51
|
Peng C, Ai Q, Zhao F, Li H, Sun Y, Tang K, Yang Y, Chen N, Liu F. Quercetin attenuates cerebral ischemic injury by inhibiting ferroptosis via Nrf2/HO-1 signaling pathway. Eur J Pharmacol 2024; 963:176264. [PMID: 38123006 DOI: 10.1016/j.ejphar.2023.176264] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
AIMS Ischemic stroke is a severe cerebrovascular disease in which neuronal death continually occurs through multiple forms, including apoptosis, autophagy, pyroptosis and ferroptosis. Quercetin (QRC), as a natural flavonoid compound, has been reported to have pharmacological effects on ischemic injury accompanied by unclear anti-ferroptotic mechanisms. This study is designed to investigate the therapeutic effects of QRC against ferroptosis in ischemic stroke. MATERIALS AND METHODS In vivo, the model of MCAO rats were used to assess the protective effect of QRC on cerebral ischemic. Additionally, we constructed oxidative stressed and ferroptotic cell models to explore the effects and mechanisms of QRC on ferroptosis. The related proteins were analysed by western blotting, immunohistochemical and immunofluorescence techniques. RESULTS The experiments demonstrated that QRC improves neurological deficits, infarct volume, and pathological features in MCAO rats, also increased the viability of HT-22 cells exposed to H2O2 and erastin. These results, including MDA, SOD, GSH, ROS levels and iron accumulation, indicated that QRC suppresses the generation of lipid peroxides and may involve in the regulatory of ferroptosis. Both in vitro and in vivo, QRC was found to inhibit ferroptosis by up-regulating GPX4 and FTH1, as well as down-regulating ACSL4. Furthermore, we observed that QRC enhances the nuclear translocation of Nrf2 and activates the downstream antioxidative proteins. Importantly, the effect of QRC on ferroptosis can be reversed by the Nrf2 inhibitor ML385. CONCLUSIONS This study provides evidence that QRC has a neuroprotective effect by inhibiting ferroptosis, demonstrating the therapeutic potential for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Qidi Ai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Fengyan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Yang Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Keyan Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China.
| | - Naihong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
| |
Collapse
|
52
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
53
|
Zheng Q, Wang D, Lin R, Chen Y, Xu Z, Xu W. Quercetin is a Potential Therapy for Rheumatoid Arthritis via Targeting Caspase-8 Through Ferroptosis and Pyroptosis. J Inflamm Res 2023; 16:5729-5754. [PMID: 38059150 PMCID: PMC10697095 DOI: 10.2147/jir.s439494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is one of the most common chronic inflammatory autoimmune diseases. However, the underlying molecular mechanisms of its pathogenesis are unknown. This study aimed to identify the common biomarkers of ferroptosis and pyroptosis in RA and screen potential drugs. Methods The RA-related differentially expressed genes (DEGs) in GSE55235 were screened by R software and intersected with ferroptosis and pyroptosis gene libraries to obtain differentially expressed ferroptosis-related genes (DEFRGs) and differentially expressed pyroptosis-related genes (DEPRGs). We performed Gene Ontology (GO), Kyoto Encyclopedia of the Genome (KEGG), ClueGO, and Protein-Protein Interaction (PPI) analysis for DEFRGs and DEPRGs and validated them by machine learning. The microRNA/transcription factor (TF)-hub genes regulatory network was further constructed. The key gene was validated using the GSE77298 validation set, cellular validation was performed in in vitro experiments, and immune infiltration analysis was performed using CIBERSORT. Network pharmacology was used to find key gene-targeting drugs, followed by molecular docking and molecular dynamics simulations to analyze the binding stability between small-molecule drugs and large-molecule proteins. Results Three hub genes (CASP8, PTGS2, and JUN) were screened via bioinformatics, and the key gene (CASP8) was validated and obtained through the validation set, and the diagnostic efficacy was verified to be excellent through the receiver operating characteristic (ROC) curves. The ferroptosis and pyroptosis phenotypes were constructed by fibroblast-like synoviocytes (FLS), and caspase-8 was detected and validated as a common biomarker for ferroptosis and pyroptosis in RA, and quercetin can reduce caspase-8 levels. Quercetin was found to be a potential target drug for caspase-8 by network pharmacology, and the stability of their binding was further verified using molecular docking and molecular dynamics simulations. Conclusion Caspase-8 is an important biomarker for ferroptosis and pyroptosis in RA, and quercetin is a potential therapy for RA via targeting caspase-8 through ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, People’s Republic of China
| | - Zixing Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weihong Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
54
|
