51
|
Pandey SS, Patel MA, Desai DT, Patel HP, Gupta AR, Joshi SV, Shah DO, Maulvi FA. Bioavailability enhancement of repaglinide from transdermally applied nanostructured lipid carrier gel: Optimization, in vitro and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101731] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Evaluation of lipid nanoparticles for topical delivery of protocatechuic acid and ethyl protocatechuate as a new photoprotection strategy. Int J Pharm 2020; 582:119336. [DOI: 10.1016/j.ijpharm.2020.119336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/12/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
|
53
|
Simon L, Lapinte V, Lionnard L, Marcotte N, Morille M, Aouacheria A, Kissa K, Devoisselle J, Bégu S. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. Int J Pharm 2020; 579:119126. [DOI: 10.1016/j.ijpharm.2020.119126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023]
|
54
|
Lacatusu I, Istrati D, Bordei N, Popescu M, Seciu A, Panteli L, Badea N. Synergism of plant extract and vegetable oils-based lipid nanocarriers: Emerging trends in development of advanced cosmetic prototype products. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110412. [DOI: 10.1016/j.msec.2019.110412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
|
55
|
Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17:357-377. [PMID: 32064958 DOI: 10.1080/17425247.2020.1727883] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: From a biopharmaceutical standpoint, the skin is recognized as an interesting route for drug delivery. In general, small molecules are able to penetrate the stratum corneum, the outermost layer of the skin. In contrast, the delivery of larger molecules, such as peptides and proteins, remains a challenge. Nanoparticles have been exploited not only to enhance skin penetration of drugs but also to expand the range of molecules to be clinically used.Areas covered: This review focus on Solid lipid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) for skin administration. We discuss the selection criteria for lipids, surfactants, and surface modifiers commonly in use in SLN/NLC, their production techniques, and the range of drugs loaded in these lipid nanoparticles for the treatment of skin disorders.Expert opinion: Depending on the lipid and surfactant composition, different nanoparticle morphologies can be generated. Both SLN and NLC are composed of lipids that resemble those of the skin and sebum, which contribute to their enhanced biocompatibility, with limited toxicological risk. SLN and NLC can be loaded with very chemically different drugs, may provide a tunable release profile, can be produced in a sterilized environment, and be scaled-up without the need for organic solvents.
Collapse
Affiliation(s)
- Eliana B Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Iara Baldim
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.,Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Wanderley P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Nitesh Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Francisco M Gama
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
56
|
Hussain A, Altamimi MA, Alshehri S, Imam SS, Shakeel F, Singh SK. Novel Approach for Transdermal Delivery of Rifampicin to Induce Synergistic Antimycobacterial Effects Against Cutaneous and Systemic Tuberculosis Using a Cationic Nanoemulsion Gel. Int J Nanomedicine 2020; 15:1073-1094. [PMID: 32103956 PMCID: PMC7027864 DOI: 10.2147/ijn.s236277] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/14/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose This study demonstrated improved transdermal delivery of rifampicin-loaded cationic nanoemulsion gel to treat systemic and cutaneous tuberculosis using capmul, labrasol, and acconon, which exert anti-Mycobacterium activities. This approach enhanced drug permeation across the skin, increased therapeutic efficacy, and reduced dose-related side effects. Methods Design Expert® was used to optimize formulations (Smix ratio and capmul as independent factors), which were prepared using a slow spontaneous titration method. The optimized nanoemulsion was incorporated into carbopol gel to allow for topical application and comparative assessments. Nanoemulsions and gels were evaluated for size, size distribution, shape, zeta potential, percent spread, viscosity, in vitro hemolysis, in vitro release, and ex vivo skin permeation and deposition. A mechanistic evaluation was performed using scanning electron microscopy. Furthermore, in vivo pharmacokinetic and irritation studies were performed. Results The optimized cationic nanoemulsion (OCNE-1) was characterized by small particle size (≤100 nm), had optimal viscosity, percent spread, zeta potential, and percent drug release, and was hemocompatible. The OCNE-1T gel exhibited higher permeation flux (51.32 ± 0.5 µg/cm2 hr), permeation coefficient (2.566 ± 0.08 cm/hr), drug deposition (994.404 µg/cm2), and enhancement ratio (7.16) than those of the OCNE-1 nanoemulsion or drug solution. Scanning electron microscopy was used to characterize the mechanism of enhanced permeation. An In vivo study showed that the Cmax and area under the curve following transdermal application were 4.34- and 4.74-fold higher than those following oral administration. Conclusion Transdermal delivery of rifampicin could be a promising alternative to conventional approaches to treat systemic and local tuberculosis, and other bacterial infections.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
57
|
Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC). Int J Pharm 2020; 576:118918. [DOI: 10.1016/j.ijpharm.2019.118918] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023]
|
58
|
Otarola JJ, Cobo Solís AK, Mariano Correa N, Molina PG. Piroxicam‐Loaded Nanostructured Lipid Nanocarriers Modified with Salicylic Acid: The Effect on Drug Release. ChemistrySelect 2020. [DOI: 10.1002/slct.201904227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica J. Otarola
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - Airam K. Cobo Solís
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - N. Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - Patricia G. Molina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| |
Collapse
|
59
|
Csányi E, Bakonyi M, Kovács A, Budai-Szűcs M, Csóka I, Berkó S. Development of Topical Nanocarriers for Skin Cancer Treatment Using Quality by Design Approach. Curr Med Chem 2019; 26:6440-6458. [PMID: 30444194 DOI: 10.2174/0929867325666181116143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/04/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND One of the most compelling medical challenges of this century is the treatment of cancer and among them, skin cancer is the most common type. Thus, current treatments need to be renewed continuously to handle this challenge. OBJECTIVE This review presents considerations which can be employed during the development of nanosized formulations dedicated to the topical treatment of skin cancer. We aimed to collect and organize literature data on the treatment options for skin cancer in order to determine the required quality attributes of an effective dermal anticancer formulation. METHOD With the consideration of the Quality by Design (QbD) approach related to the development of new pharmaceutical formulations, a cost-saving process ensuring a high-quality product taking into account patient expectations, industrial and regulatory aspects can be achieved. Furthermore, this concept is highly recommended by regulatory agencies. RESULTS Our work discusses the current therapies, active agents, drug carrier systems, and evaluation methods in connection with the treatment of skin cancer and outlines Critical Quality Attributes which need to be considered during the development of a nanosized dermal anticancer formulation. CONCLUSION The first part of this review summarizes the most important topical treatment therapies for skin cancer and highlights the future therapeutic perspectives, focusing on the benefits of nanotechnology and dermal administration. The second part outlines the critical points of nanosized dermal anticancer formulation development in the view of QbD approach. Our research emphasizes the application of QbD method for a rationalized and more effective anticancer formulation development process.
