51
|
Chelu M, Musuc AM, Aricov L, Ozon EA, Iosageanu A, Stefan LM, Prelipcean AM, Popa M, Moreno JC. Antibacterial Aloe vera Based Biocompatible Hydrogel for Use in Dermatological Applications. Int J Mol Sci 2023; 24:ijms24043893. [PMID: 36835300 PMCID: PMC9959823 DOI: 10.3390/ijms24043893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The present research aims to describe a new methodology to obtain biocompatible hydrogels based on Aloe vera used for wound healing applications. The properties of two hydrogels (differing in Aloe vera concentration, AV5 and AV10) prepared by an all-green synthesis method from raw, natural, renewable and bioavailable materials such as salicylic acid, allantoin and xanthan gum were investigated. The morphology of the Aloe vera based hydrogel biomaterials was studied by SEM analysis. The rheological properties of the hydrogels, as well as their cell viability, biocompatibility and cytotoxicity, were determined. The antibacterial activity of Aloe vera based hydrogels was evaluated both on Gram-positive, Staphylococcus aureus and on Gram-negative, Pseudomonas aeruginosa strains. The obtained novel green Aloe vera based hydrogels showed good antibacterial properties. In vitro scratch assay demonstrated the capacity of both AV5 and AV10 hydrogels to accelerate cell proliferation and migration and induce closure of a wounded area. A corroboration of all morphological, rheological, cytocompatibility and cell viability results indicates that this Aloe vera based hydrogel may be suitable for wound healing applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (J.C.M.)
| | - Ludmila Aricov
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Andreea Iosageanu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Laura M. Stefan
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (J.C.M.)
| |
Collapse
|
52
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
53
|
Novel edible films of pectins extracted from low-grade fruits and stalk wastes of sun-dried figs: Effects of pectin composition and molecular properties on film characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Huang X, Tu R, Song H, Dong K, Geng F, Chen L, Huang Q, Wu Y. Fabrication and characterization of gelatin-EGCG-pectin ternary complex: formation mechanism, emulsion stability, and structure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1442-1453. [PMID: 36168822 DOI: 10.1002/jsfa.12240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Protein-polyphenol-polysaccharide ternary complex particles have better emulsion interfacial stability compared to protein-polysaccharide binary complexes. However, knowledge is scarce when it comes to the fabrication of protein-polyphenol-polysaccharide ternary complexes as interfacial stabilizers and the interactions between the three substances. In the present work, ternary complexes were prepared using gelatin, high methoxyl pectin, and epigallocatechin gallate (EGCG) as raw materials. The effect of different influencing factors on the formation process of ternary complexes was investigated by varying different parameters. physicochemical stability, emulsifying properties, and structural characteristics were analyzed. RESULTS The ternary complex had a smaller particle size (275 nm) and polydispersity index (0.112) when the mass concentration ratio of gelatin to high methoxyl pectin was 9:1, addition of EGCG was 0.05%, pH value was 3.0, and ionic strength was 10 mmol L-1 . Meanwhile, the complex had the highest emulsifying stability index (691.75 min) and emulsifying activity index (22.96 m2 g-1 ). Scanning electron microscopical observation demonstrated that the addition of EGCG promoted the dispersion of ternary complex more uniformly, and effectively reduced the agglomeration phenomenon. The discrepancy in fluorescence intensity suggested that interactions between EGCG and gelatin occurred, which altered the protein spatial conformation of gelatin. Fourier transform infrared spectroscopic analysis elucidated that hydrogen bond interaction was the primary non-covalent interaction between EGCG and gelatin-high methoxyl pectin binary complex. CONCLUSION The aforementioned results purposed to provide some theoretical reference and basis for the rational design of stable protein-polyphenol-polysaccharide ternary complexes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Huang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Tu
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongbo Song
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kai Dong
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Qun Huang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian - Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingmei Wu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
55
|
Role of wound microbiome, strategies of microbiota delivery system and clinical management. Adv Drug Deliv Rev 2023; 192:114671. [PMID: 36538989 DOI: 10.1016/j.addr.2022.114671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Delayed wound healing is one of the most global public health threats affecting nearly 100 million people each year, particularly the chronic wounds. Many confounding factors such as aging, diabetic disease, medication, peripheral neuropathy, immunocompromises or arterial and venous insufficiency hyperglycaemia are considered to inhibit wound healing. Therapeutic approaches for slow wound healing include anti-infection, debridement and the use of various wound dressings. However, the current clinical outcomes are still unsatisfied. In this review, we discuss the role of skin and wound commensal microbiota in the different healing stages, including inflammation, cell proliferation, re-epithelialization and remodelling phase, followed by multiple immune cell responses to commensal microbiota. Current clinical management in treating surgical wounds and chronic wounds was also reviewed together with potential controlled delivery systems which may be utilized in the future for the topical administration of probiotics and microbiomes. This review aims to introduce advances, novel strategies, and pioneer ideas in regulating the wound microbiome and the design of controlled delivery systems.