Chen S, Jin X, He T, Zhang M, Xu H. Identification of ferroptosis-related genes in acute phase of temporal lobe epilepsy based on bioinformatic analysis. BMC Genomics 2023; 24:675. [PMID: 37946105 PMCID: PMC10636915 DOI: 10.1186/s12864-023-09782-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Epilepsy is a prevalent neurological disorder, and while its precise mechanism remains elusive, a connection to ferroptosis has been established. This study investigates the potential clinical diagnostic significance of ferroptosis-related genes (FRGs) during the acute phase of temporal lobe epilepsy. METHODS To identify differentially expressed genes (DEGs), we accessed data from the GEO database and performed an intersection analysis with the FerrDB database to pinpoint FRGs. A protein-protein interaction (PPI) network was constructed. To assess the diagnostic utility of the discovered feature genes for the disease, ROC curve analysis was conducted. Subsequently, qRT-PCR was employed to validate the expression levels of these feature genes. RESULTS This study identified a total of 25 FRGs. PPI network analysis revealed six feature genes: IL6, PTGS2, HMOX1, NFE2L2, TLR4, and JUN. ROC curve analysis demonstrated that the combination of these six feature genes exhibited the highest diagnostic potential. qRT-PCR validation confirmed the expression of these feature genes. CONCLUSION We have identified six feature genes (IL6, PTGS2, HMOX1, NFE2L2, TLR4, and JUN) strongly associated with ferroptosis in epilepsy, suggesting their potential as biomarkers for the diagnosis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
55
|
Ma SJ, Li C, Yan C, Liu N, Jiang GY, Yang HR, Yan HC, Li JY, Liu HL, Gao C. Melatonin alleviates early brain injury by inhibiting the NRF2-mediated ferroptosis pathway after subarachnoid hemorrhage. Free Radic Biol Med 2023; 208:555-570. [PMID: 37717795 DOI: 10.1016/j.freeradbiomed.2023.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Ferroptosis is a novel form of cell death that plays a critical role in the pathological and physiological processes of early brain injury following subarachnoid hemorrhage. Melatonin, as the most potent endogenous antioxidant, has shown strong protective effects against pathological changes following subarachnoid hemorrhage, but its impact on ferroptosis induced by subarachnoid hemorrhage remains unexplored. In our study, we established a subarachnoid hemorrhage model in male SD rats. We found that subarachnoid hemorrhage induced changes in ferroptosis-related indicators such as lipid peroxidation and iron metabolism, while intraperitoneal injection of melatonin (40 mg/kg) effectively ameliorated these changes to a certain degree. Moreover, in a subset of rats with subarachnoid hemorrhage who received pre-treatment via intravenous injection of the melatonin receptor antagonist Luzindole (1 mg/kg) and 4P-PDOT (1 mg/kg), we found that the protective effect of melatonin against subarachnoid hemorrhage includes inhibition of lipid peroxidation and reduction of iron accumulation depended on melatonin receptor 1B (MT2). Furthermore, our study demonstrated that melatonin inhibited neuronal ferroptosis by activating the NRF2 signaling pathway, as evidenced by in vivo inhibition of NRF2. In summary, melatonin acts through MT2 and activates NRF2 and downstream genes such as HO-1/NQO1 to inhibit ferroptosis in subarachnoid hemorrhage-induced neuronal injury, thereby improving neurological function in rats. These results suggest that melatonin is a promising therapeutic target for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Sheng-Ji Ma
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Chen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cong Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Nan Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Guang-You Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Huai-Lei Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cheng Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.
| |
Collapse
|
56
|
Zhou B, Yang Y, Pang X, Shi J, Jiang T, Zheng X. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomed Pharmacother 2023; 165:115071. [PMID: 37390710 DOI: 10.1016/j.biopha.2023.115071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
SIRT5 is a mitochondrial NAD+ -dependent lysine deacylase. Downregulation of SIRT5 has been linked to several primary cancers and DNA damage. In clinical therapy for non-small cell lung cancer (NSCLC), the Feiyiliu Mixture (FYLM) is an experience and effective Chinese herb prescription. And we found that quercetin is an important ingredient in the FYLM. However, whether quercetin regulates DNA damage repair (DDR) and induces apoptosis through SIRT5 in NSCLC remains unknown. The present study revealed that quercetin directly binds to SIRT5 and inhibits the phosphorylation of PI3K/AKT through the interaction between SIRT5 and PI3K, thus inhibiting the repair process of homologous recombination (HR) and non-homologous end-joining (NHEJ) in NSCLC, which raise mitotic catastrophe and apoptosis. Our study provided a novel mechanism of action of quercetin in the treatment of NSCLC.