Collapse
Affiliation(s)
- Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mónika Bakonyi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| |
Collapse
|
60
|
|
61
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today 2019; 25:209-222. [PMID: 31707120 DOI: 10.1016/j.drudis.2019.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
Quercetin is reported to have numerous pharmacological actions, including antidiabetic, anti-inflammatory and anticancer activities. The main mechanism responsible for its pharmacological activities is its ability to quench reactive oxygen species (ROS) and, hence, decrease the oxidative stress responsible for the development of various diseases. Despite its proven therapeutic potential, the clinical use of quercetin remains limited because of its low aqueous solubility, bioavailability, and substantial first-pass metabolism. To overcome this, several novel formulations have been reported. In this review, we focus on the applications of quercetin extract as well as its novel formulations for treating different disorders. We also examine its proposed mechanism of action of quercetin.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
62
|
Puglia C, Pignatello R, Fuochi V, Furneri PM, Lauro MR, Santonocito D, Cortesi R, Esposito E. Lipid Nanoparticles and Active Natural Compounds: A Perfect Combination for Pharmaceutical Applications. Curr Med Chem 2019; 26:4681-4696. [PMID: 31203795 DOI: 10.2174/0929867326666190614123835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Phytochemicals represent an important class of bioactive compounds characterized by significant health benefits. Notwithstanding these important features, their potential therapeutic properties suffer from poor water solubility and membrane permeability limiting their approach to nutraceutical and pharmaceutical applications. Lipid nanoparticles are well known carrier systems endowed with high biodegradation and an extraordinary biocompatible chemical nature, successfully used as platform for advanced delivery of many active compounds, including the oral, topical and systemic routes. This article is aimed at reviewing the last ten years of studies about the application of lipid nanoparticles in active natural compounds reporting examples and advantages of these colloidal carrier systems.
Collapse
Affiliation(s)
- Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Rita Cortesi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Elisabetta Esposito
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
63
|
Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm 2019; 569:118595. [DOI: 10.1016/j.ijpharm.2019.118595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/23/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022]
|
64
|
Pivetta TP, Silva LB, Kawakami CM, Araújo MM, Del Lama MPF, Naal RMZ, Maria-Engler SS, Gaspar LR, Marcato PD. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
65
|
Abo Aasy NK, Ragab D, Sallam MA, Abdelmonsif DA, Aly RG, Elkhodairy KA. A comparative study: the prospective influence of nanovectors in leveraging the chemopreventive potential of COX-2 inhibitors against skin cancer. Int J Nanomedicine 2019; 14:7561-7581. [PMID: 31571864 PMCID: PMC6756578 DOI: 10.2147/ijn.s218905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023] Open
Abstract
Introduction This study was conducted to elucidate the chemopreventive potential, cytotoxic, and suppression of cellular metastatic activity of etodolac (ETD)-loaded nanocarriers. Methods To esteem the effect of charge and composition of the nanovectors on their performance, four types of vectors namely, negative lipid nanovesicles; phosalosomes (N-Phsoms), positive phosalosomes (P-Phsoms), nanostructured lipid carriers (NLCs) and polymeric alginate polymer (AlgNPs) were prepared and compared. ETD was used as a model cyclo-oxygenase-2 (COX-2) inhibitor to evaluate the potency of these nanovectors to increase ETD permeation and retention through human skin and cytotoxicity against squamous cell carcinoma cell line (SCC). Moreover, the chemopreventive activity of ETD nanovector on mice skin cancer model was evaluated. Results Among the utilized nanovectors, ETD-loaded N-Phsoms depicted spherical vesicles with the smallest particle size (202.96±2.37 nm) and a high zeta potential of −24.8±4.16 mV. N-Phsoms exhibited 1.5, and 3.6 folds increase in the ETD amount deposited in stratum corneum, epidermis and dermis. Moreover, cytotoxicity studies revealed a significant cytotoxic potential of such nanovector with IC50=181.76 compared to free ETD (IC50=982.75), correlated to enhanced cellular internalization. Its efficacy extended to a reduction in the relative tumor weight with 1.70 and 1.51-fold compared to positive control and free ETD, that manifested by a 1.72-fold reduction in both COX-2 and proliferating cell nuclear antigen mRNA (PCNA-mRNA) levels and 2.63-fold elevation in caspase-3 level in skin tumors relative to the positive control group with no hepato-and nephrotoxicity. Conclusion Encapsulation of ETD in nanovector enhances its in-vitro and in-vivo anti-tumor activity and opens the door for encapsulation of more relevant drugs.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario, London, Ontario, Canada
