal-fat diets (NFD) group, the protein expression of γH2AX and gene expressions involved in cell cycle arrest were significantly increased (P < 0.05) in fish fed with HFD. Data in this research showed that lipotoxicity induced by HFD was likely mediated by chronic inflammation regulating macrophage recruitment, apoptosis and DNA damage. The study was valuable to understand the mechanism by which liver injury is induced in fish fed with HFD.
Collapse
Affiliation(s)
- Yong-Jun Dai
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiu-Fei Cao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
57
|
He Y, Sang Z, Zhuo Y, Wang X, Guo Z, He L, Zeng C, Dai H. Transport stress induces pig jejunum tissue oxidative damage and results in autophagy/mitophagy activation. J Anim Physiol Anim Nutr (Berl) 2019; 103:1521-1529. [DOI: 10.1111/jpn.13161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yulong He
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Zhan Sang
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Yisha Zhuo
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Xueyi Wang
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Zeheng Guo
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Lihua He
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Cuiping Zeng
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| | - Hanchuan Dai
- College of Veterinary Medicine Huazhong Agricultural University Wuhan China
| |
Collapse
|
58
|
Li X, Hu L, Ma L, Chang S, Wang W, Feng Y, Xu Y, Hu J, Zhang C, Wang S. Severe periodontitis may influence cementum and dental pulp through inflammation, oxidative stress, and apoptosis. J Periodontol 2019; 90:1297-1306. [DOI: 10.1002/jper.18-0604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/10/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Xiangchun Li
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
- Department of Stomatologythe First Hospital of Qinhuangdao Hebei P. R. China
| | - Liang Hu
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Linsha Ma
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Shimin Chang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Weili Wang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Yuanyong Feng
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Yipu Xu
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Jinchao Hu
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Chunmei Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing P. R. China
- Department of Biochemistry and Molecular BiologyCapital Medical University School of Basic Medical Sciences Beijing P. R. China
| |
Collapse
|
59
|
Guo T, Liu T, Sun Y, Liu X, Xiong R, Li H, Li Z, Zhang Z, Tian Z, Tian Y. Sonodynamic therapy inhibits palmitate-induced beta cell dysfunction via PINK1/Parkin-dependent mitophagy. Cell Death Dis 2019; 10:457. [PMID: 31186419 PMCID: PMC6560035 DOI: 10.1038/s41419-019-1695-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
In type 2 diabetes mellitus (T2DM), the overload of glucose and lipids can promote oxidative stress and inflammatory responses and contribute to the failure of beta cells. However, therapies that can modulate the function of beta cells and thus prevent their failure have not been well explored. In this study, beta cell injury model was established with palmitic acid (PA) to simulate the lipotoxicity (high-fat diet) found in T2DM. Sonodynamic therapy (SDT), a novel physicochemical treatment, was applied to treat injured beta cells. We found that SDT had specific effects on mitochondria and induced transient large amount of mitochondrial reactive oxygen species (ROS) production in beta cells. SDT also improved the morphology and function of abnormal mitochondria, inhibited inflammatory response and reduced beta cell dysfunction. The improvement of mitochondria was mediated by PINK1/Parkin-dependent mitophagy. Additionally, SDT rescued the transcription of PINK1 mRNA which was blocked by PA treatment, thus providing abundant PINK1 for mitophagy. Moreover, SDT also increased insulin secretion from beta cells. The protective effects of SDT were abrogated when mitophagy was inhibited by cyclosporin A (CsA). In summary, SDT potently inhibits lipotoxicity-induced beta cell failure via PINK1/Parkin-dependent mitophagy, providing theoretical guidance for T2DM treatment in aspects of islet protection.
Collapse
Affiliation(s)
- Tian Guo
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Tianyang Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Yun Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Xianna Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Rongguo Xiong
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - He Li
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Zhiguo Zhang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China. .,Key Laboratory of Acoustic Photoelectric Magnetic Diagnosis and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, 150081, China.
