51
|
Zhang L, Alfano J, Race D, Davé RN. Zero-order release of poorly water-soluble drug from polymeric films made via aqueous slurry casting. Eur J Pharm Sci 2018; 117:245-254. [PMID: 29499350 DOI: 10.1016/j.ejps.2018.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/29/2018] [Accepted: 02/26/2018] [Indexed: 11/27/2022]
Abstract
In spite of significant recent interest in polymeric films containing poorly water-soluble drugs, dissolution mechanism of thicker films has not been investigated. Consequently, release mechanisms of poorly water-soluble drugs from thicker hydroxypropyl methylcellulose (HPMC) films are investigated, including assessing thickness above which they exhibit zero-order drug release. Micronized, surface modified particles of griseofulvin, a model drug of BSC class II, were incorporated into aqueous slurry-cast films of different thicknesses (100, 500, 1000, 1500 and 2000 μm). Films 1000 μm and thicker were formed by either stacking two or more layers of ~500 μm, or forming a monolithic thick film. Compared to monolithic thick films, stacked films required simpler manufacturing process (easier casting, short drying time) and resulted in better critical quality attributes (appearance, uniformity of thickness and drug per unit area). Both the film forming approaches exhibited similar release profiles and followed the semi-empirical power law. As thickness increased from 100 μm to 2000 μm, the release mechanism changed from Fickian diffusion to zero-order release for films ≥1000 μm. The diffusional power law exponent, n, achieved value of 1, confirming zero-order release, whereas the percentage drug release varied linearly with sample surface area, and sample thickness due to fixed sample diameter. Thus, multi-layer hydrophilic polymer aqueous slurry-cast thick films containing poorly water-soluble drug particles provide a convenient dosage form capable of zero-order drug release with release time modulated through number of layers.
Collapse
Affiliation(s)
- Lu Zhang
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA
| | - Joy Alfano
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA
| | - Doran Race
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
52
|
Kevadiya BD, Barvaliya M, Zhang L, Anovadiya A, Brahmbhatt H, Paul P, Tripathi C. Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement. Bioengineering (Basel) 2018; 5:bioengineering5010016. [PMID: 29438297 PMCID: PMC5874882 DOI: 10.3390/bioengineering5010016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Manish Barvaliya
- Department of Pharmacology, Government Medical College, Bhavnagar 364002, Gujarat, India.
| | - Lu Zhang
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Ashish Anovadiya
- Department of Pharmacology, Government Medical College, Bhavnagar 364002, Gujarat, India.
| | - Harshad Brahmbhatt
- Analytical Discipline and Centralized Instrument Facility, The Academy of Scientific & Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002, Gujarat, India.
| | - Parimal Paul
- Analytical Discipline and Centralized Instrument Facility, The Academy of Scientific & Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002, Gujarat, India.
| | - Chandrabhanu Tripathi
- Department of Pharmacology, Government Medical College, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
53
|
Zhang L, Li Y, Abed M, Davé RN. Incorporation of surface-modified dry micronized poorly water-soluble drug powders into polymer strip films. Int J Pharm 2017; 535:462-472. [PMID: 29170115 DOI: 10.1016/j.ijpharm.2017.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
Abstract
Recent work has established polymer strip films as a robust platform for delivery of poorly water-soluble drugs via slurry casting, in particular using stable drug nanosuspensions. Here, a simpler, robust method to directly incorporate dry micronized poorly water-soluble drug, fenofibrate (FNB), is introduced. As a major novelty, simultaneous surface modification using hydrophilic silica along with micronization was done using fluid energy mill (FEM) in order to reduce FNB hydrophobicity and powder agglomeration. It is hypothesized that silica coating promotes easy, uniform dispersion of micronized and coated FNB (MC-FNB) during direct mixing with aqueous hydroxypropyl methylcellulose (HPMC-E15LV) and glycerin solutions. Uniform dispersion leads to improved film critical quality attributes (CQAs) such as appearance, drug content uniformity and drug dissolution. The impact of polymer solution viscosity (low and high), mixer type (low versus high shear), and FNB surface modification on film CQAs were also assessed. Films with as-received FNB (AR-FNB) and micronized uncoated FNB (MU-FNB) were prepared as control. When MC-FNB powders were used, films exhibited improved appearance (thickness uniformity, visible lumps/agglomerates), better drug content uniformity (expressed as relative standard deviation), fast and immediate drug release, and enhanced mechanical properties (tensile strength, elongation percentage), regardless of the polymer solution viscosity or mixer type. These results compare favorably with those reported using nanosuspensions of FNB, establishing the feasibility of directly incorporating surface modified-micronized poorly water-soluble drug powders in film manufacturing.