| | - Marwa Ahmed Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research & Applications, University of Alexandria, Alexandria, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
66
|
Keivani Nahr F, Ghanbarzadeh B, Samadi Kafil H, Hamishehkar H, Hoseini M. The colloidal and release properties of cardamom oil encapsulated nanostructured lipid carrier. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1658597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Fatemeh Keivani Nahr
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz , Tabriz , Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz , Tabriz , Iran
- Department of Food Engineering, Faculty of Engineering, Near East University , Nicosia , Cyprus
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadyar Hoseini
- Department of Food Science and Technology, Faculty of Agriculture, University of Ilam , Ilam , Iran
| |
Collapse
|
67
|
Simon L, Vincent M, Le Saux S, Lapinte V, Marcotte N, Morille M, Dorandeu C, Devoisselle JM, Bégu S. Polyoxazolines based mixed micelles as PEG free formulations for an effective quercetin antioxidant topical delivery. Int J Pharm 2019; 570:118516. [PMID: 31319148 DOI: 10.1016/j.ijpharm.2019.118516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
This study aims to prove the value of the polyoxazolines polymer family as surfactant in formulations for topical application and as an alternative to PEG overuse. The amphiphilic polyoxazolines (POx) were demonstrated to have less impact on cell viability of mice fibroblasts (NIH3T3) than their PEG counterparts. Mixed micelles, made of POx and phosphatidylcholine, were manufactured using thin film and high pressure homogenizer process. The mixed micelles were optimized to produce nanosized vesicles of about 20 nm with a spherical shape and stable over 28 days. The natural lipophilic antioxidant, quercetin, was successfully encapsulated (encapsulation efficiency 94 ± 4% and drug loading 3.6 ± 0.2%) in the mixed micelles with no morphological variation. Once loaded in the formulation, the quercetin impact on cell viability of NIH3T3 was decreased while its antioxidant activity remained unchanged. This work highlights the capacity of amphiphilic POx to create, in association with phospholipids, stable nanoformulations which show promise for topical delivery of antioxidant and ensure skin protection against oxidative stress.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - M Vincent
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - S Le Saux
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - N Marcotte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - M Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - C Dorandeu
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - S Bégu
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
68
|
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
69
|
Sangiovanni E, Di Lorenzo C, Piazza S, Manzoni Y, Brunelli C, Fumagalli M, Magnavacca A, Martinelli G, Colombo F, Casiraghi A, Melzi G, Marabini L, Restani P, Dell'Agli M. Vitis vinifera L. Leaf Extract Inhibits In Vitro Mediators of Inflammation and Oxidative Stress Involved in Inflammatory-Based Skin Diseases. Antioxidants (Basel) 2019; 8:antiox8050134. [PMID: 31100904 PMCID: PMC6562865 DOI: 10.3390/antiox8050134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is a chronic cutaneous condition characterized by the release of pro-inflammatory mediators and oxidative stress. The reduction of these factors is currently the most effective strategy to inhibit the symptoms of pathology. Antioxidants from natural sources are increasingly used to improve skin conditions. Dried red leaves from grapevine (Vitis vinifera L., cv Teinturiers) showed anti-inflammatory and anti-bacterial activities, but their possible effects on keratinocytes have not been previously investigated. In this study we tested the ability of a water extract from grapevine leaves (VVWE) to inhibit inflammatory conditions in human keratinocytes (HaCaT cells), challenged with proinflammatory (tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS)) or prooxidant (ultraviolet B radiation (UVB) or H2O2) mediators. VVWE inhibited interleukin-8 (IL-8) secretion induced by proinflammatory stimuli, acting on the IL-8 promoter activity, but the effect was lower when prooxidant mediators were used. The effect was partly explained by the reduction of nuclear factor-κB (NF-κB)-driven transcription and nuclear translocation. Furthermore, vascular endothelial growth factor (VEGF) secretion, a regulator of angiogenesis, was inhibited by VVWE, but not matrix metalloproteinase-9 (MMP-9), a protease involved in matrix remodeling. VVWE, assayed on Franz diffusion cell system, showed a marked reduction of High Performance Liquid Chromatography (HPLC)-identified compounds. Pure molecules individually failed to reduce TNF-α-induced IL-8 release, suggesting synergistic effects or the presence of other bioactive compounds still unknown.