Collapse
Affiliation(s)
- Baochen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Ye Yang
- Qingdao Central Hospital, Qingdao 266042, China
| | - Xuemeng Pang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingjing Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Jiang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China.
| |
Collapse
|
57
|
Yang W, Liu R, Yin X, Wu K, Yan Z, Wang X, Fan G, Tang Z, Li Y, Jiang H. Novel Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Superoxide Anion Fluctuations in Ferroptosis-Mediated Epilepsy. Anal Chem 2023; 95:12240-12246. [PMID: 37556358 DOI: 10.1021/acs.analchem.3c00852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Ferroptosis is an iron-regulated, caspase-mediated pathway of cell death that is associated with the excessive aggregation of lipid-reactive oxygen species and is extensively involved in the evolution of many diseases, including epilepsy. The superoxide anion (O2•-), as the primary precursor of ROS, is closely related to ferroptosis-mediated epilepsy. Therefore, it is crucial to establish a highly effective and convenient method for the real-time dynamic monitoring of O2•- during the ferroptosis process in epilepsy for the diagnosis and therapy of ferroptosis-mediated epilepsy. Nevertheless, no probes for detecting O2•- in ferroptosis-mediated epilepsy have been reported. Herein, we systematically conceptualized and developed a novel near-infrared (NIR) fluorescence probe, NIR-FP, for accurately tracking the fluctuation of O2•- in ferroptosis-mediated epilepsy. The probe showed exceptional sensitivity and outstanding selectivity toward O2•-. In addition, the probe has been utilized effectively to bioimage and evaluate endogenous O2•- variations in three types of ferroptosis-mediated epilepsy models (the kainic acid-induced chronic epilepsy model, the pentylenetetrazole-induced acute epilepsy model, and the pilocarpine-induced status epilepticus model). The above applications illustrated that NIR-FP could serve as a reliable and suitable tool for guiding the accurate diagnosis and therapy of ferroptosis-mediated epilepsy.
Collapse
Affiliation(s)
- Wenjie Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruixin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhi Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoming Wang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhixin Tang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
58
|
Cruz-Gregorio A, Aranda-Rivera AK. Quercetin and Ferroptosis. Life (Basel) 2023; 13:1730. [PMID: 37629587 PMCID: PMC10455543 DOI: 10.3390/life13081730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Quercetin is a flavonoid present in apples, onions, tea, red wines, and berries, and it has shown different beneficial effects, such as providing cardiovascular protection, possessing anti-inflammatory properties, and demonstrating anticancer activity, among others. These diseases are related to oxidizing molecules such as ROS because these species react and induce the oxidation of cellular biomolecules, such as proteins, lipids, DNA, or carbohydrates, which alters cellular homeostasis. Regarding lipids, the oxidation of these molecules induces lipid hydroperoxides which, if not decreased, particularly by GPX4, produce highly reactive aldehydes such as 4HNE and MDA. These oxidative conditions induce ferroptosis, a type of cell death associated with oxidation that differs from other types of cell death, such as apoptosis, necrosis, or autophagy. The induction of ferroptosis is desired in some diseases, such as cancer, but in others, such as cardiovascular diseases, this type of cell death is not wanted. The possible effects of quercetin associated with reducing or inducing ferroptosis have not been reviewed. Thus, this review focuses on the ability of quercetin to produce ferroptosis in diseases such as cancer as a treatment option and, conversely, on its role in deactivating ferroptosis to alleviate diseases such as cardiovascular diseases.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
59
|