Collapse
|
56
|
Pectin-based inks development for 3D bioprinting of scaffolds. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
57
|
Rosales TKO, Pedrosa LDF, Nascimento KR, Fioroto AM, Toniazzo T, Tadini CC, Purgatto E, Hassimotto NMA, Fabi JP. Nano-encapsulated anthocyanins: A new technological approach to increase physical-chemical stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
58
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
59
|
Jeon H, Oh S, Kum E, Seo S, Park Y, Kim G. Immunomodulatory Effects of an Aqueous Extract of Black Radish on Mouse Macrophages via the TLR2/4-Mediated Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1376. [PMID: 36355548 PMCID: PMC9697478 DOI: 10.3390/ph15111376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 10/14/2023] Open
Abstract
Here, we determined the immunostimulatory effects of black radish (Raphanus sativus ver niger) hot water extract (BRHE) on a mouse macrophage cell line (RAW 264.7) and mouse peritoneal macrophages. We found that BRHE treatment increased cell proliferation, phagocytic activity, nitric oxide (NO) levels, cytokine production, and reactive oxygen species synthesis. Moreover, BRHE increased the expression of the following immunomodulators in RAW 264.7 cells and peritoneal macrophages: pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), iNOS, and COX-2. BRHE treatment significantly up-regulated the phosphorylation of components of the mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Akt, and STAT3 signaling pathways. Further, the effects of BRHE on macrophages were significantly diminished after the cells were treated with the TLR2 antagonist C29 or the TLR4 antagonist TAK-242. Therefore, BRHE-induced immunostimulatory phenotypes in mouse macrophages were reversed by multiple inhibitors, such as TLR antagonist, MAPK inhibitor, and Akt inhibitor indicating that BRHE induced macrophage activation through the TLR2/4-MAPK-NFκB-Akt-STAT3 signaling pathway. These results indicate that BRHE may serve as a potential immunomodulatory factor or functional food and provide the scientific basis for the comprehensive utilization and evaluation of black radish in future applications.
Collapse
Affiliation(s)
- Hyungsik Jeon
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Soyeon Oh
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Eunjoo Kum
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Sooyeong Seo
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Youngjun Park
- Jeju Research Institute of Pharmaceutical, College of Pharmacy, Jeju National University, Jeju 63243, Korea
| | - Giok Kim
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| |
Collapse
|
60
|
The structure-function relationships of pectins separated from three citrus parts: Flavedo, albedo, and pomace. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
61
|
Vasudevan M, Perumal V, Karuppanan S, Ovinis M, Bothi Raja P, Gopinath SCB, Immanuel Edison TNJ. A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors. Crit Rev Anal Chem 2022; 54:1871-1894. [PMID: 36288094 DOI: 10.1080/10408347.2022.2135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Biopolymers are an attractive green alternative to conventional polymers, owing to their excellent biocompatibility and biodegradability. However, their amorphous and nonconductive nature limits their potential as active biosensor material/substrate. To enhance their bio-analytical performance, biopolymers are combined with conductive materials to improve their physical and chemical characteristics. We review the main advances in the field of electrochemical biosensors, specifically the structure, approach, and application of biopolymers, as well as their conjugation with conductive nanoparticles, polymers and metal oxides in green-based noninvasive analytical biosensors. In addition, we reviewed signal measurement, substrate bio-functionality, biochemical reaction, sensitivity, and limit of detection (LOD) of different biopolymers on various transducers. To date, pectin biopolymer, when conjugated with either gold nanoparticles, polypyrrole, reduced graphene oxide, or multiwall carbon nanotubes forming nanocomposites on glass carbon electrode transducer, tends to give the best LOD, highest sensitivity and can detect multiple analytes/targets. This review will spur new possibilities for the use of biosensors for medical diagnostic tests.
Collapse
Affiliation(s)
- Mugashini Vasudevan
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Saravanan Karuppanan
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Mark Ovinis
- School of Engineering and the Built Environment, Birmingham City University, Birmingham, UK
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Kangar 01000 & Faculty of Chemical Engineering & Technology, Arau 02600, Universiti Malaysia Perlis, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau 02600, Pauh Campus, Perlis, Malaysia
| | | |
Collapse
|
62
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
63
|
Bostancı NS, Büyüksungur S, Hasirci N, Tezcaner A. Potential of pectin for biomedical applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1866-1900. [PMID: 35699216 DOI: 10.1080/09205063.2022.2088525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Pectin is a polysaccharide extracted from various plants, such as apples, oranges, lemons, and it possesses some beneficial effects on human health, including being hypoglycemic and hypocholesterolemic. Therefore, pectin is used in various pharmaceutical and biomedical applications. Meanwhile, its low mechanical strength and fast degradation rate limit its usage as drug delivery devices and tissue engineering scaffolds. To enhance these properties, it can be modified or combined with other organic molecules or polymers and/or inorganic compounds. These materials can be prepared as nano sized drug carriers in the form of spheres, capsules, hydrogels, self assamled micelles, etc., for treatment purposes (mostly cancer). Different composites or blends of pectin can also be produced as membranes, sponges, hydrogels, or 3D printed matrices for tissue regeneration applications. This review is concentrated on the properties of pectin based materials and focus especially on the utilization of these materials as drug carriers and tissue engineering scaffolds, including 3D printed and 3D bioprinted systems covering the studies in the last decade and especially in the last 5 years.