Collapse
Affiliation(s)
- Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Yuri Manzoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Cecilia Brunelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Magnavacca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Francesca Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Antonella Casiraghi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Laura Marabini
- Department Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
70
|
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160:130-142. [DOI: 10.1016/j.mimet.2019.03.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
|
71
|
Sheshala R, Anuar NK, Abu Samah NH, Wong TW. In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: a Comprehensive Review. AAPS PharmSciTech 2019; 20:164. [PMID: 30993407 DOI: 10.1208/s12249-019-1362-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration-time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.
Collapse
|
72
|
Gokhale JP, Mahajan HS, Surana SJ. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed Pharmacother 2019; 112:108622. [DOI: 10.1016/j.biopha.2019.108622] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 11/29/2022] Open
|
73
|
Li X, Liu Y, Yu Y, Chen W, Liu Y, Yu H. Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity. Carbohydr Polym 2019; 207:160-168. [DOI: 10.1016/j.carbpol.2018.11.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
|
74
|
Application of pH-Responsive Fucoidan/Chitosan Nanoparticles to Improve Oral Quercetin Delivery. Molecules 2019; 24:molecules24020346. [PMID: 30669398 PMCID: PMC6359289 DOI: 10.3390/molecules24020346] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 02/01/2023] Open
Abstract
Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL-1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300⁻400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around -30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.
Collapse
|
75
|
Tapeinos C, Marino A, Battaglini M, Migliorin S, Brescia R, Scarpellini A, De Julián Fernández C, Prato M, Drago F, Ciofani G. Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. NANOSCALE 2018; 11:72-88. [PMID: 30357214 PMCID: PMC6336008 DOI: 10.1039/c8nr05520c] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
In this study, taking into consideration the limitations of current treatments of glioblastoma multiforme, we fabricated a biomimetic lipid-based magnetic nanovector with a good loading capacity and a sustained release profile of the encapsulated chemotherapeutic drug, temozolomide. These nanostructures demonstrated an enhanced release after exposure to an alternating magnetic field, and a complete release of the encapsulated drug after the synergic effect of low pH (4.5), increased concentration of hydrogen peroxide (50 μM), and increased temperature due to the applied magnetic field. In addition, these nanovectors presented excellent specific absorption rate values (up to 1345 W g-1) considering the size of the magnetic component, rendering them suitable as potential hyperthermia agents. The presented nanovectors were progressively internalized in U-87 MG cells and in their acidic compartments (i.e., lysosomes and late endosomes) without affecting the viability of the cells, and their ability to cross the blood-brain barrier was preliminarily investigated using an in vitro brain endothelial cell-model. When stimulated with alternating magnetic fields (20 mT, 750 kHz), the nanovectors demonstrated their ability to induce mild hyperthermia (43 °C) and strong anticancer effects against U-87 MG cells (scarce survival of cells characterized by low proliferation rates and high apoptosis levels). The optimal anticancer effects resulted from the synergic combination of hyperthermia chronic stimulation and the controlled temozolomide release, highlighting the potential of the proposed drug-loaded lipid magnetic nanovectors for treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Christos Tapeinos
- Smart Bio-Interfaces
, Istituto Italiano di Tecnologia
,
Pontedera (Pisa)
, 56025 Italy
.
;
;
| | - Attilio Marino
- Smart Bio-Interfaces
, Istituto Italiano di Tecnologia
,
Pontedera (Pisa)
, 56025 Italy
.
;
;
| | - Matteo Battaglini
- Smart Bio-Interfaces
, Istituto Italiano di Tecnologia
,
Pontedera (Pisa)
, 56025 Italy
.
;
;
- The Biorobotics Institute
, Scuola Superiore Sant'Anna
,
Pontedera (Pisa)
, 56025 Italy
| | - Simone Migliorin
- Department of Mechanical and Aerospace Engineering
, Politecnico di Torino
,
Torino
, 10129 Italy
| | - Rosaria Brescia
- Electron Microscopy Facility
, Istituto Italiano di Tecnologia
,
Genova
, 16163 Italy
| | - Alice Scarpellini
- Electron Microscopy Facility
, Istituto Italiano di Tecnologia
,
Genova
, 16163 Italy
| | - César De Julián Fernández
- Istituto dei Materiali per l'Elettronica e il Magnetismo
, Consiglio Nazionale delle Ricerche – CNR
,
Parma
, 43124 Italy
| | - Mirko Prato
- Materials Characterization Facility
, Istituto Italiano di Tecnologia
,
Genova
, 16163 Italy
| | - Filippo Drago
- Nanochemistry Department
, Istituto Italiano di Tecnologia
,
Genova
, 16163 Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces
, Istituto Italiano di Tecnologia
,
Pontedera (Pisa)
, 56025 Italy
.