Zhao W, Chang Y, Wu Z, Jiang X, Li Y, Xie R, Fu D, Sun C, Gao J. Identification of PIMREG as a novel prognostic signature in breast cancer via integrated bioinformatics analysis and experimental validation. PeerJ 2023; 11:e15703. [PMID: 37483962 PMCID: PMC10358341 DOI: 10.7717/peerj.15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) expression is upregulated in a variety of cancers. However, its potential role in breast cancer (BC) remains uncertain. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to gather relevant information. The expression of PIMREG and its clinical implication in BC were assessed by using Wilcoxon rank-sum test. The prognostic value of PIMREG in BC was evaluated through the Cox regression model and nomogram, and visualized by Kaplan-Meier survival curves. Genes/proteins that interact with PIMREG in BC were also identified through GeneMANIA and MaxLink. Gene set enrichment analysis (GSEA) was then performed. The correlations of the immune cell infiltration and immune checkpoints with the expression of PIMREG in BC were explored via TIMER, TISIDB, and GEPIA. Potential drugs that interact with PIMREG in BC were explored via Q-omic. The siRNA transfection, CCK-8, and transwell migration assay were conducted to explore the function of PIMREG in cell proliferation and migration. Results PIMREG expression was significantly higher in infiltrating ductal carcinoma, estrogen receptor negative BC, and progestin receptor negative BC. High expression of PIMREG was associated with poor overall survival, disease-specific survival, and progression-free interval. A nomogram based on PIMREG was developed with a satisfactory prognostic value. PIMREG also had a high diagnostic ability, with an area under the curve of 0.940. Its correlations with several immunomodulators were also observed. Immune checkpoint CTLA-4 was significantly positively associated with PIMREG. HDAC2 was found as a potentially critical link between PIMREG and BRCA1/2. In addition, PIMREG knockdown could inhibit cell proliferation and migration in BC. Conclusions The high expression of PIMREG is associated with poor prognosis and immune checkpoints in BC. HDAC2 may be a critical link between PIMREG and BRCA1/2, potentially a therapeutic target.
Collapse
Affiliation(s)
- Wenjing Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuanjin Chang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Zhaoye Wu
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Xiaofan Jiang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Yong Li
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruijin Xie
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Deyuan Fu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenyu Sun
- Department of General Surgery, The second Affiliated Hospital of Anhui Medical University, Anhui, China
- Department of Medicine, AMITA Health Saint Joseph Hospital, Chicago, IL, USA
| | - Ju Gao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
60
|
Giustizieri M, Petrillo S, D’Amico J, Torda C, Quatrana A, Vigevano F, Specchio N, Piemonte F, Cherubini E. The ferroptosis inducer RSL3 triggers interictal epileptiform activity in mice cortical neurons. Front Cell Neurosci 2023; 17:1213732. [PMID: 37396923 PMCID: PMC10311487 DOI: 10.3389/fncel.2023.1213732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures, which result from excessive, synchronous discharges of neurons in different brain areas. In about 30% of cases, epileptic discharges, which vary in their etiology and symptomatology, are difficult to treat with conventional drugs. Ferroptosis is a newly defined iron-dependent programmed cell death, characterized by excessive accumulation of lipid peroxides and reactive oxygen species. Evidence has been provided that ferroptosis is involved in epilepsy, and in particular in those forms resistant to drugs. Here, whole cell patch clamp recordings, in current and voltage clamp configurations, were performed from layer IV principal neurons in cortical slices obtained from adult mouse brain. Application of the ferroptosis inducer RAS-selective lethal 3 (RSL3) induced interictal epileptiform discharges which started at RSL3 concentrations of 2 μM and reached a plateau at 10 μM. This effect was not due to changes in active or passive membrane properties of the cells, but relied on alterations in synaptic transmission. In particular, interictal discharges were dependent on the excessive excitatory drive to layer IV principal cells, as suggested by the increase in frequency and amplitude of spontaneously occurring excitatory glutamatergic currents, possibly dependent on the reduction of inhibitory GABAergic ones. This led to an excitatory/inhibitory unbalance in cortical circuits. Interictal bursts could be prevented or reduced in frequency by the lipophilic antioxidant Vitamin E (30 μM). This study allows identifying new targets of ferroptosis-mediated epileptic discharges opening new avenues for the treatment of drug-resistant forms of epilepsy.
