51
|
Rentería-Ortega M, Salgado-Cruz MDLP, Morales-Sánchez E, Alamilla-Beltrán L, Farrera-Rebollo RR, Valdespino León M, Calderón-Domínguez G. Effect of electrohydrodynamic atomization conditions on morphometric characteristics and mechanical resistance of chia mucilage-alginate particles. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1775706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Minerva Rentería-Ortega
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Ma De La Paz Salgado-Cruz
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
- Consejo Nacional De Ciencia Y Tecnología (CONACYT), Ciudad De México, México
| | | | - Liliana Alamilla-Beltrán
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Reynold Ramón Farrera-Rebollo
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Mariana Valdespino León
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Georgina Calderón-Domínguez
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| |
Collapse
|
52
|
Zhang C, Yang L, Wan F, Bera H, Cun D, Rantanen J, Yang M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm 2020; 585:119441. [PMID: 32442645 DOI: 10.1016/j.ijpharm.2020.119441] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Adopting the Quality by Design (QbD) approach in the drug development process has transformed from "nice-to-do" into a crucial and required part of the development, ensuring the quality of pharmaceutical products throughout their whole life cycles. This review is discussing the implementation of the QbD thinking into the production of long-acting injectable (LAI) PLGA/PLA-based microspheres for the therapeutic peptide and protein drug delivery. Various key elements of the QbD approaches are initially elaborated using Bydureon®, a commercial product of LAI PLGA/PLA-based microspheres, as a classical example. Subsequently, the factors influencing the release patterns and the stability of the peptide and protein drugs are discussed. This is followed by a summary of the state-of-the-art of manufacturing LAI PLGA/PLA-based microspheres and the related critical process parameters (CPPs). Finally, a landscape of generic product development of LAI PLGA/PLA-based microspheres is reviewed including some major challenges in the field.
Collapse
Affiliation(s)
- Chengqian Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Liang Yang
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Company, Ltd, Huanghe Road 226, 050035 Shijiazhuang, China
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
53
|
Di Natale C, Onesto V, Lagreca E, Vecchione R, Netti PA. Tunable Release of Curcumin with an In Silico-Supported Approach from Mixtures of Highly Porous PLGA Microparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1807. [PMID: 32290458 PMCID: PMC7215757 DOI: 10.3390/ma13081807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
In recent years, drug delivery systems have become some of the main topics within the biomedical field. In this scenario, polymeric microparticles (MPs) are often used as carriers to improve drug stability and drug pharmacokinetics in agreement with this kind of treatment. To avoid a mere and time-consuming empirical approach for the optimization of the pharmacokinetics of an MP-based formulation, here, we propose a simple predictive in silico-supported approach. As an example, in this study, we report the ability to predict and tune the release of curcumin (CUR), used as a model drug, from a designed combination of different poly(d,l-lactide-co-glycolide) (PLGA) MPs kinds. In detail, all CUR-PLGA MPs were synthesized by double emulsion technique and their chemical-physical properties were characterized by Mastersizer and scanning electron microscopy (SEM). Moreover, for all the MPs, CUR encapsulation efficiency and kinetic release were investigated through the UV-vis spectroscopy. This approach, based on the combination of in silico and experimental methods, could be a promising platform in several biomedical applications such as vaccinations, cancer-treatment, diabetes therapy and so on.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| |
Collapse
|
54
|
Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J Control Release 2020; 320:265-282. [DOI: 10.1016/j.jconrel.2020.01.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
|
55
|
Wu T, Mo X, Xia Y. Moving Electrospun Nanofibers and Bioprinted Scaffolds toward Translational Applications. Adv Healthc Mater 2020; 9:e1901761. [PMID: 31999081 PMCID: PMC7758812 DOI: 10.1002/adhm.201901761] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/17/2020] [Indexed: 12/20/2022]
Abstract
Over the past two decades, electrospun nanofibers have been actively explored for a range of applications, including those related to biomedicine, environmental science, energy harvesting, catalysis, photonics, and electronics. Regarding biomedical applications, one can readily produce nanofiber-based scaffolds with controlled compositions, structures, alignments, and functions by varying the material, design of collector, number of spinnerets, and electrospinning parameters. This report highlights both preclinical and translational applications of electrospun nanofibers and bioprinted constructs presented at the 2019 International Conference on Electrospinning, together with some perspectives on their future development.