Collapse
Affiliation(s)
- Nazlı Seray Bostancı
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Senem Büyüksungur
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Chemistry, METU, Ankara, Turkey
- Tissue Engineering and Biomaterial Research Center, Near East University, (NEU), Lefkosa, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Engineering Sciences, METU, Ankara, Turkey
| |
Collapse
|
64
|
Ebrahimzadeh A, Khanalizadeh E, Khodabakhshaghdam S, Kazemi D, Baradar Khoshfetrat A. Influence of gelatin modification on enzymatically-gellable pectin-gelatin hydrogel properties for soft tissue engineering applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Injectable in situ-forming hydrogels appears to be a promising approach for tissue engineering applications. In this study, the effect of phenol moiety (Ph) addition to gelatin in enzymatically-gellable modified pectin hydrogel (Pec-Ph) was studied. Addition of gelatin-Ph to Pec-Ph (Pec-Ph/Gel-Ph) altered the physical properties of Pec-Ph-based hydrogels as compared to unmodified gelatin (Pec-Ph/Gel) addition. Swelling ratio and degradation rates of the Pec-Ph/Gel-Ph hydrogel decreased 35% and 50%, respectively, and the elasticity of Pec-Ph/Gel-Ph hydrogel was higher than the Pec-Ph/Gel hydrogels. Scanning electron microscopy images showed that the existence of phenolic groups in gelatin decreased the pore size of Pec-Ph/Gel-Ph hydrogels. Culture of chondrocyte cells in the Pec-Ph/Gel-Ph hydrogels showed more metabolic activity (4×) during a 14-day culture period. Hydrogels subcutaneously implanted in rats could also be identified readily without complete absorption and signs of toxicity or any untoward reactions after 1 month. The work showed the potential of Pec-Ph/Gel-Ph hydrogels as a promising in situ injectable hydrogel for soft tissue engineering applications.
Collapse
Affiliation(s)
- Asal Ebrahimzadeh
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Elnaz Khanalizadeh
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | | | - Davoud Kazemi
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
65
|
Kraskouski A, Hileuskaya K, Ladutska A, Kabanava V, Liubimau A, Novik G, Nhi TTY, Agabekov V. Multifunctional biocompatible films based on
pectin‐Ag
nanocomposites and
PVA
: Design, characterization and antimicrobial potential. J Appl Polym Sci 2022. [DOI: 10.1002/app.53023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Kseniya Hileuskaya
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| | - Alena Ladutska
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Volha Kabanava
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
- Department of Higher Mathematics and Mathematical Physics Belarusian State University Minsk Belarus
| | - Aliaksandr Liubimau
- Department of Polymer Composite Materials Belarusian State Technological University Minsk Belarus
| | - Galina Novik
- Microbial Collection Laboratory Institute of Microbiology of NAS of Belarus Minsk Belarus
| | - Tran Thi Y. Nhi
- Laboratory of Natural Polymer Institute of Chemistry of Vietnamese Academy of Science and Technology Hanoi Vietnam
| | - Vladimir Agabekov
- Department of Physicochemistry of Thin Film Materials Institute of Chemistry of New Materials of NAS of Belarus Minsk Belarus
| |
Collapse
|
66
|
Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022; 14:polym14153217. [PMID: 35956731 PMCID: PMC9370904 DOI: 10.3390/polym14153217] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.
Collapse
|
67
|
Nguyen TTT, Le TQ, Nguyen TTA, Nguyen LTM, Nguyen DTC, Tran TV. Characterizations and antibacterial activities of passion fruit peel pectin/chitosan composite films incorporated Piper betle L. leaf extract for preservation of purple eggplants. Heliyon 2022; 8:e10096. [PMID: 36016528 PMCID: PMC9396553 DOI: 10.1016/j.heliyon.2022.e10096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to synthesize biodegradable films based on crosslinked passion fruit peel pectin/chitosan (P/CH) films incorporated with a bioactive extract from Piper betle L. leaf, and investigate their morphological, mechanical, water vapor permeability, optical, and antibacterial properties. The thickness and water vapor permeability of P/CH blend films were proportional to the increasing concentration of Piper betle extract (PB). The tensile strength of P/CH/PB films was significantly reduced at 42.89% compared to the P/CH films. The morphological characterization affirmed that resultant blend films showed a well-organized homogeneous structure with no cracks. Moreover, the antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, and Klebsiella pneumoniae increased with the increased concentration of PB in the obtained films. Our results demonstrated that P/CH/PB blend films could be potentially used for food packaging applications.
Collapse
Affiliation(s)
- Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tu Quoc Le
- Faculty of Science, Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Tuyet Thi Anh Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Lan Thi My Nguyen
- University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| |
Collapse
|
68
|
Dron I, Nosovа N, Fihurka N, Bukartyk N, Nadashkevych Z, Varvarenko S, Samaryk V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.02.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The report describes the features of physical and mechanical properties and absorption capacity of hydrogels based on highly esterified pectin. Experimental data showed the correlation between these values. Also, an attempt is made to explain the obtained dependencies via the hydrogel morphology and the mechanism of its formation.