;
;
- Department of Mechanical and Aerospace Engineering
, Politecnico di Torino
,
Torino
, 10129 Italy
| |
Collapse
|
76
|
Ma JJ, Yu YG, Yin SW, Tang CH, Yang XQ. Cellular Uptake and Intracellular Antioxidant Activity of Zein/Chitosan Nanoparticles Incorporated with Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12783-12793. [PMID: 30406660 DOI: 10.1021/acs.jafc.8b04571] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, zein/chitosan nanoparticles (ZCPs-Q) were developed for encapsulating quercetin to overcome its lower water solubility and instability, and to concomitantly enhance its cellular uptake and intracellular antioxidant activity. This strategy enhanced quercetin solubility 753.6 and 9.95 times in water and PBS (7.4), respectively, and quercetin encapsulated in ZCPs remained stable after UV irradiation and heat treatment. ZCPs-Q could significantly attenuate AAPH induced erythrocyte hemolysis through the inhibition of ROS generation. It restored intracellular antioxidant enzyme (SOD and GSH-Px) activities to normal levels and inhibited intracellular malondialdehyde (MDA) formation. Simultaneously, ZCPs-Q showed a strong antioxidant activity in HepG2 cells with an EC50 value of 31.18 μg/mL, which was lower than free quercetin's 41.02 μg/mL. ZCPs enhanced the uptake efficiency of quercetin in Caco-2 cells, which contributed to the improvement of cellular antioxidant activities (CAA) evaluated with the CAA assay and AAPH-induced erythrocyte hemolysis assay. The designed route is particularly suitable for the encapsulation of water-insoluble nutraceuticals and for enhancing cell uptake and CAA.
Collapse
Affiliation(s)
- Juan-Juan Ma
- Research and Development Center of Food Proteins, School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Yi-Gang Yu
- Research and Development Center of Food Proteins, School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , PR China
| | - Shou-Wei Yin
- Research and Development Center of Food Proteins, School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , PR China
| | - Chuan-He Tang
- Research and Development Center of Food Proteins, School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , PR China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , PR China
| |
Collapse
|
77
|
Czajkowska-Kośnik A, Szekalska M, Winnicka K. Nanostructured lipid carriers: A potential use for skin drug delivery systems. Pharmacol Rep 2018; 71:156-166. [PMID: 30550996 DOI: 10.1016/j.pharep.2018.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
Abstract
Skin application of pharmaceutical products is one of the methods used for drug administration. The problem of limited drug penetration via topical application makes searching for safe drug carriers that will provide an expected therapeutic effect of utmost importance. Research into safe drug carriers began with liposome structures, paving the way for work with nanocarriers, which currently play a large role as drug vehicles. Nanostructured lipid carriers (NLC) consist of blended solid and liquid lipids (oils) dispersed in an aqueous solution containing a surfactant. These carriers have many advantages: good biocompatibility, low cytotoxicity, high drug content; they enhance a drug's stability and have many possibilities of application (oral, intravenous, pulmonary, ocular, dermal). The following article presents properties, methods of preparation and tests to assess the quality and toxicity of NLC. This analysis indicates the possibility of using NLC for dermal and transdermal drug application.
Collapse
Affiliation(s)
- Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Bialystok, Białystok, Poland.
| | - Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Bialystok, Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
78
|
Ahlawat J, Henriquez G, Narayan M. Enhancing the Delivery of Chemotherapeutics: Role of Biodegradable Polymeric Nanoparticles. Molecules 2018; 23:E2157. [PMID: 30150595 PMCID: PMC6225169 DOI: 10.3390/molecules23092157] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022] Open
Abstract
While pharmaceutical drugs have revolutionized human life, there are several features that limit their full potential. This review draws attention to some of the obstacles currently facing the use of chemotherapeutic drugs including low solubility, poor bioavailability and high drug dose. Overcoming these issues will further enhance the applicability and potential of current drugs. An emerging technology that is geared towards improving overall therapeutic efficiency resides in drug delivery systems including the use of polymeric nanoparticles which have found widespread use in cancer therapeutics. These polymeric nanoparticles can provide targeted drug delivery, increase the circulation time in the body, reduce the therapeutic indices with minimal side-effects, and accumulate in cells without activating the mononuclear phagocyte system (MPS). Given the inroads made in the field of nanodelivery systems for pharmaceutical applications, it is of interest to review and emphasize the importance of Polymeric nanocarrier system for drug delivery in chemotherapy.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Gabriela Henriquez
- Environment Science & Engineering department, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Mahesh Narayan
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
79
|
Pivetta TP, Simões S, Araújo MM, Carvalho T, Arruda C, Marcato PD. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf B Biointerfaces 2018; 164:281-290. [DOI: 10.1016/j.colsurfb.2018.01.053] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/04/2018] [Accepted: 01/26/2018] [Indexed: 12/01/2022]
|
80
|
Akhavan S, Assadpour E, Katouzian I, Jafari SM. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
81
|
El-Menshawe SF, Ali AA, Rabeh MA, Khalil NM. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: an approach for acceptable level of evidence of an effective novel herbal weight loss product. Int J Nanomedicine 2018; 13:307-318. [PMID: 29391791 PMCID: PMC5768425 DOI: 10.2147/ijn.s153429] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Herbal supplements are currently available as a safer alternative to manage obesity, which has become a rising problem over the recent years. Many chemical drugs on the market are designed to prevent or manage obesity but high cost, low efficacy, and multiple side effects limit its use. Nano lipo-vesicles phytosomal thermogel of Soybean, Glycine max (L.) Merrill, was formulated and evaluated in an attempt to investigate its anti-obesity action on body weight gain, adipose tissue size, and lipid profile data. METHODS Three different techniques were used to prepare phytosome formulations including solvent evaporation, cosolvency, and salting out. The optimized phytosome formulation was then selected using Design Expert® (version 7.0.0) depending on the highest entrapment efficiency, minimum particle size (PS), and maximum drug release within 2 hours as responses for further evaluation. The successful phytosome complex formation was investigated by means of Fourier-transform infrared spec troscopy and determination of PS and zeta potential. Phytosome vesicles' shape was evaluated using transmission electron microscope to ensure its spherical shape. After characterization of the optimized phytosome formulation, it was incorporated into a thermogel formulation. The obtained phytosomal thermogel formulation was evaluated for its clarity, homogeneity, pH, and gel transformation temperature besides rheology behavior and permeation study. An in vivo study was done to investigate the anti-weight-gain effect of soy phytosomal ther mogel. RESULTS EE was found to be >99% for all formulations, PS ranging from 51.66-650.67 while drug release was found to be (77.61-99.78) in range. FTIR and TEM results confirmed the formation of phytosome complex. In vivo study showed a marked reduction in body weight, adipose tissue weight and lipid profile. CONCLUSION Concisely, soy phytosomal thermogel was found to have a local anti-obesity effect on the abdomen of experimental male albino rats with a slight systemic effect on the lipid profile data.