Collapse
Affiliation(s)
- Michela Giustizieri
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini Foundation, Rome, Italy
| | - Sara Petrillo
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Jessica D’Amico
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Caterina Torda
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Quatrana
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federico Vigevano
- Neurology Unit, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies (EpiCARE), Rome, Italy
| | - Fiorella Piemonte
- Muscular and Neurodegenerative Diseases Laboratory, Research Area of Neurological Sciences and Rehabilitation Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini Foundation, Rome, Italy
| |
Collapse
|
61
|
Huang T, Zhang K, Wang J, He K, Zhou X, Nie S. Quercetin Alleviates Acrylamide-Induced Liver Injury by Inhibiting Autophagy-Dependent Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7427-7439. [PMID: 37134181 DOI: 10.1021/acs.jafc.3c01378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acrylamide (ACR) generated in carbohydrate-rich foods during thermal processing has been demonstrated to exhibit hepatotoxicity. As one of the most consumed flavonoids with diet, quercetin (QCT) possesses the ability to protect against ACR-induced toxicity, albeit its mechanism is unclear. Herein, we discovered that QCT alleviated ACR-induced elevated levels of reactive oxygen species (ROS), AST, and ALT in mice. RNA-seq analysis revealed that QCT reversed the ferroptosis signaling pathway upregulated by ACR. Subsequently, experiments indicated that QCT inhibited ACR-induced ferroptosis through the reduction of oxidative stress. With autophagy inhibitor chloroquine, we further confirmed that QCT suppressed ACR-induced ferroptosis by inhibiting oxidative stress-driven autophagy. Additionally, QCT specifically reacted with autophagic cargo receptor NCOA4, blocked the degradation of iron storage protein FTH1, and eventually downregulated the intracellular iron levels and the consequent ferroptosis. Collectively, our results presented a unique approach to alleviate ACR-induced liver injury by targeting ferroptosis with QCT.
Collapse
Affiliation(s)
- Tongwen Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Kaihong He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| |
Collapse
|
62
|
Jin Y, Ren L, Jing X, Wang H. Targeting ferroptosis as novel therapeutic approaches for epilepsy. Front Pharmacol 2023; 14:1185071. [PMID: 37124220 PMCID: PMC10133701 DOI: 10.3389/fphar.2023.1185071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Epilepsy is a chronic disorder of the central nervous system characterized by recurrent unprovoked seizures resulting from excessive synchronous discharge of neurons in the brain. As one of the most common complications of many neurological diseases, epilepsy is an expensive and complex global public health issue that is often accompanied by neurobehavioral comorbidities, such as abnormalities in cognition, psychiatric status, and social-adaptive behaviors. Recurrent or prolonged seizures can result in neuronal damage and cell death; however, the molecular mechanisms underlying the epilepsy-induced damage to neurons remain unclear. Ferroptosis, a novel type of regulated cell death characterized by iron-dependent lipid peroxidation, is involved in the pathophysiological progression of epilepsy. Emerging studies have demonstrated pharmacologically inhibiting ferroptosis can mitigate neuronal damage in epilepsy. In this review, we briefly describe the core molecular mechanisms of ferroptosis and the roles they play in contributing to epilepsy, highlight emerging compounds that can inhibit ferroptosis to treat epilepsy and associated neurobehavioral comorbidities, and outline their pharmacological beneficial effects. The current review suggests inhibiting ferroptosis as a therapeutic target for epilepsy and associated neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Lei Ren
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
63
|
Zhou Z, Li J, Zhang X. Natural Flavonoids and Ferroptosis: Potential Therapeutic Opportunities for Human Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027486 DOI: 10.1021/acs.jafc.2c08128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flavonoids are a class of bioactive phytochemicals containing a core 2-phenylchromone skeleton and are widely found in fruits, vegetables, and herbs. Such natural compounds have gained significant attention due to their various health benefits. Ferroptosis is a recently discovered unique iron-dependent mode of cell death. Unlike traditional regulated cell death (RCD), ferroptosis is associated with excessive lipid peroxidation on cellular membranes. Accumulating evidence suggests that this form of RCD is involved in a variety of physiological and pathological processes. Notably, multiple flavonoids have been shown to be effective in preventing and treating diverse human diseases by regulating ferroptosis. In this review, we introduce the key molecular mechanisms of ferroptosis, including iron metabolism, lipid metabolism, and several major antioxidant systems. Additionally, we summarize the promising flavonoids targeting ferroptosis, which provides novel ideas for the management of diseases such as cancer, acute liver injury, neurodegenerative diseases, and ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jiye Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
64
|