Collapse
|
69
|
Mallakpour S, Mohammadi N. Development of sodium alginate-pectin/TiO2 nanocomposites: Antibacterial and bioactivity investigations. Carbohydr Polym 2022; 285:119226. [DOI: 10.1016/j.carbpol.2022.119226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022]
|
70
|
Bakhtiarian M, Khodaei MM. Synthesis of 2,3-dihydro-4(1 H) quinazolinones using a magnetic pectin-supported deep eutectic solvent. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
71
|
Emulsifying properties of different soy hull pectin polysaccharides and application in mayonnaise. Food Sci Biotechnol 2022; 31:699-710. [PMID: 35646414 PMCID: PMC9133284 DOI: 10.1007/s10068-022-01083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022] Open
Abstract
Soy hull pectic polysaccharide (SHPP) is a kind of biological macromolecule prepared from soy hull, which has certain thickening and gel properties. In present study, SHPP was extracted with citric acid and sodium citrate from soybean hulls under the assistance of microwave, respectively. SHPPs were then compared with commercial pectin polysaccharide to test their emulsification ability. The emulsion prepared from SHPP extracted with sodium citrate has the best emulsifying effect, small particle size and uniform distribution. The rheological properties and particle size distribution of mayonnaise did not change significantly after the addition of different SHPPs and commercial pectin polysaccharides. However, microscopic observations revealed that the droplets were more uniformly distributed in the mayonnaise after the addition of SHPP extracted with sodium citrate under the assistance of microwave and commercial pectin APC141. SHPP extracted with sodium citrate may play an important role in maintaining emulsion stability in the future. Supplementary Information The online version of this article (10.1007/s10068-022-01083-2) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Development of an injectable self-healing hydrogel based on N-succinyl chitosan/ oxidized pectin for biomedical applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02983-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
73
|
Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022; 23:ijms23063388. [PMID: 35328806 PMCID: PMC8954847 DOI: 10.3390/ijms23063388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The study aims to develop gel beads with improved functional properties and biocompatibility from hogweed (HS) pectin. HS4 and AP4 gel beads were prepared from the HS pectin and apple pectin (AP) using gelling with calcium ions. HS4 and AP4 gel beads swelled in PBS in dependence on pH. The swelling degree of HS4 and AP4 gel beads was 191 and 136%, respectively, in PBS at pH 7.4. The hardness of HS4 and AP4 gel beads reduced 8.2 and 60 times, respectively, compared with the initial value after 24 h incubation. Both pectin gel beads swelled less in Hanks’ solution than in PBS and swelled less in Hanks’ solution containing peritoneal macrophages than in cell-free Hanks’ solution. Serum protein adsorption by HS4 and AP4 gel beads was 118 ± 44 and 196 ± 68 μg/cm2 after 24 h of incubation. Both pectin gel beads demonstrated low rates of hemolysis and complement activation. However, HS4 gel beads inhibited the LPS-stimulated secretion of TNF-α and the expression of TLR4 and NF-κB by macrophages, whereas AP4 gel beads stimulated the inflammatory response of macrophages. HS4 gel beads adsorbed 1.3 times more LPS and adhered to 1.6 times more macrophages than AP4 gel beads. Thus, HS pectin gel has advantages over AP gel concerning swelling behavior, protein adsorption, and biocompatibility.
Collapse
|
74
|
Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants (Basel) 2022; 11:antiox11030506. [PMID: 35326155 PMCID: PMC8944820 DOI: 10.3390/antiox11030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants. For humans, a regular intake is associated with a reduced risk of several diseases. However, molecular instability reduces the absorption and bioavailability of these compounds. Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature, and changes in pH ranges. In addition, the digestion process contributes to chemical degradation, mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental role in the biotransformation and metabolization of several dietary compounds, thus modifying the chemical structure, including anthocyanins. This biotransformation leads to low absorption of intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several studies have been conducted to seek alternatives to improve stability and protect against intestinal microbiota degradation. This comprehensive review aims to discuss the existing knowledge about the structure of anthocyanins while discussing human absorption, distribution, metabolism, and bioavailability after the oral consumption of anthocyanins. This review will highlight the use of nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota, pointing out the safety and effectiveness of nanostructures to maintain molecular stability.
Collapse
|
75
|
Chen J, Cui Y, Ma Y, Zhang S. The gelation behavior of thiolated citrus high-methoxyl pectin induced by sodium phosphate dibasic dodecahydrate. Carbohydr Polym 2022; 277:118849. [PMID: 34893259 DOI: 10.1016/j.carbpol.2021.118849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
The present study found that sodium phosphate dibasic dodecahydrate (Na2HPO4) was capable of inducing the gelation of thiolated citrus high-methoxyl pectin (TCHMP). TCHMP was synthesized by amidation of citrus high-methoxyl pectin. The gel formation exhibited an obvious concentration-dependence, including TCHMP and Na2HPO4 concentration. For Na2HPO4-induced TCHMP gels (TCHMPGs), gel strength and water holding capacity (WHC) increased, while the microcellular network structure was more compact with the increase of TCHMP and Na2HPO4 concentration. Dynamic viscoelastic experiment showed when Na2HPO4 concentration was more than or equal to 0.5 mol/L, TCHMP sols could be transferred into gels within 30 min. Crystal property was not changed while thermal stability was improved after phase transition. Gelling forces analysis indicated that disulfide bonds were the main interaction forces in TCHMPGs. Consequently, TCHMPGs were covalently crosslinked and exhibited satisfactory gel performance. The results provide a theoretical basis for the formation of gels by Na2HPO4 induced TCHMP.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China.