Collapse
Affiliation(s)
- Lu Zhang
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yidong Li
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA
| | - Manal Abed
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
54
|
Vuddanda PR, Montenegro-Nicolini M, Morales JO, Velaga S. Effect of surfactants and drug load on physico-mechanical and dissolution properties of nanocrystalline tadalafil-loaded oral films. Eur J Pharm Sci 2017; 109:372-380. [DOI: 10.1016/j.ejps.2017.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023]
|
55
|
Steiner D, Finke JH, Kwade A. Redispersion of Nanoparticle-Loaded Orodispersible Films: Preservation of Particle Fineness. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201600139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Denise Steiner
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Straße 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Straße 35a 38106 Braunschweig Germany
| | - Jan Henrik Finke
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Straße 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Straße 35a 38106 Braunschweig Germany
| | - Arno Kwade
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Straße 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Straße 35a 38106 Braunschweig Germany
| |
Collapse
|
56
|
Mazumder S, Pavurala N, Manda P, Xu X, Cruz CN, Krishnaiah YSR. Quality by Design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films. Int J Pharm 2017; 527:151-160. [PMID: 28549972 DOI: 10.1016/j.ijpharm.2017.05.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 01/07/2023]
Abstract
The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA.
Collapse
Affiliation(s)
- Sonal Mazumder
- US Food & Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Naresh Pavurala
- US Food & Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Prashanth Manda
- US Food & Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Xiaoming Xu
- US Food & Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Celia N Cruz
- US Food & Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Yellela S R Krishnaiah
- US Food & Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
57
|
Göke K, Lorenz T, Repanas A, Schneider F, Steiner D, Baumann K, Bunjes H, Dietzel A, Finke JH, Glasmacher B, Kwade A. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur J Pharm Biopharm 2017; 126:40-56. [PMID: 28532676 DOI: 10.1016/j.ejpb.2017.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
Low aqueous solubility of active pharmaceutical ingredients presents a serious challenge in the development process of new drug products. This article provides an overview on some of the current approaches for the formulation of poorly water-soluble drugs with a special focus on strategies pursued at the Center of Pharmaceutical Engineering of the TU Braunschweig. These comprise formulation in lipid-based colloidal drug delivery systems and experimental as well as computational approaches towards the efficient identification of the most suitable carrier systems. For less lipophilic substances the preparation of drug nanoparticles by milling and precipitation is investigated for instance by means of microsystem-based manufacturing techniques and with special regard to the preparation of individualized dosage forms. Another option to overcome issues with poor drug solubility is the incorporation into nanospun fibers.
Collapse
Affiliation(s)
- Katrin Göke
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Thomas Lorenz
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Alexandros Repanas
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Frederic Schneider
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Denise Steiner
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Knut Baumann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Jan H Finke
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Birgit Glasmacher
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Arno Kwade
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
58
|
Downstream drug product processing of itraconazole nanosuspension: Factors influencing drug particle size and dissolution from nanosuspension-layered beads. Int J Pharm 2017; 524:443-453. [DOI: 10.1016/j.ijpharm.2017.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/20/2022]
|
59
|
Krull SM, Moreno J, Li M, Bilgili E, Davé RN. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading. Int J Pharm 2017; 523:33-41. [PMID: 28315716 DOI: 10.1016/j.ijpharm.2017.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films.