Collapse
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
56
|
Yang Z, Liu L, Su L, Wu X, Wang Y, Liu L, Lin X. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency. Int J Pharm 2020; 575:119006. [DOI: 10.1016/j.ijpharm.2019.119006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/28/2019] [Indexed: 02/05/2023]
|
57
|
Fraguas-Sánchez AI, Fernández-Carballido A, Simancas-Herbada R, Martin-Sabroso C, Torres-Suárez AI. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int J Pharm 2019; 574:118916. [PMID: 31811927 DOI: 10.1016/j.ijpharm.2019.118916] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Cannabidiol (CBD) has emerged as a potential agent for breast cancer management. In this work, the potential use of cannabidiol in solution (CBDsol) and encapsulated in polymeric microparticles when combined with paclitaxel (PTX) and doxorubicin (DOX) in breast cancer treatment has been evaluated for the first time using MCF-7 and MDA-MB-231 cells. CBDsol, previously administered at suboptimal concentrations (cell death < 10%), enhanced the PTX and DOX effect in both breast cancer cells. The co-administration of CBDsol and PTX or DOX showed a synergistic effect. PLGA-502 was selected as the most suitable polymer to develop CBD-loaded microparticles. The developed formulation (CBD-Mps) was effective as monotherapy, showing extended antiproliferative activity for at least 10 days, and when combined with PTX or DOX. In fact, the use of CBD-Mps allows the combination of both, pre and co-administration strategies, with a single administration, also showing a significant increase in PTX and DOX antiproliferative activity. Finally, the anticancer effect of both CBDsol and CBD-Mps as monotherapy or in combination with PTX was also confirmed in ovo, usingMDA-MB-231-derived tumours. This data evidences the promising inclusion of CBD in conventional breast cancer chemotherapy and the use of CBD-Mps for the extended release of this cannabinoid, optimising the effect of the chemotherapeutic agents.
Collapse
Affiliation(s)
- A I Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - A Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain
| | - R Simancas-Herbada
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - C Martin-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain
| | - A I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy,Complutense University of Madrid, Pl Ramón yCajal s/n., 28040 Madrid, Spain.
| |
Collapse
|
58
|
Lizambard M, Menu T, Fossart M, Bassand C, Agossa K, Huck O, Neut C, Siepmann F. In-situ forming implants for the treatment of periodontal diseases: Simultaneous controlled release of an antiseptic and an anti-inflammatory drug. Int J Pharm 2019; 572:118833. [PMID: 31715363 DOI: 10.1016/j.ijpharm.2019.118833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023]
Abstract
Different types of in-situ forming implants based on poly(lactic-co-glycolic acid) (PLGA) for the controlled dual release of an antiseptic drug (chlorhexidine) and an anti-inflammatory drug (ibuprofen) were prepared and thoroughly characterized in vitro. N-methyl-pyrrolidone (NMP) was used as water-miscible solvent, acetyltributyl citrate (ATBC) as plasticizer and hydroxypropyl methylcellulose (HPMC) was added to enhance the implants' stickiness/bioadhesion upon formation within the periodontal pocket. Different drug forms exhibiting substantially different solubilities were used: chlorhexidine dihydrochloride and digluconate as well as ibuprofen free acid and lysinate. The initial drug loadings were varied from 1.5 to 16.1%. In vitro drug release, dynamic changes in the pH of the surrounding bulk fluid and in the systems' wet mass as well as polymer degradation were monitored. Importantly, the release of both drugs, chlorhexidine and ibuprofen, could effectively be controlled simultaneously during several weeks. Interestingly, the tremendous differences in the drug forms' solubilities (e.g., factor >5000) did not translate into major differences in the resulting release kinetics. In the case of ibuprofen, this can likely (at least in part) be attributed to significant drug-polymer interactions (ibuprofen acts as a plasticizer for PLGA). In the case of chlorhexidine, the release of the much less soluble dihydrochloride was even faster compared to the more soluble digluconate (when combined with ibuprofen free acid). In the case of ibuprofen, at higher initial drug loadings also limited solubility effects within the implants seem to play a role, in contrast to chlorhexidine. In the latter case, instead, increased system porosity effects likely dominate at higher drug loadings.
Collapse
Affiliation(s)
- M Lizambard
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - T Menu
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M Fossart
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - K Agossa
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - O Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - C Neut
- Univ. Lille, Inserm, CHU Lille, U995-LIRIC, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
59
|
Sun Y, Cheng S, Lu W, Wang Y, Zhang P, Yao Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv 2019; 9:25712-25729. [PMID: 35530076 PMCID: PMC9070372 DOI: 10.1039/c9ra05012d] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Electrospinning is a method of preparing microfibers or nanofibers by using an electrostatic force to stretch the electrospinning fluid. Electrospinning has gained considerable attention in many fields due to its ability to produce continuous fibers from a variety of polymers and composites in a simple way. Electrospun nanofibers have many merits such as diverse chemical composition, easily adjustable structure, adjustable diameter, high surface area, high porosity, and good pore connectivity, which give them broad application prospects in the biomedical field. This review systematically introduced the factors influencing electrospinning, the types of electrospun fibers, the types of electrospinning, and the detailed applications of electrospun fibers in controlled drug release, biological dressings, tissue repair and enzyme immobilization fields. The latest progress of using electrospun fibers in these fields was summarized, and the main challenges to be solved in electrospinning technology were put forward.
Collapse
Affiliation(s)
- Yue Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Shihong Cheng
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Wenjuan Lu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Yanfeng Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Pingping Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| |
Collapse
|