| | - Yanli Cui
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| |
Collapse
|
76
|
Al-Gorair AS, Sayed A, Mahmoud GA. Engineered Superabsorbent Nanocomposite Reinforced with Cellulose Nanocrystals for Remediation of Basic Dyes: Isotherm, Kinetic, and Thermodynamic Studies. Polymers (Basel) 2022; 14:567. [PMID: 35160555 PMCID: PMC8839526 DOI: 10.3390/polym14030567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, cellulose nanocrystals (CNCs) were produced from pea peels by acid hydrolysis to be used with pectin and acrylic acid (AAc) to form Pectin-PAAc/CNC nanocomposite by γ-irradiation. The structure, morphology, and properties of the nanocomposite were investigated using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) techniques. The nanocomposite hydrogel was used for the removal of methylene blue dye (MB) from wastewater. The results revealed that the presence of CNCs in the polymeric matrix enhances the swelling and adsorption properties of Pectin-PAAc/CNC. The optimum adsorbate concentration is 70 mg/L. The kinetic experimental data were fit by pseudo-first-order (PFO), pseudo-second-order (PSO), and Avrami (Avr) kinetic models. It was found that the kinetic models fit the adsorption of MB well where the correlation coefficients of all kinetic models are higher than 0.97. The Avr kinetic model has the lowest ∆qe (normalized standard deviation) value, making it the most suitable one for describing the adsorption kinetics. The adsorption isotherm of MB by Pectin-PAAc follows the Brouers-Sotolongo model while that by Pectin-PAAc/CNC follows the Langmuir isotherm model. The negative values of ∆G confirmed the spontaneous nature of adsorption, and the positive value of ∆H indicated the endothermic nature of the adsorption.
Collapse
Affiliation(s)
- Arej S. Al-Gorair
- Chemistry Department, College of Science Princess, Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Asmaa Sayed
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11787, Egypt;
| | - Ghada A. Mahmoud
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11787, Egypt;
| |
Collapse
|
77
|
Nesic A, Meseldzija S, Cabrera-Barjas G, Onjia A. Novel Biocomposite Films Based on High Methoxyl Pectin Reinforced with Zeolite Y for Food Packaging Applications. Foods 2022; 11:foods11030360. [PMID: 35159510 PMCID: PMC8834260 DOI: 10.3390/foods11030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Pectin is a natural biopolymer with broad applications in the food industry and it is suitable to prepare edible films to prolong food shelf-life. However, the main limitation of pectin-based films is their poor mechanical and barrier properties. Zeolite Y is a hydrophobic clay that can be used as film reinforcement material to improve its physicochemical and mechanical properties. In this work, the influence of high methoxyl citrus and apple pectin on physicochemical properties of biopolymer films modified with zeolite Y (0.05–0.2 wt%) was investigated. The films were characterized by FTIR, TGA, WAXD, mechanical analysis, and water vapor permeability analysis, and a potential film application is presented. The WAXD and FTIR analysis demonstrated that the strongest interaction between pectin chains and zeolite Y occurred when citrus high methylated pectin was used. Adding 0.2 wt% of zeolite Y into citrus high methylated pectin matrix enhanced the tensile strength by 66%, thermal stability by 13%, and water vapor barrier by 54%. In addition, fruit shelf-life test was performed, where strawberries were sealed in film. It was shown that sealed strawberries maintained a better color and healthy appearance than the control treatment after 7 days at 10 °C. This study enabled the development of biocomposite films with improved properties for potential application in food packaging.
Collapse
Affiliation(s)
- Aleksandra Nesic
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, BioBio, Concepción 3349001, Chile;
- Correspondence:
| | - Sladjana Meseldzija
- Department of Chemical Dynamics and Permanent Education, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, BioBio, Concepción 3349001, Chile;
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia;
| |
Collapse
|
78
|
Jana S, Das P, Mukherjee J, Banerjee D, Ghosh PR, Kumar Das P, Bhattacharya RN, Nandi SK. Waste-derived biomaterials as building blocks in the biomedical field. J Mater Chem B 2022; 10:489-505. [PMID: 35018942 DOI: 10.1039/d1tb02125g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments in the biomedical arena have led to the fabrication of innovative biomaterials by utilizing bioactive molecules obtained from biological wastes released from fruit and beverage processing industries, and fish, meat, and poultry industries. These biological wastes that end up in water bodies as well as in landfills are an affluent source of animal- and plant-derived proteins, bio ceramics and polysaccharides such as collagens, gelatins, chitins, chitosans, eggshell membrane proteins, hydroxyapatites, celluloses, and pectins. These bioactive molecules have been intricately designed into scaffolds and dressing materials by utilizing advanced technologies for drug delivery, tissue engineering, and wound healing relevance. These biomaterials are environment-friendly, biodegradable, and biocompatible, and show excellent tissue regeneration attributes. Additionally, being cost-effective they can reduce the burden on the healthcare system as well as provide a sustainable solution to waste management. In this review, the current trends in the utilization of plant and animal waste-derived biomaterials in various biomedical fields are considered along with a separate section on their applications as xenografts.