Collapse
Affiliation(s)
- Scott M Krull
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jacqueline Moreno
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Meng Li
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Ecevit Bilgili
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Rajesh N Davé
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
60
|
Lee IW, Li J, Chen X, Park HJ. Fabrication of electrospun antioxidant nanofibers by rutin-pluronic solid dispersions for enhanced solubility. J Appl Polym Sci 2017. [DOI: 10.1002/app.44859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Il Woo Lee
- College of Life Sciences and Biotechnology; Korea University; 5-Ka, Anam-Dong, Sungbuk-Ku Seoul 136-701 Republic of Korea
| | - Jinglei Li
- College of Biotechnology and Food Engineering; Hefei University of Technology; Hefei 230009 China
| | - Xiguang Chen
- College of Marine Life Science; Ocean University of China; Qingdao Shandong 266003 People's Republic of China
| | - Hyun Jin Park
- College of Life Sciences and Biotechnology; Korea University; 5-Ka, Anam-Dong, Sungbuk-Ku Seoul 136-701 Republic of Korea
| |
Collapse
|
61
|
Dong Y, Mosquera-Giraldo LI, Taylor LS, Edgar KJ. Tandem modification of amphiphilic cellulose ethers for amorphous solid dispersion via olefin cross-metathesis and thiol-Michael addition. Polym Chem 2017. [DOI: 10.1039/c7py00228a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tandem olefin cross-metathesis (CM) and thiol-Michael addition for modification of cellulose derivatives”.
Collapse
Affiliation(s)
- Yifan Dong
- Department of Sustainable Biomaterials
- Virginia Tech
- Blacksburg
- USA
- Department of Chemistry
| | | | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
- Purdue University
- West Lafayette
- USA
| | - Kevin J. Edgar
- Department of Sustainable Biomaterials
- Virginia Tech
- Blacksburg
- USA
- Macromolecules Innovation Institute
| |
Collapse
|
62
|
Lee Y, Thapa P, Jeong SH, Woo MH, Choi DH. Formulation Optimization and in Vitro Characterization of Orally Disintegrating Films Using a Factorial Design and Mathematical Modeling for Drug Release. Chem Pharm Bull (Tokyo) 2017; 65:166-177. [DOI: 10.1248/cpb.c16-00757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yeongbin Lee
- Department of Pharmaceutical Engineering, Inje University
| | | | | | - Mi Hee Woo
- College of Pharmacy, Catholic University of Daegu
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University
| |
Collapse
|
63
|
Hifumi H, Ewing AV, Kazarian SG. ATR-FTIR spectroscopic imaging to study the drying and dissolution of pharmaceutical polymer-based films. Int J Pharm 2016; 515:57-68. [DOI: 10.1016/j.ijpharm.2016.09.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
64
|
Prasad LK, LaFountaine JS, Keen JM, Williams RO, McGinity JW. Influence of process parameters on the preparation of pharmaceutical films by electrostatic powder deposition. Int J Pharm 2016; 515:94-103. [DOI: 10.1016/j.ijpharm.2016.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
|
65
|
Krull SM, Ammirata J, Bawa S, Li M, Bilgili E, Davé RN. Critical Material Attributes of Strip Films Loaded With Poorly Water-Soluble Drug Nanoparticles: II. Impact of Polymer Molecular Weight. J Pharm Sci 2016; 106:619-628. [PMID: 27871727 DOI: 10.1016/j.xphs.2016.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/30/2022]
Abstract
Recent work established polymer strip films as a robust platform for delivery of poorly water-soluble drug particles. However, a simple means of manipulating rate of drug release from films with minimal impact on film mechanical properties has yet to be demonstrated. This study explores the impact of film-forming polymer molecular weight (MW) and concentration on properties of polymer films loaded with poorly water-soluble drug nanoparticles. Nanoparticles of griseofulvin, a model Biopharmaceutics Classification System class II drug, were prepared in aqueous suspension via wet stirred media milling. Aqueous solutions of 3 viscosity grades of hydroxypropyl methylcellulose (14, 21, and 88 kDa) at 3 viscosity levels (∼9500, ∼12,000, and ∼22,000 cP) were mixed with drug suspension, cast, and dried to produce films containing griseofulvin nanoparticles. Few differences in film tensile strength or elongation at break were observed between films within each viscosity level regardless of polymer MW despite requiring up to double the time to achieve 100% drug release. This suggests film-forming polymer MW can be used to manipulate drug release with little impact on film mechanical properties by matching polymer solution viscosity. In addition, changing polymer MW and concentration had no negative impact on drug content uniformity or nanoparticle redispersibility.