| | - Ye Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China. .,Key Laboratory of Acoustic Photoelectric Magnetic Diagnosis and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, 150081, China. .,Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
60
|
Zhang Y, Yang F, Zhang J, Sun G, Wang C, Guo Y, Wen R, Sun W. Quantitative fingerprint and quality control analysis of Compound Liquorice Tablet combined with antioxidant activities and chemometrics methods. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152790. [PMID: 31005815 DOI: 10.1016/j.phymed.2018.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Herbal medicine (HM), as a complex system, is difficult to investigate their quality consistency effectively by chromatographic fingerprinting obtained in a single detection method. Moreover, active compound discovery affords no information about pharmacological activity until late in the discovery process, and the interaction between HMs in vitro is not yet clear, which requires sufficient practice to prove their effectiveness. PURPOSE Therefore, the purpose of this study was to improve the quality control methods of Compound Liquorice Tablet (CLT) using multi-wavelength fusion fingerprinting, explore the possible antioxidant components and assess the interaction between herbs combined with bioactivity evaluation. METHODS AND DESIGN Once the theoretical standard preparation obtained in combination of multi-wavelength fusion fingerprinting and hierarchical clustering analysis, averagely linear quantified fingerprint method could rapidly calculate the composition similarities and efficiently quantify the multiple components of CLTs without any chemical standard. Furthermore, the fingerprint-efficacy relationship was investigated by integrating high performance liquid chromatography fingerprints with antioxidant activity assessment using the partial least squares model, which was capable of directly discovering the bioactive ingredients. Hereafter, combination index value was introduced to evaluate the correlation between the two antioxidant herbs in CLT formula. RESULTS The results showed that CLT samples were effectively identified and quantified, and their quality was accurately distinguished. By analyzing the antioxidant evaluation results, it was found that CLT had strong antioxidant activity, and through the study on PLS model and antioxidant activity assay of individual compounds, it was found that the order of chemical constituents responsible for antioxidant activity in CLT was as follows: flavonoids > saponins > alkaloids. Finally, it was determined that the CI value of GE-PPCE was in the range of 1.20-1.61, indicating that the interaction of the GE-PPCE pair was a slight antagonism. CONCLUSION Thus, this study provided a preferred way for monitoring the quality consistency of HM, exploring possible bioactive components of HMs and assessing the interaction between herbs.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, PR China
| | - Fangliang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, PR China
| | - Jing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, PR China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, PR China.
| | - Chao Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Yong Guo
- School of Pharmacy, Fairleigh Dickinson University, Florham Park, NJ, United States of America
| | - Ran Wen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, PR China
| | - Wanyang Sun
- Institute of Traditional Chinese Medicine &Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong, PR China
| |
Collapse
|
61
|
Nitric Oxide Products are not Associated with Metabolic Syndrome. J Med Biochem 2019; 38:361-367. [PMID: 31156347 PMCID: PMC6534950 DOI: 10.2478/jomb-2018-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background Nitric oxide (NO) is oxidative stress biomarker which is regarded as one of the key determinants of energy metabolism and vascular tone. Considering the controversial reports on the association between nitric oxide products (NOx) and metabolic syndrome (MetS), the aim of the current study was to examine that potential relationship. Additionally, we aimed to evaluate a broad spectrum of other oxidative stress biomarkers [i.e., malondialdehyde (MDA), advanced oxidation protein products (AOPP), xanthine oxidoreductase (XOD), xanthine oxidase (XO) xanthine dehydrogenase (XDH)] in relation with MetS. Methods A total of 109 volunteers (46.8% of them with MetS) were included in this cross-sectional study. Biohemical and anthropometric parameters, as well as blood pressure, were obtained. The MetS was diagnosed according to the International Diabetes Federation criteria. Results Multivariate logistic regression analysis showed that XOD (OR=1.011; 95% CI 1.002-1.019; p=0.016), XO (OR=1.014; 95% CI 1.003-1.026; p=0.016), MDA (OR=1.113; 95% CI 1.038-1.192; p=0.003) and AOPP (OR=1.022; 95% CI 1.005-1.039; p=0.012) were the independent predictors of MetS, whereas no association between NOx and MetS was found. As XOD rose for 1 U/L, XO for 1 U/L, MDA for 1 μmol/L and AOPP for 1 T/L, probability for MetS rose for 1.1%, 1.4%, 11.3% and 2.2%, respectively. Adjusted R2 for the Model was 0.531, which means that 53.1% of variation in MetS could be explained with this Model. Conclusion Unlike XOD, MDA and AOPP, NOx is not associated with MetS.