Niu X, Yao Y, Li Y, Li C, Pan X, Han L. The role of the ferroptosis pathway in the regulation of polysaccharides for human health: A review. Int J Biol Macromol 2023; 231:123349. [PMID: 36669310 DOI: 10.1016/j.ijbiomac.2023.123349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Polysaccharides are natural polymers with ketone or aldehyde groups that are widely found in plants, animals, and microorganisms. They exhibit various biological activities and have potential development value in the food and pharmaceutical fields. Ferroptosis is a recently discovered modality that modulates cell death and has attracted considerable attention because it is considered to be involved in many pathophysiological processes. The inhibition of ferroptosis by reducing intracellular iron accumulation and lipid peroxidation may provide potential protective strategies against related pathologies. Ferroptosis is also involved in the physiological activities of polysaccharides, and its regulatory mechanism varies according to different physiological activities. However, a systematic summary on the involvement of ferroptosis in the physiological activities of polysaccharides is currently lacking. Therefore, this review systematically summarized the relationship between the physiological activities of polysaccharides and ferroptosis and focused on the regulatory mechanism of ferroptosis, with respect to the anti-cancer, anti-inflammatory, antioxidant, and immunomodulatory activities of all polysaccharides. The primary objective was to find new polysaccharide-related therapeutic breakthroughs for related diseases and to provide a reference for further research on polysaccharides-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyan Niu
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Yupei Yao
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Yaping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Cuiping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Xiao Pan
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
65
|
Xu J, Zhou F, Wang X, Mo C. Role of ferroptosis in pregnancy related diseases and its therapeutic potential. Front Cell Dev Biol 2023; 11:1083838. [PMID: 36968201 PMCID: PMC10031498 DOI: 10.3389/fcell.2023.1083838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron overload, overwhelming lipid peroxidation, and disruption of antioxidant systems. Emerging evidence suggests that ferroptosis is associated with pregnancy related diseases, such as spontaneous abortion, pre-eclampsia, gestational diabetes mellitus, intrahepatic cholestasis of pregnancy, and spontaneous preterm birth. According to these findings, inhibiting ferroptosis might be a potential option to treat pregnancy related diseases. This review summarizes the mechanisms and advances of ferroptosis, the pathogenic role of ferroptosis in pregnancy related diseases and the potential medicines for its treatment.
Collapse
Affiliation(s)
- Jinfeng Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Fan Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chunheng Mo, ; Xiaodong Wang,
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chunheng Mo, ; Xiaodong Wang,
| |
Collapse
|
66
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
67
|
Luo X, Weng X, Bao X, Bai X, Lv Y, Zhang S, Chen Y, Zhao C, Zeng M, Huang J, Xu B, Johnson TW, White SJ, Li J, Jia H, Yu B. A novel anti-atherosclerotic mechanism of quercetin: Competitive binding to KEAP1 via Arg483 to inhibit macrophage pyroptosis. Redox Biol 2022; 57:102511. [PMID: 36274522 PMCID: PMC9596875 DOI: 10.1016/j.redox.2022.102511] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
Natural antioxidants represented by quercetin have been documented to be effective against atherosclerosis. However, the related mechanisms remain largely unclear. In this study, we identified a novel anti-atherosclerotic mechanism of quercetin inhibiting macrophage pyroptosis by activating NRF2 through binding to the Arg483 site of KEAP1 competitively. In ApoE-/- mice fed with high fat diet, quercetin administration attenuated atherosclerosis progression by reducing oxidative stress level and suppressing macrophage pyroptosis. At the cellular level, quercetin suppressed THP-1 macrophage pyroptosis induced by ox-LDL, demonstrated by inhibiting NLRP3 inflammasome activation and reducing ROS level, while these effects were reversed by the specific NRF2 inhibitor (ML385). Mechanistically, quercetin promoted NRF2 to dissociate from KEAP1, enhanced NRF2 nuclear translocation as well as transcription of downstream antioxidant protein. Molecular docking results suggested that quercetin could bind with KEAP1 at Arg415 and Arg483. In order to verify the binding sites, KEAP1 mutated at Arg415 and Arg483 to Ser (R415S and R483S) was transfected into THP-1 macrophages, and the anti-pyroptotic effect of quercetin was abrogated by Arg483 mutation, but not Arg415 mutation. Furthermore, after administration of adeno associated viral vector (AAV) with AAV-KEAP1-R483S, the anti-atherosclerotic effects of quercetin were almost abolished in ApoE-/- mice. These findings proved quercetins suppressed macrophage pyroptosis by targeting KEAP1/NRF2 interaction, and provided reliable data on the underlying mechanism of natural antioxidants to protect against atherosclerosis.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Xiaoyi Bao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Ying Lv
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Shan Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Chen Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Ming Zeng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Jianxin Huang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Biyi Xu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Thomas W Johnson
- Department of Cardiology, Bristol Heart Institute, Upper Maudlin St., Bristol, BS2 8HW, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Ji Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China.
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| |
Collapse
|