Collapse
Affiliation(s)
- Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Piyali Das
- Department of Microbiology, School of Life Sciences and Biotechnology, Adamas University, Barasat, West Bengal 700126, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| |
Collapse
|
79
|
SIQUEIRA RA, VERAS JML, SOUSA TLD, FARIAS PMD, OLIVEIRA FILHO JGD, BERTOLO MRV, EGEA MB, PLÁCIDO GR. Pequi mesocarp: a new source of pectin to produce biodegradable film for application as food packaging. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.71421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
80
|
Çavdaroğlu E, Yemenicioğlu A. Utilization of stalk waste separated during processing of sun-dried figs (Ficus carica) as a source of pectin: Extraction and determination of molecular and functional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
81
|
Extraction, characterization and gelling ability of pectins from Araçá (Psidium cattleianum Sabine) fruits. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
83
|
Singh A, Mandal UK, Narang RK. Development and In Vivo Evaluation of Pectin Based Enteric Coated Microparticles Loaded with Mesalamine and Saccharomyces boulardii for Management of Ulcerative Colitis. Assay Drug Dev Technol 2021; 20:22-34. [PMID: 34780287 DOI: 10.1089/adt.2021.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mesalamine is the first-line choice of drug for ulcerative colitis management. However, due to the nontargeted delivery of mesalamine, it shows side effects. The possible impact of mesalamine can be improved by coated microparticles in combination with S. boulardii for targeted delivery to the colon with the prevention of unwanted side effects. In this work, pectin-based mesalamine and S. boulardii loaded microparticles were prepared by dehydration technique and coated by an oil-in-oil solvent evaporation method and characterized by Scanning electron microscopy (SEM), X-ray diffraction, and zeta analysis. 2, 4, 6-Trinitrobenzenesulfonic acid was used for the induction of colitis. The anti-inflammatory effects of coated microparticles on Caco-2 cells were assessed by the determination of interleukin (IL)-8 concentration. In addition, the impact of coated microparticles on the concentration of colonic enzymes, including myeloperoxidase (MPO), lipid peroxides, and glutathione (GSH), were also evaluated. Moreover, hematological parameters, including white blood cell (WBC), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP), were assessed. SEM data revealed that all the prepared coated microparticles had an almost spherical shape. The X-ray powder diffraction analysis of uncoated and coated microparticles showed maximum stability without any interaction. The particle size of uncoated and coated microparticles was 9.14 and 15.61 μm, respectively. The zeta potential of uncoated and coated microparticles was observed to be -26.78 and -29.36 mV, respectively. The prepared coated microparticles decreased the levels of lipid peroxides, MPO, and GSH significantly in colitis. In the Caco-2 cell culture model, the concentration of IL-8 is decreased significantly. The hematological observations confirmed that the prepared formulation showed a promising decrease in the levels of WBC, CRP, and ESR in diseased animals. Animal experiments revealed that cellulose acetate phthalate coated microparticles of mesalamine and S. boulardii significantly improved the colitis disease conditions of Wistar rats. Hence, cellulose acetate phthalate-coated microparticles of mesalamine and S. boulardii could be recommended as adjuvant therapy to achieve a synergistic effect in the management of UC. Lay summary Mesalamine is the drug of choice for the management of ulcerative colitis (UC), which inhibits mediators responsible for inflammation. We investigated the in vivo effects of cellulose acetate phthalate-coated microparticles of mesalamine with Saccharomyces boulardii (probiotic) for their efficacy against UC. Our findings evidenced that the combination of mesalamine with S. boulardii showed a synergistic effect in the 2,4,6- trinitrobenzene sulfonic acid-induced colitis model by reducing the inflammation and maintains the macroscopic features. From the observed results, it can be concluded that S. boulardii can be used to enhance the individual drug's effect in the therapeutic management of UC.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India.,Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
84
|
Birania S, Kumar S, Kumar N, Attkan AK, Panghal A, Rohilla P, Kumar R. Advances in development of biodegradable food packaging material from agricultural and
agro‐industry
waste. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Nitin Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Anil Panghal
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Priyanka Rohilla
- Centre of Food Science and Technology, College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Ravi Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
85
|
Tan Z, Bilal M, Raza A, Cui J, Ashraf SS, Iqbal HMN. Expanding the Biocatalytic Scope of Enzyme-Loaded Polymeric Hydrogels. Gels 2021; 7:gels7040194. [PMID: 34842692 PMCID: PMC8628689 DOI: 10.3390/gels7040194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
In recent years, polymeric hydrogels have appeared promising matrices for enzyme immobilization to design, signify and expand bio-catalysis engineering. Therefore, the development and deployment of polymeric supports in the form of hydrogels and other robust geometries are continuously growing to green the twenty-first-century bio-catalysis. Furthermore, adequately fabricated polymeric hydrogel materials offer numerous advantages that shield pristine enzymes from denaturation under harsh reaction environments. For instance, cross-linking modulation of hydrogels, distinct rheological behavior, tunable surface entities along with elasticity and mesh size, larger surface-volume area, and hydrogels' mechanical cushioning attributes are of supreme interest makes them the ideal candidate for enzyme immobilization. Furthermore, suitable coordination of polymeric hydrogels with requisite enzyme fraction enables pronounced loading, elevated biocatalytic activity, and exceptional stability. Additionally, the unique catalytic harmony of enzyme-loaded polymeric hydrogels offers numerous applications, such as hydrogels as immobilization matrix, bio-catalysis, sensing, detection and monitoring, tissue engineering, wound healing, and drug delivery applications. In this review, we spotlight the applied perspective of enzyme-loaded polymeric hydrogels with recent and relevant examples. The work also signifies the combined use of multienzyme systems and the future directions that should be attempted in this field.
Collapse
Affiliation(s)
- Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
- Correspondence: (M.B.); (H.M.N.I.)