Collapse
Affiliation(s)
- Scott M Krull
- Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Jennifer Ammirata
- Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Sonia Bawa
- Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Meng Li
- Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Ecevit Bilgili
- Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Rajesh N Davé
- Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102.
| |
Collapse
|
66
|
Senta-Loys Z, Bourgeois S, Pailler-Mattei C, Agusti G, Briançon S, Fessi H. Formulation of orodispersible films for paediatric therapy: investigation of feasibility and stability for tetrabenazine as drug model. J Pharm Pharmacol 2016; 69:582-592. [DOI: 10.1111/jphp.12627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/26/2016] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
Orodispersible films (ODF) were formulated to facilitate tetrabenazine (TBZ) administration to paediatric population for the treatment of hyperkinetic movement disorders.
Methods
ODF were obtained by solvent casting/evaporation method using four different polymers (HPMC, PVP, pullulan and HEC). Physicochemical, mechanical and biopharmaceutical characterizations as well as API state in ODF by thermal analysis were investigated to define and compare formulations. ODF stability was also monitored during 6 months to follow evolution of properties.
Key findings
Analyses at T0 showed few differences between formulations: results of physicochemical and mechanical characterizations were almost similar for each formulation and TBZ appeared at the amorphous state in all cases. ODF delivery system allowed a major improvement of TBZ dissolution profile in buccal conditions compared with pure drug. However, after 3 and 6 months of stability, a TBZ recrystallization occurred for formulations based on PVP and HEC associated with a decrease of drug release in saliva conditions.
Conclusions
HPMC-ODF (F1) appeared as the best formulation. Indeed, physicochemical, mechanical and biopharmaceutical characteristic remained intact. In addition, TBZ remained in amorphous state during stability study.
Collapse
Affiliation(s)
- Zoé Senta-Loys
- Université de Lyon, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, Villeurbanne, France
| | - Sandrine Bourgeois
- Université de Lyon, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, Villeurbanne, France
- Université de Lyon, Université Lyon 1, ISPB-Faculté de Pharmacie, Lyon, France
| | - Cyril Pailler-Mattei
- Université de Lyon, Université Lyon 1, ISPB-Faculté de Pharmacie, Lyon, France
- Université de Lyon, Ecole Centrale de Lyon, Laboratoire de Tribologie et Dynamique des Systémes, UMR CNRS 5513, Ecully, France
| | - Géraldine Agusti
- Université de Lyon, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, Villeurbanne, France
| | - Stéphanie Briançon
- Université de Lyon, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, Villeurbanne, France
- Université de Lyon, Université Lyon 1, ISPB-Faculté de Pharmacie, Lyon, France
| | - Hatem Fessi
- Université de Lyon, Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR CNRS 5007, Villeurbanne, France
- Université de Lyon, Université Lyon 1, ISPB-Faculté de Pharmacie, Lyon, France
| |
Collapse
|
67
|
Steiner D, Finke JH, Kwade A. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill. Int J Pharm 2016; 511:804-13. [PMID: 27477101 DOI: 10.1016/j.ijpharm.2016.07.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 11/19/2022]
Abstract
Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved.
Collapse
Affiliation(s)
- Denise Steiner
- Institute for Particle Technology, Technische Universität Braunschweig, PVZ-Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Germany.
| | - Jan Henrik Finke
- Institute for Particle Technology, Technische Universität Braunschweig, PVZ-Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Germany
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, PVZ-Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Germany
| |
Collapse
|
68
|
Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution. Eur J Pharm Sci 2016; 92:146-55. [PMID: 27402100 DOI: 10.1016/j.ejps.2016.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.