Collapse
Affiliation(s)
- Shahira F El-Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni Suef
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni Suef
| | - Mohamed A Rabeh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza
| | - Nermeen M Khalil
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University Beni-Suef, Beni Suef, Egypt
| |
Collapse
|
82
|
Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
83
|
Franklin SJ, Younis US, Myrdal PB. Estimating the Aqueous Solubility of Pharmaceutical Hydrates. J Pharm Sci 2017; 105:1914-1919. [PMID: 27238488 DOI: 10.1016/j.xphs.2016.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/01/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022]
Abstract
Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study, an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units.
Collapse
Affiliation(s)
| | - Usir S Younis
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Paul B Myrdal
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
84
|
Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci 2017; 112:159-167. [PMID: 29183800 DOI: 10.1016/j.ejps.2017.11.023] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/03/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
Abstract
Cutaneous use of lipid nanoparticles (solid lipid nanoparticles, SLN and nanostructured lipid carriers, NLC) has been showing promising results. These systems consist of low viscosity aqueous dispersions, being usually employed by means of semi-solid formulations with adequate consistency for skin application. This review addresses the cutaneous use of lipid nanoparticles for therapeutic and cosmetic applications. Initially, general information related to pharmaceutical semi-solid formulations is presented. Afterwards, the effects of SLN and NLC on the skin, and technological aspects related to semi-solid systems based on SLN or NLC are described. Finally, the most relevant studies related to the formulations based on SLN and NLC, for cosmetic and therapeutic applications, are reported. Notwithstanding the cutaneous use of SLN and NLC has been proposed for both local and transdermal delivery, the reported studies show promising results only for local application. In this sense, more research is required to better understanding the interaction mechanisms of lipid nanoparticles with skin lipids. Furthermore, the development of standard methods for skin experiments with nanoparticles is necessary.
Collapse
Affiliation(s)
- A Garcês
- UFP Energy, Environment and Health Research Unit (FP-ENAS), Fernando Pessoa University, Porto, Portugal
| | - M H Amaral
- UCIBIO, ReQuimTe, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J M Sousa Lobo
- UCIBIO, ReQuimTe, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - A C Silva
- UFP Energy, Environment and Health Research Unit (FP-ENAS), Fernando Pessoa University, Porto, Portugal; UCIBIO, ReQuimTe, Laboratory of Pharmaceutical Technology/Centre of Research in Pharmaceutical Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| |
Collapse
|
85
|
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264:306-332. [PMID: 28844756 PMCID: PMC6701993 DOI: 10.1016/j.jconrel.2017.08.033] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) comprise a category of versatile drug delivery systems that have been used in the biomedical field for >25years. SLNs and NLCs have been used for the treatment of various diseases including cardiovascular and cerebrovascular, and are considered a standard treatment for the latter, due to their inherent ability to cross the blood brain barrier (BBB). In this review, a presentation of the most important brain diseases (brain cancer, ischemic stroke, Alzheimer's disease, Parkinson's disease and multiple sclerosis) is approached, followed by the basic fabrication techniques of SLNs and NLCs. A detailed description of the reported studies of the last seven years, of active and passive targeting SLNs and NLCs for the treatment of glioblastoma multiforme and of other brain cancers, as well as for the treatment of neurodegenerative diseases is also carried out. Finally, a brief description of the advantages, the disadvantages, and the future perspectives in the use of these nanocarriers is reported, aiming at giving an insight of the limitations that have to be overcome in order to result in a delivery system with high therapeutic efficacy and without the limitations of the existing nano-systems.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy.
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
86
|
Xia N, Liu T, Wang Q, Xia Q, Bian X. In vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery. J Microencapsul 2017; 34:571-581. [PMID: 28830289 DOI: 10.1080/02652048.2017.1367852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study aimed at in vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery, which was prepared by hot high-pressure homogenisation. Stable particles could be formed and particle size was 148.54 ± 2.31 nm with polydispersity index below 0.15. Encapsulation efficiency and drug loading of α-lipoic acid were 95.23 ± 0.45% and 2.81 ± 0.37%. Antioxidant study showed α-lipoic acid could be protected by lipid nanocapsules without loss of antioxidant activity. Sustained release of α-lipoic acid from lipid nanocapsules was obtained and cumulative release was 62.18 ± 1.51%. In vitro percutaneous study showed the amount of α-lipoic acid distributed in skin was 1.7-fold than permeated. Cytotoxicity assay and antioxidant activity on L929 cells indicated this formulation had low cytotoxicity and ability of protecting cells from oxidative damage within specific concentration. These studies suggested α-lipoic acid-loaded lipid nanocapsules could be potential formulation for topical delivery.