Collapse
|
62
|
Zhang Y, Wang C, Yang F, Sun G. A strategy for qualitative and quantitative profiling of glycyrrhiza extract and discovery of potential markers by fingerprint-activity relationship modeling. Sci Rep 2019; 9:1309. [PMID: 30718789 PMCID: PMC6361909 DOI: 10.1038/s41598-019-38601-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023] Open
Abstract
This study was to evaluate the quality consistency of glycyrrhiza extract and to explore the possible anti-oxidant components in combination with chromatographic fingerprint and bioactivity evaluation. Characteristic fingerprints of glycyrrhiza extract samples from different sources were generated by high performance liquid chromatography with diode array detector (HPLC-DAD) and evaluated using hierarchical clustering and similarity analysis. Compared with the conventional qualitative similarity evaluation method, the averagely linear quantified fingerprint method had an important quantitative similarity parameter supported by quantitative analysis, which was recommended in the fingerprint evaluation. Antioxidant activities of the glycyrrhiza extract samples were determined by DPPH (2, 2-diphenyl-1-picryldrazyl) radical scavenging assays. In addition, the fingerprint-efficacy relationship was investigated by the chemical fingerprints and the anti-oxidant activities utilizing partial least squares model, which was capable of exploring and discovering the bioactive components of glycyrrhiza extracts. Therefore, the present study provided a powerful strategy to evaluate the holistic quality consistency of medicinal plant.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Chao Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fangliang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China.
| |
Collapse
|
63
|
Pinheiro DML, de Oliveira AHS, Coutinho LG, Fontes FL, de Medeiros Oliveira RK, Oliveira TT, Faustino ALF, Lira da Silva V, de Melo Campos JTA, Lajus TBP, de Souza SJ, Agnez-Lima LF. Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation. Free Radic Biol Med 2019; 130:8-22. [PMID: 30366059 DOI: 10.1016/j.freeradbiomed.2018.10.432] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress generated during inflammation is associated with a wide range of pathologies. Resveratrol (RESV) displays anti-inflammatory and antioxidant activities, being a candidate for the development of adjuvant therapies for several inflammatory diseases. Despite this potential, the cellular responses induced by RESV are not well known. In this work, transcriptomic analysis was performed following lipopolysaccharide (LPS) stimulation of monocyte cultures in the presence of RESV. Induction of an inflammatory response was observed after LPS treatment and the addition of RESV led to decreases in expression of the inflammatory mediators, tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), without cytotoxicity. RNA sequencing revealed 823 upregulated and 2098 downregulated genes (cutoff ≥2.0 or ≤-2.0) after RESV treatment. Gene ontology analysis showed that the upregulated genes were associated with metabolic processes and the cell cycle, consistent with normal cell growth and differentiation under an inflammatory stimulus. The downregulated genes were associated with inflammatory responses, gene expression, and protein modification. The prediction of master regulators using the iRegulon tool showed nuclear respiratory factor 1 (NRF1) and GA-binding protein alpha subunit (GABPA) as the main regulators of the downregulated genes. Using immunoprecipitation and protein expression assays, we observed that RESV was able to decrease protein acetylation patterns, such as acetylated apurinic/apyrimidinic endonuclease-1/reduction-oxidation factor 1 (APE1/Ref-1), and increase histone methylation. In addition, reductions in p65 (nuclear factor-kappa B (NF-κB) subunit) and lysine-specific histone demethylase-1 (LSD1) expression were observed. In conclusion, our data indicate that treatment with RESV caused significant changes in protein acetylation and methylation patterns, suggesting the induction of deacetylase and reduction of demethylase activities that mainly affect regulatory cascades mediated by NF-кB and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. NRF1 and GABPA seem to be the main regulators of the transcriptional profile observed after RESV treatment.
Collapse
Affiliation(s)
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil; Chemistry Department, New York University, New York, NY, United States
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil; Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, São Paulo do Potengi, Brazil
| | - Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | | | - Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - André Luís Fonseca Faustino
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | - Vandeclécio Lira da Silva
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | | |
Collapse
|
64
|
Boga JA, Caballero B, Potes Y, Perez-Martinez Z, Reiter RJ, Vega-Naredo I, Coto-Montes A. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J Pineal Res 2019; 66:e12534. [PMID: 30329173 DOI: 10.1111/jpi.12534] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
There are several pathologies, syndromes, and physiological processes in which autophagy is involved. This process of self-digestion that cells trigger as a survival mechanism is complex and tightly regulated, according to the homeostatic conditions of the organ. However, in all cases, its relationship with oxidative stress alterations is evident, following a pathway that suggests endoplasmic reticulum stress and/or mitochondrial changes. There is accumulating evidence of the beneficial role that melatonin has in the regulation and restoration of damaged autophagic processes. In this review, we focus on major physiological changes such as aging and essential pathologies including cancer, neurodegenerative diseases, viral infections and obesity, and document the essential role of melatonin in the regulation of autophagy in each of these different situations.
Collapse
Affiliation(s)
- Jose A Boga
- Service of Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Beatriz Caballero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Yaiza Potes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Zulema Perez-Martinez
- Service of Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Ignacio Vega-Naredo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| |
Collapse
|