Collapse
|
69
|
Chonkar AD, Rao JV, Managuli RS, Mutalik S, Dengale S, Jain P, Udupa N. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur J Pharm Biopharm 2016; 103:179-191. [DOI: 10.1016/j.ejpb.2016.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
|
70
|
Nanomilling of Drugs for Bioavailability Enhancement: A Holistic Formulation-Process Perspective. Pharmaceutics 2016; 8:pharmaceutics8020017. [PMID: 27213434 PMCID: PMC4932480 DOI: 10.3390/pharmaceutics8020017] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 11/17/2022] Open
Abstract
Preparation of drug nanoparticles via wet media milling (nanomilling) is a very versatile drug delivery platform and is suitable for oral, injectable, inhalable, and buccal applications. Wet media milling followed by various drying processes has become a well-established and proven formulation approach especially for bioavailability enhancement of poorly water-soluble drugs. It has several advantages such as organic solvent-free processing, tunable and relatively high drug loading, and applicability to a multitude of poorly water-soluble drugs. Although the physical stability of the wet-milled suspensions (nanosuspensions) has attracted a lot of attention, fundamental understanding of the process has been lacking until recently. The objective of this review paper is to present fundamental insights from available published literature while summarizing the recent advances and highlighting the gap areas that have not received adequate attention. First, stabilization by conventionally used polymers/surfactants and novel stabilizers is reviewed. Then, a fundamental understanding of the process parameters, with a focus on wet stirred media milling, is revealed based on microhydrodynamic models. This review is expected to bring a holistic formulation-process perspective to the nanomilling process and pave the way for robust process development scale-up. Finally, challenges are indicated with a view to shedding light on future opportunities.
Collapse
|
71
|
Hédoux A. Recent developments in the Raman and infrared investigations of amorphous pharmaceuticals and protein formulations: A review. Adv Drug Deliv Rev 2016; 100:133-46. [PMID: 26686831 DOI: 10.1016/j.addr.2015.11.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
The success rate for drug discovery and the development of innovative therapeutic strategies are intimately related to the physical properties of the solid-state condensed matter, which have direct influence on the bioavailability of Active Pharmaceutical Ingredients. In order to transform a new molecule in efficient drug, the material is brought into an amorphous state using various manufacturing processes including freeze drying, spray drying, hot melt extrusion and loading in different delivery devices. The infrared and Raman spectroscopic analyses used for exploring disordered and amorphous states, for the monitoring of the drug physical stability in drug delivery systems are described in this review.
Collapse
|
72
|
Prasad LK, McGinity JW, Williams RO. Electrostatic powder coating: Principles and pharmaceutical applications. Int J Pharm 2016; 505:289-302. [DOI: 10.1016/j.ijpharm.2016.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 11/26/2022]
|
73
|
Li M, Zhang L, Davé RN, Bilgili E. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions. AAPS PharmSciTech 2016; 17:389-99. [PMID: 26182907 DOI: 10.1208/s12249-015-0364-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/07/2015] [Indexed: 11/30/2022] Open
Abstract
As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.
Collapse
|
74
|
Maher EM, Ali AMA, Salem HF, Abdelrahman AA. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv 2016; 23:3088-3100. [DOI: 10.3109/10717544.2016.1153746] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eman Magdy Maher
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt,
| | - Ahmed Mahmoud Abdelhaleem Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt,
- Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia, and
| | - Heba Farouk Salem
- Department of Pharmaceutics, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt,
| | | |
Collapse
|
75
|
A new biorelevant dissolution method for orodispersible films. Eur J Pharm Biopharm 2016; 98:20-5. [DOI: 10.1016/j.ejpb.2015.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/02/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022]
|
76
|
Mota-Aguilar DA, Velázquez C. Dynamics of the dry premixing stage of a hydrophobic formulation and potential implications on the wet granulation process. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
77
|
Prasad LK, Keen JM, LaFountaine JS, Maincent J, Williams RO, McGinity JW. Electrostatic powder deposition to prepare films for drug delivery. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
78
|