Collapse
Affiliation(s)
- Nan Xia
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Tian Liu
- b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,d Department of Pharmacy, College of Medicine , Xi'an Jiaotong University , Xi'an , China
| | - Qiang Wang
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Qiang Xia
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China.,b Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China.,c National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , China
| | - Xiaoli Bian
- d Department of Pharmacy, College of Medicine , Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
87
|
Kumar P, Sharma G, Kumar R, Singh B, Malik R, Katare OP, Raza K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int J Pharm 2016; 515:307-314. [PMID: 27756627 DOI: 10.1016/j.ijpharm.2016.10.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
In various neurological disorders, antioxidants are frequently prescribed along with the specific treatment modalities. One such promising natural flavonoid is quercetin, offering better outcomes than established vitamins E and C. Though with immense promises, various challenges like poor oral-bioavailability (<2%), extensive first-pass metabolism, poor brain permeability, hydrophobic nature and physiological pH instability hinder its proper usage. Hence, it was planned to prepare quercetin-loaded nano lipidic carriers (NLCs) employing biocompatible components like phospholipids and tocopherol acetate for enhanced brain delivery. The outcomes were also compared with solid lipid nanoparticles (SLNs) of comparable composition. Both the nanocolloids offered better drug loading and controlled drug release with appreciable stability. In vitro antioxidant performance was improved after encapsulation in nanoparticles and the nanoparticles were substantially uptaken by Caco-2 cells. The difference in outcomes was vivid in pharmacokinetic studies, where nanoparticles, esp. NLCs substantially enhanced the relative bioavailability (approx. 6 folds), biological residence (2.5 times) and appreciably retarded the drug clearance (approx. 6 folds). On the other hand, both nanoparticles were able to substantially deliver the drug to brain. NLCs were observed to enhance the brain permeability of drug in a noticeable manner. In Conclusion, SLNs/NLCs can offer a better-platform for brain-delivery of quercetin.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh,160014, India
| | - Rajendra Kumar
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh,160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites, Panjab University, Chandigarh, 160014, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Om Prakash Katare
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh,160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
88
|
Ramezanli T, Kilfoyle BE, Zhang Z, Michniak-Kohn BB. Polymeric nanospheres for topical delivery of vitamin D3. Int J Pharm 2016; 516:196-203. [PMID: 27810351 DOI: 10.1016/j.ijpharm.2016.10.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 02/03/2023]
Abstract
This study investigates the potential application of polymeric nanospheres (known as TyroSpheres) as a formulation carrier for topical delivery of cholecalciferol (i.e., Vitamin D3, VD3) with the goal to improve the skin delivery and stability of VD3. High drug loading and binding efficiencies were obtained for VD3 when loaded in TyroSpheres. VD3 was released from TyroSpheres in a sustained manner and was delivered across the stratum corneum, which occurred independent of the initial drug loading. An ex vivo skin distribution study showed that TyroSphere formulations delivered 3-10μg of active into the epidermis which was significantly higher than that delivered from Transcutol® (the control vehicle). In addition, an in vitro cytotoxicity assay using keratinocytes confirmed that VD3 encapsulation in the nanoparticles did not alter the drug activity. Photodegradation of VD3 followed zero-order kinetics. TyroSpheres were able to protect the active against hydrolysis and photodegradation, significantly enhancing the stability of VD3 in the topical formulation.
Collapse
Affiliation(s)
- Tannaz Ramezanli
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Rd, Piscataway, NJ 08854, USA
| | - Brian E Kilfoyle
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; The New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Rd, Piscataway, NJ 08854, USA
| | - Zheng Zhang
- The New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Rd, Piscataway, NJ 08854, USA; Mosaic Biosciences, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Bozena B Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
89
|
Rajinikanth PS, Chellian J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int J Nanomedicine 2016; 11:5067-5077. [PMID: 27785014 PMCID: PMC5063559 DOI: 10.2147/ijn.s117511] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol® ATO 5 (glyceryl palmitostearate) and Labrasol® were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol® HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol® 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 μg/cm2/h) as compared with plain 5-FU gel (2.85±1.12 μg/cm2/h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 μg/cm2) as compared with that from the 5-FU plain gel (12.23±3.86 μg/cm2) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations.