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China;
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Correspondence: (M.B.); (H.M.N.I.)
| |
Collapse
|
86
|
Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques- a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
87
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
88
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|
89
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
90
|
Campiglio CE, Carcano A, Draghi L. RGD-pectin microfiber patches for guiding muscle tissue regeneration. J Biomed Mater Res A 2021; 110:515-524. [PMID: 34423891 DOI: 10.1002/jbm.a.37301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Opportunely arranged microscaled fibers offer an attractive 3D architecture for tissue regeneration as they may enhance and stimulate specific tissue regrowth. Among different scaffolding options, encapsulating cells in degradable hydrogel microfibers appears as particularly attractive strategy. Hydrogel patches, in fact, offer a highly hydrated environment, allow easy incorporation of biologically active molecules, and can easily adapt to implantation site. In addition, microfiber architecture is intrinsically porous and can improve mass transport, vascularization, and cell survival after grafting. Anionic polysaccharides, as pectin or the more popular alginate, represent a particularly promising choice for the fabrication of cell-laden patches, due to their extremely mild gelation in the presence of divalent ions and widely accepted biocompatibility. In this study, to combine the favorable properties of hydrogel and fibrous architecture, a simple coaxial flow wet-spinning system was used to prepare cell-laden, 3D fibrous patches using RGD-modified pectin. Rapid fabrication of coherent self-standing patches, with diameter in the range of 100-200 μm and high cell density, was possible by accurate choice of pectin and calcium ions concentrations. Cells were homogeneously dispersed throughout the microfibers and remained highly viable for up to 2 weeks, when the initial stage of myotubes formation was observed. Modified-pectin microfibers appear as promising scaffold to support muscle tissue regeneration, due to their inherent porosity, the favorable cell-material interaction, and the possibility to guide cell alignment toward a functional tissue.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Anna Carcano
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
91
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
92
|
Lin D, Xiao L, Wen Y, Qin W, Wu D, Chen H, Zhang Q, Zhang Q. Comparison of apple polyphenol-gelatin binary complex and apple polyphenol-gelatin-pectin ternary complex: Antioxidant and structural characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
93
|
Sheng Z, Liu J, Yang B. Structure Differences of Water Soluble Polysaccharides in Astragalus membranaceus Induced by Origin and Their Bioactivity. Foods 2021; 10:1755. [PMID: 34441532 PMCID: PMC8395020 DOI: 10.3390/foods10081755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Astragalus membranaceus is a functional food with multiple bioactivities. It presents differentiated health benefits due to origins. Polysaccharides (APS) are the leading bioactive macromolecules of A. membranaceus, which are highly related to its health benefits. However, the effect of origin on the structural characteristics of APSs remains unclear. In this work, polysaccharides from four origins were isolated and identified by NMR. The results showed APSs of four origins had identical monosaccharide composition and glycosidic linkage. Rhamnogalacturonan II pectins and α-(1→4)-glucan were the dominant polysaccharides. However, the level of methyl ester in pectins varied to a large extent. The molecular weight profiles of APSs were also different. Inner Mongolia APS had the largest percentage of 20-40 kDa polysaccharides. Molecular weight and methyl ester level were two important parameters determining the difference of APSs from four origins. These results were helpful to recognize the origin-related quality of A. membranaceus.
Collapse
Affiliation(s)
- Zhili Sheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
94
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
95
|
Zhang S, He Z, Cheng Y, Xu F, Cheng X, Wu P. Physicochemical characterization and emulsifying properties evaluation of RG-I enriched pectic polysaccharides from Cerasus humilis. Carbohydr Polym 2021; 260:117824. [PMID: 33712165 DOI: 10.1016/j.carbpol.2021.117824] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022]
Abstract
Rhamnogalacturonan I (RG-I) enriched pectic polysaccharides were extracted from Cerasus humilis fruits (RPCF, RG-I: 74.46 %). Structural characterization including FTIR, XRD, NMR, HPAEC and SEM demonstrated that RPCF was a high-methoxy acetylated pectin macromolecule with abundant arabinose and galactose side chains (DM: 53.41 %, MW: 1098 kDa, (Ara + Gal)/Rha: 5.37 %). RPCF afforded additional lipid oxidation stability for emulsions, and exhibited significantly better emulsification performance than citrus pectin. In addition, RPCF formed a weak gel network that stabilized the emulsions (G' > G″). Interestingly, RPCF had behaviors that are divergent from those of commercial high-methoxy pectin because it demonstrated potential in forming sugar-free gels systems. Overall, Cerasus humilis is a new source of pectin rich in RG-I. RPCF can be used as a novel emulsifier with gelling and antioxidant effects, providing its alternative application as a natural emulsifier and rheological modifier in a wide range of products, including those with oil-in-water and low sugar.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yue Cheng
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Xinxin Cheng
- College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| |
Collapse
|
96
|
Osvaldt Rosales TK, Pessoa da Silva M, Lourenço FR, Aymoto Hassimotto NM, Fabi JP. Nanoencapsulation of anthocyanins from blackberry (Rubus spp.) through pectin and lysozyme self-assembling. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
97
|
Farion IA, Burdukovskii VF, Kholkhoev BC, Timashev PS. Unsaturated and thiolated derivatives of polysaccharides as functional matrixes for tissue engineering and pharmacology: A review. Carbohydr Polym 2021; 259:117735. [PMID: 33673996 DOI: 10.1016/j.carbpol.2021.117735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
This review examines investigations into the functionalization of polysaccharides by substituents containing multiple (CC) bonds and thiol (SH) groups that are prone to (co)polymerization in the presence of thermal, redox and photoinitiators or Michael addition reactions. A comparative analysis of the approaches to grafting the mentioned substituents onto the polysaccharide macromolecules was conducted. The use of the modified polysaccharides for the design of the 3D structures, including for the development of the pore bearing matrixes of cells or scaffolds utilized in regenerative medicine was examined. These modified polymers were also examined toward the design of excipient matrixes in pharmacological compositions, including with controllable release of active pharmaceuticals, as wel as of antibacterial and antifungal agents and others. In addition, a few examples of the use of modified derivatives in other areas are given.