Krull SM, Ma Z, Li M, Davé RN, Bilgili E. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement. Drug Dev Ind Pharm 2015; 42:1073-85. [PMID: 26567632 DOI: 10.3109/03639045.2015.1107094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study is to assess pullulan as a novel steric stabilizer during the wet-stirred media milling (WSMM) of griseofulvin, a model poorly water-soluble drug, and as a film-former in the preparation of strip films via casting-drying the wet-milled drug suspensions for dissolution and bioavailability enhancement. To this end, pullulan films, with xanthan gum (XG) as thickening agent and glycerin as plasticizer, were loaded with griseofulvin nanoparticles prepared by WSMM using pullulan in combination with sodium dodecyl sulfate (SDS) as an ionic stabilizer. The effects of drug loading and milling time on the particle size and suspension stability were investigated, as well as XG concentration and casting thickness on film properties and dissolution rate. The nanosuspensions prepared with pullulan-SDS combination were relatively stable over 7 days; hence, this combination was used for the film preparation. All pullulan-based strip films exhibited excellent content uniformity (most <3% RSD) despite containing only 0.3-1.3 mg drug, which was ensured by the use of precursor suspensions with >5000 cP viscosity. USP IV dissolution tests revealed fast/immediate drug release (t80 < 30 min) from films <120 μm thick. Thinner films, films with lower XG loading, or smaller drug particles led to faster drug dissolution, while drug loading had no discernible effect. Overall, these results suggest that pullulan may serve as an acceptable stabilizer for media milling in combination with surfactant as well as a fast-dissolving film former for the fast release of poorly water-soluble drug nanoparticles.
Collapse
Affiliation(s)
- Scott M Krull
- a Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering , New Jersey Institute of Technology , Newark , NJ , USA
| | - Zhelun Ma
- a Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering , New Jersey Institute of Technology , Newark , NJ , USA
| | - Meng Li
- a Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering , New Jersey Institute of Technology , Newark , NJ , USA
| | - Rajesh N Davé
- a Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering , New Jersey Institute of Technology , Newark , NJ , USA
| | - Ecevit Bilgili
- a Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering , New Jersey Institute of Technology , Newark , NJ , USA
| |
Collapse
|
79
|
Novel use of superdisintegrants as viscosity enhancing agents in biocompatible polymer films containing griseofulvin nanoparticles. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
80
|
Wang Y, Song J, Chow SF, Chow AHL, Zheng Y. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation. Int J Pharm 2015; 494:479-89. [PMID: 26302857 DOI: 10.1016/j.ijpharm.2015.08.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023]
Abstract
The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles.
Collapse
Affiliation(s)
- Yancai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Ju Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Beijing Aohe Pharmaceutical Research Institute Co. Ltd., Beijing 101113, China
| | - Shing Fung Chow
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Albert H L Chow
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
81
|
Incorporation of Fenofibrate Nanoparticles Prepared by Melt Emulsification into Polymeric Films. J Pharm Innov 2015. [DOI: 10.1007/s12247-015-9237-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
82
|
Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 2015; 495:738-49. [PMID: 26383838 DOI: 10.1016/j.ijpharm.2015.09.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022]
Abstract
In recent years, nanosuspension has been considered effective in the delivery of water-soluble drugs. One of the main challenges to effective drug delivery is designing an appropriate nanosuspension preparation approach with low energy input and erosion contamination, such as the bottom-up method. This review focuses on bottom-up technologies for preparation of nanosuspensions. The features and advantages of drug nanosuspension, including bottom-up methods as well as the corresponding characterization techniques, solidification methods, and drug delivery dosage forms, are discussed in detail. Certain limitations of commercial nanosuspension products are also reviewed.
Collapse
Affiliation(s)
- Juan Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Xiaoguang Li
- Hospital, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Huanxin Zhao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, PR China
| | - Yuqi Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Lulu Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China.