Collapse
Affiliation(s)
| | - Jestin Chellian
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
90
|
Catalan-Latorre A, Ravaghi M, Manca ML, Caddeo C, Marongiu F, Ennas G, Escribano-Ferrer E, Peris JE, Diez-Sales O, Fadda AM, Manconi M. Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin. Eur J Pharm Biopharm 2016; 107:49-55. [DOI: 10.1016/j.ejpb.2016.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
91
|
Chen P, Zhang H, Cheng S, Zhai G, Shen C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
92
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
93
|
Ni S, Hu C, Sun R, Zhao G, Xia Q. Nanoemulsions-Based Delivery Systems for Encapsulation of Quercetin: Preparation, Characterization, and Cytotoxicity Studies. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shilei Ni
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Suzhou Key Laboratory of Biomedical Materials and Technology; Suzhou 215123 China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou 215123 China
- Institute of Pharmaceutical Preparations; Hengrui Pharmaceutical co., LTD; Shanghai 200245 China
| | - Caibiao Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Suzhou Key Laboratory of Biomedical Materials and Technology; Suzhou 215123 China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou 215123 China
| | - Rui Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Suzhou Key Laboratory of Biomedical Materials and Technology; Suzhou 215123 China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou 215123 China
| | - Guodong Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Suzhou Key Laboratory of Biomedical Materials and Technology; Suzhou 215123 China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou 215123 China
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Suzhou Key Laboratory of Biomedical Materials and Technology; Suzhou 215123 China
- Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou 215123 China
| |
Collapse
|
94
|
Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today 2016; 21:632-9. [PMID: 26905599 DOI: 10.1016/j.drudis.2016.02.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 11/22/2022]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease. Over the past few decades, AD has become more prevalent worldwide. Quercetin, a naturally occurring polyphenol, shows antioxidant, anti-inflammatory, and antiallergic activities. Several recent clinical and preclinical findings suggest quercetin as a promising natural treatment for inflammatory skin diseases. Significant progress in elucidating the molecular mechanisms underlying the anti-AD properties of quercetin has been achieved in the recent years. Here, we discuss the use of quercetin as treatment for AD, with a particular focus on the molecular basis of its effect. We also briefly discuss the approaches to improve the bioavailability of quercetin.
Collapse
|
95
|
Ammar HO, Ghorab MM, Mostafa DM, Ibrahim ES. Folic acid loaded lipid nanocarriers with promoted skin antiaging and antioxidant efficacy. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
96
|
Amasya G, Badilli U, Aksu B, Tarimci N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion - Solvent evaporation method. Eur J Pharm Sci 2016; 84:92-102. [PMID: 26780593 DOI: 10.1016/j.ejps.2016.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
With Quality by Design (QbD), a systematic approach involving design and development of all production processes to achieve the final product with a predetermined quality, you work within a design space that determines the critical formulation and process parameters. Verification of the quality of the final product is no longer necessary. In the current study, the QbD approach was used in the preparation of lipid nanoparticle formulations to improve skin penetration of 5-Fluorouracil, a widely-used compound for treating non-melanoma skin cancer. 5-Fluorouracil-loaded lipid nanoparticles were prepared by the W/O/W double emulsion - solvent evaporation method. Artificial neural network software was used to evaluate the data obtained from the lipid nanoparticle formulations, to establish the design space, and to optimize the formulations. Two different artificial neural network models were developed. The limit values of the design space of the inputs and outputs obtained by both models were found to be within the knowledge space. The optimal formulations recommended by the models were prepared and the critical quality attributes belonging to those formulations were assigned. The experimental results remained within the design space limit values. Consequently, optimal formulations with the critical quality attributes determined to achieve the Quality Target Product Profile were successfully obtained within the design space by following the QbD steps.
Collapse
Affiliation(s)
- Gulin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Ulya Badilli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Buket Aksu
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey
| | - Nilufer Tarimci
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
97
|
|
98
|
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:143-61. [DOI: 10.1016/j.nano.2015.09.004] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/25/2022]
|
99
|
Hädrich G, Vaz GR, Maidana M, Kratz JM, Loch-Neckel G, Favarin DC, Rogerio ADP, da Silva FMR, Muccillo-Baisch AL, Dora CL. Anti-inflammatory Effect and Toxicology Analysis of Oral Delivery Quercetin Nanosized Emulsion in Rats. Pharm Res 2015; 33:983-93. [DOI: 10.1007/s11095-015-1844-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023]
|
100
|
Franklin SJ, Myrdal PB. Solid-State and Solution Characterization of Myricetin. AAPS PharmSciTech 2015; 16:1400-8. [PMID: 25986594 DOI: 10.1208/s12249-015-0329-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/03/2015] [Indexed: 11/30/2022] Open
Abstract
Myricetin (MYR) is a natural compound that has been investigated as a chemopreventative agent. MYR has been shown to suppresses ultraviolet B (UVB)-induced cyclooxygenase-2 (COX-2) protein expression and reduce the incidence of UVB-induced skin tumors in mice. Despite MYR's promise as a therapeutic agent, minimal information is available to guide the progression of formulations designed for future drug development. Here, data is presented describing the solid-state and solution characterization of MYR. Investigation into the solid-state properties of MYR identified four different crystal forms, two hydrates (MYR I and MYR II) and two metastable forms (MYR IA and MYR IIA). From solubility studies, it was evident that all forms are very insoluble (<5 μg/ml) in pure water. MYR I was found to be the most stable form at 23, 35, and 56°C. Stability determination indicated that MYR undergoes rapid apparent first-order degradation under basic pH conditions, and that degradation was influenced by buffer species. Apparent first-order degradation was also seen when MYR was introduced to an oxidizing solution. Improved stability was achieved after introducing 0.1% antioxidants to the solution. MYR was found to have good stability following exposure to ultraviolet radiation (UVR), which is a consideration for topical applications. Finally, a partitioning study indicated that MYR possess a log P of 2.94 which, along with its solid-state properties, contributes to its poor aqueous solubility. Both the solid-state properties and solution stability of MYR are important to consider when developing future formulations.
Collapse
|