Collapse
Affiliation(s)
- Ivan A Farion
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Vitalii F Burdukovskii
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Bato Ch Kholkhoev
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Kosygin str. 4, Moscow, 119991, Russian Federation; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, 119991, Russian Federation.
| |
Collapse
|
98
|
Ohlmaier-Delgadillo F, Carvajal-Millan E, López-Franco YL, Islas-Osuna MA, Micard V, Antoine-Assor C, Rascón-Chu A. Ferulated Pectins and Ferulated Arabinoxylans Mixed Gel for Saccharomyces boulardii Entrapment in Electrosprayed Microbeads. Molecules 2021; 26:molecules26092478. [PMID: 33922853 PMCID: PMC8123030 DOI: 10.3390/molecules26092478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Ferulated polysaccharides such as pectin and arabinoxylan form covalent gels which are attractive for drug delivery or cell immobilization. Saccharomyces boulardii is a probiotic yeast known for providing humans with health benefits; however, its application is limited by viability loss under environmental stress. In this study, ferulated pectin from sugar beet solid waste (SBWP) and ferulated arabinoxylan from maize bioethanol waste (AX) were used to form a covalent mixed gel, which was in turn used to entrap S. boulardii (2.08 × 108 cells/mL) in microbeads using electrospray. SBWP presented a low degree of esterification (30%), which allowed gelation through Ca2+, making it possible to reduce microbead aggregation and coalescence by curing the particles in a 2% CaCl2 cross-linking solution. SBWP/AX and SBWP/AX+ S. boulardii microbeads presented a diameter of 214 and 344 µm, respectively, and a covalent cross-linking content (dimers di-FA and trimer tri-FA of ferulic acid) of 1.15 mg/g polysaccharide. The 8-5′, 8-O-4′and 5-5′di-FA isomers proportions were 79%, 18%, and 3%, respectively. Confocal laser scanning microscopy images of propidium iodide-stained yeasts confirmed cell viability before and after microbeads preparation by electrospray. SBWP/AX capability to entrap S. boulardii would represent an alternative for probiotic immobilization in tailored biomaterials and an opportunity for sustainable waste upcycling to value-added products.
Collapse
Affiliation(s)
- Federico Ohlmaier-Delgadillo
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
- Correspondence: (E.C.-M.); (A.R.-C.); Tel.: +52-(662)-289-2400 (E.C.-M. & A.R.-C.)
| | - Yolanda L. López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
| | - María A. Islas-Osuna
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
| | - Valérie Micard
- IATE, INRAE, Institut Agro, University Montpellier, CEDEX 01, 34060 Montpellier, France; (V.M.); (C.A.-A.)
| | - Carole Antoine-Assor
- IATE, INRAE, Institut Agro, University Montpellier, CEDEX 01, 34060 Montpellier, France; (V.M.); (C.A.-A.)
| | - Agustín Rascón-Chu
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
- Correspondence: (E.C.-M.); (A.R.-C.); Tel.: +52-(662)-289-2400 (E.C.-M. & A.R.-C.)
| |
Collapse
|
99
|
Ng S, Kurisawa M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater 2021; 124:108-129. [PMID: 33472103 DOI: 10.1016/j.actbio.2021.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cultured meat has recently achieved mainstream prominence due to the emergence of societal and industrial interest. In contrast to animal-based production of traditional meat, the cultured meat approach entails laboratory cultivation of engineered muscle tissue. However, bioengineers have hitherto engineered tissues to fulfil biomedical endpoints, and have had limited experience in engineering muscle tissue for its post-mortem traits, which broadly govern consumer definitions of meat quality. Furthermore, existing tissue engineering approaches face fundamental challenges in technical feasibility and industrial scalability for cultured meat production. This review discusses how animal-based meat production variables influence meat properties at both the molecular and functional level, and whether current cultured meat approaches recapitulate these properties. In addition, this review considers how conventional meat producers employ exogenous biopolymer-based meat ingredients and processing techniques to mimic desirable meat properties in meat products. Finally, current biomaterial strategies for engineering muscle and adipose tissue are surveyed in the context of emerging constraints that pertain to cultured meat production, such as edibility, sustainability and scalability, and potential areas for integrating biomaterials and food biopolymer approaches to address these constraints are discussed. STATEMENT OF SIGNIFICANCE: Laboratory-grown or cultured meat has gained increasing interest from industry and the public, but currently faces significant impediment to market feasibility. This is due to fundamental knowledge gaps in producing realistic meat tissues via conventional tissue engineering approaches, as well as translational challenges in scaling up these approaches in an efficient, sustainable and high-volume manner. By defining the molecular basis for desirable meat quality attributes, such as taste and texture, and introducing the fundamental roles of food biopolymers in mimicking these properties in conventional meat products, this review aims to bridge the historically disparate fields of meat science and biomaterials engineering in order to inspire potentially synergistic strategies that address some of these challenges.
Collapse
|
100
|
Singh A, Mandal UK, Narang RK. Development and characterization of enteric coated pectin pellets containing mesalamine and Saccharomyces boulardii for specific inflamed colon: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|