| | - Shushu Tian
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Yancai Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| |
Collapse
|
83
|
Woertz C, Kleinebudde P. Development of orodispersible polymer films containing poorly water soluble active pharmaceutical ingredients with focus on different drug loadings and storage stability. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
84
|
Oral films as breakthrough tools for oral delivery of proteins/peptides. J Control Release 2015; 211:63-73. [DOI: 10.1016/j.jconrel.2015.05.258] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023]
|
85
|
Development of orodispersible polymer films with focus on the solid state characterization of crystalline loperamide. Eur J Pharm Biopharm 2015; 94:52-63. [DOI: 10.1016/j.ejpb.2015.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/22/2022]
|
86
|
Kontogiorgos V, Smith AM, Morris GA. The parallel lives of polysaccharides in food and pharmaceutical formulations. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
87
|
Smith GP, McGoverin CM, Fraser SJ, Gordon KC. Raman imaging of drug delivery systems. Adv Drug Deliv Rev 2015; 89:21-41. [PMID: 25632843 DOI: 10.1016/j.addr.2015.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/05/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
This review article includes an introduction to the principals of Raman spectroscopy, an outline of the experimental systems used for Raman imaging and the associated important considerations and limitations of this method. Common spectral analysis methods are briefly described and examples of interesting published studies which utilised Raman imaging of pharmaceutical and biomedical devices are discussed, along with summary tables of the literature at this point in time.
Collapse
|
88
|
Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.12.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
89
|
Li M, Yaragudi N, Afolabi A, Dave R, Bilgili E. Sub-100nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
90
|
|
91
|
Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles. Int J Pharm 2015; 489:45-57. [PMID: 25888803 DOI: 10.1016/j.ijpharm.2015.04.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/05/2015] [Accepted: 04/12/2015] [Indexed: 11/21/2022]
Abstract
The robustness of the polymer strip film platform to successfully deliver a variety of BCS Class II drug nanoparticles without the need for surfactant while retaining positive characteristics such as nanoparticle redispersibility and fast dissolution is demonstrated. Fenofibrate (FNB), griseofulvin (GF), naproxen (NPX), phenylbutazone (PB), and azodicarbonamide (AZD) were considered as model poorly water-soluble drugs. Their aqueous nanosuspensions, produced via wet stirred media milling, were mixed with hydroxypropyl methylcellulose solution containing glycerin as plasticizer, followed by casting and drying to form films. For the purpose of comparison, sodium dodecyl sulfate (SDS) was used as surfactant, but was found to be unnecessary for achieving fast dissolution (t80 between 18 and 28 min) for all five drugs. Interestingly, SDS was required for the full recovery of nanoparticles for PB, yet lack of it did not impact the dissolution. Interactions between drug and polymer were investigated with FTIR spectroscopy whereas drug crystallinity within the film was investigated via Raman spectroscopy. Films for all drugs, even for very small samples, exhibited excellent content uniformity (RSD <4%) regardless of use of surfactant. Overall, these results demonstrate the novelty and robustness of the polymer strip film platform for fast release of poorly water-soluble drugs without requiring any surfactants.
Collapse
|
92
|
Bilgili E, Li M, Afolabi A. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions? Pharm Dev Technol 2015; 21:499-510. [DOI: 10.3109/10837450.2015.1022788] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
93
|
In vitro dissolution testing of oral thin films: A comparison between USP 1, USP 2 apparatuses and a new millifluidic flow-through device. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2014.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
94
|
Nechifor CD, Barzic AI, Stoica I, Cloşca V, Dorohoi DO. Study on glucose release ability from hydroxypropyl cellulose films. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-014-1291-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
95
|
Farid M, El-Setouhy DA, El-Nabarawi MA, El-Bayomi T. Particle engineering/different film approaches for earlier absorption of meloxicam. Drug Deliv 2014; 23:2309-2317. [DOI: 10.3109/10717544.2014.982262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Motaz Farid
- National Organization for Drug Control and Research, Cairo, Egypt and
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Ahmed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tahany El-Bayomi
- National Organization for Drug Control and Research, Cairo, Egypt and
| |
Collapse
|
96
|
Yuminoki K, Seko F, Horii S, Takeuchi H, Teramoto K, Nakada Y, Hashimoto N. Preparation and Evaluation of High Dispersion Stable Nanocrystal Formulation of Poorly Water‐Soluble Compounds by Using Povacoat. J Pharm Sci 2014; 103:3772-3781. [DOI: 10.1002/jps.24147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/07/2022]
|
97
|
Xu LL, Shi LL, Cao QR, Xu WJ, Cao Y, Zhu XY, Cui JH. Formulation and in vitro characterization of novel sildenafil citrate-loaded polyvinyl alcohol-polyethylene glycol graft copolymer-based orally dissolving films. Int J Pharm 2014; 473:398-406. [DOI: 10.1016/j.ijpharm.2014.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/16/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022]
|
98
|
Zhang J, Ying Y, Pielecha-Safira B, Bilgili E, Ramachandran R, Romañach R, Davé RN, Iqbal Z. Raman spectroscopy for in-line and off-line quantification of poorly soluble drugs in strip films. Int J Pharm 2014; 475:428-37. [PMID: 25173638 DOI: 10.1016/j.ijpharm.2014.08.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Raman spectroscopy was used as a process analytical technology (PAT) tool for in-line measurement of active pharmaceutical ingredient (API) content during continuous manufacturing of strip films containing nanoparticles of poorly water-soluble APIs. Fenofibrate and naproxen were used as model APIs, whose concentrations ranged from 3% to 26% (w/w) in the model calibration. For both in-line and off-line measurements, calibration models employed partial least square (PLS) analysis, yielding correlation coefficients (R(2)) greater than 0.9946 and root mean squared error of calibration (RMSEC) of about 0.44%, indicating the validity and accuracy of the calibration. The robustness of Raman spectroscopy as a PAT tool was established by considering three processing parameters after substrate interference correction: sensing location, substrate speed and film thickness. Calibration models for each API were validated using a separate batch of strip films by predicting the API concentrations to within ±1.3%. Principal component analysis (PCA) was used to explain the interactions between processing variables and calibration models, which suggest that besides API concentration, film thickness could also be monitored using Raman spectroscopy. The results demonstrate the potential of Raman spectroscopy as an effective PAT tool for novel strip film manufacturing process, facilitating detection of drug form and concentration in real-time.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ye Ying
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Ecevit Bilgili
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rohit Ramachandran
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Rodolfo Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Puerto Rico, USA
| | - Rajesh N Davé
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Zafar Iqbal
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
99
|
Chin WWL, Parmentier J, Widzinski M, Tan EH, Gokhale R. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci 2014; 103:2980-99. [PMID: 25099918 DOI: 10.1002/jps.24098] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 11/07/2022]
Abstract
Particle size reduction can be used for enhancing the dissolution of poorly water-soluble drugs in order to enhance bioavailability. In nanosuspensions, the particle size of the drug is reduced to nanometer size. Nanosuspensions after downstream processing into drug products have successfully shown its impact on formulation design, the augmentation of product life cycle, patent life, and therapeutic efficacy. Formulation considerations for the nanosuspension formulation, its processing into a solid form, and aspects of material characterization are discussed. Technology assessments and feasibility of upstream processes for nanoparticle creation, and subsequently transformation into a drug product via the downstream processes have been reviewed. This paper aims to bridge formulation and process considerations along with patent reviews and may provide further insight into understanding the science and the white space. An analysis of current patent outlook and future trends is described to fully understand the limitations and opportunities in intellectual property generation.
Collapse
Affiliation(s)
- William Wei Lim Chin
- AbbVie Pte Ltd., Global Pharmaceutical Research and Development, 11 Biopolis Way, Helios #05-06, 138667, Singapore
| | | | | | | | | |
Collapse
|
100
|
Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release 2014; 183:51-66. [PMID: 24667572 DOI: 10.1016/j.jconrel.2014.03.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
Formulation of nanocrystals is a robust approach which can improve delivery of poorly water soluble drugs, a challenge pharmaceutical industry has been facing since long. Large scale production of nanocrystals is done by techniques like precipitation, media milling and, high pressure homogenization. Application of appropriate stabilizers along with drying accords long term stability and commercial viability to nanocrystals. These can be administered through oral, parenteral, pulmonary, dermal and ocular routes showing their high therapeutic applicability. They serve to target drug molecules in specific regions through size manipulation and surface modification. This review dwells upon the in-vivo fate and varying applications in addition to the facets of drug nanocrystals stated above.
Collapse
Affiliation(s)
- Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Siddharth Gupta
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|