51
|
Tang B, Zhu J, Shi Y, Wang Y, Zhang X, Chen B, Fang S, Yang Y, Zheng L, Qiu R, Weng Q, Xu M, Zhao Z, Tu J, Chen M, Ji J. Tumor cell-intrinsic MELK enhanced CCL2-dependent immunosuppression to exacerbate hepatocarcinogenesis and confer resistance of HCC to radiotherapy. Mol Cancer 2024; 23:137. [PMID: 38970074 PMCID: PMC11225310 DOI: 10.1186/s12943-024-02049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The outcome of hepatocellular carcinoma (HCC) is limited by its complex molecular characteristics and changeable tumor microenvironment (TME). Here we focused on elucidating the functional consequences of Maternal embryonic leucine zipper kinase (MELK) in the tumorigenesis, progression and metastasis of HCC, and exploring the effect of MELK on immune cell regulation in the TME, meanwhile clarifying the corresponding signaling networks. METHODS Bioinformatic analysis was used to validate the prognostic value of MELK for HCC. Murine xenograft assays and HCC lung metastasis mouse model confirmed the role of MELK in tumorigenesis and metastasis in HCC. Luciferase assays, RNA sequencing, immunopurification-mass spectrometry (IP-MS) and coimmunoprecipitation (CoIP) were applied to explore the upstream regulators, downstream essential molecules and corresponding mechanisms of MELK in HCC. RESULTS We confirmed MELK to be a reliable prognostic factor of HCC and identified MELK as an effective candidate in facilitating the tumorigenesis, progression, and metastasis of HCC; the effects of MELK depended on the targeted regulation of the upstream factor miR-505-3p and interaction with STAT3, which induced STAT3 phosphorylation and increased the expression of its target gene CCL2 in HCC. In addition, we confirmed that tumor cell-intrinsic MELK inhibition is beneficial in stimulating M1 macrophage polarization, hindering M2 macrophage polarization and inducing CD8 + T-cell recruitment, which are dependent on the alteration of CCL2 expression. Importantly, MELK inhibition amplified RT-related immune effects, thereby synergizing with RT to exert substantial antitumor effects. OTS167, an inhibitor of MELK, was also proven to effectively impair the growth and progression of HCC and exert a superior antitumor effect in combination with radiotherapy (RT). CONCLUSIONS Altogether, our findings highlight the functional role of MELK as a promising target in molecular therapy and in the combination of RT therapy to improve antitumor effect for HCC.
Collapse
Affiliation(s)
- Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Radiation Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Peking University, Beijing, 100142, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaojie Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Biao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China.
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China.
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital, Zhejiang University, Lishui, 323000, China.
- Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
52
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
53
|
Menz A, Zerneke J, Viehweger F, Büyücek S, Dum D, Schlichter R, Hinsch A, Bawahab AA, Fraune C, Bernreuther C, Kluth M, Hube-Magg C, Möller K, Lutz F, Reiswich V, Luebke AM, Lebok P, Weidemann SA, Sauter G, Lennartz M, Jacobsen F, Clauditz TS, Marx AH, Simon R, Steurer S, Burandt E, Gorbokon N, Minner S, Krech T. Stimulator of Interferon Genes Protein (STING) Expression in Cancer Cells: A Tissue Microarray Study Evaluating More than 18,000 Tumors from 139 Different Tumor Entities. Cancers (Basel) 2024; 16:2425. [PMID: 39001487 PMCID: PMC11240524 DOI: 10.3390/cancers16132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Stimulator of interferon genes protein (STING) activates the immune response in inflammatory cells. STING expression in cancer cells is less well characterized, but STING agonists are currently being evaluated as anticancer drugs. A tissue microarray containing 18,001 samples from 139 different tumor types was analyzed for STING by immunohistochemistry. STING-positive tumor cells were found in 130 (93.5%) of 139 tumor entities. The highest STING positivity rates occurred in squamous cell carcinomas (up to 96%); malignant mesothelioma (88.5%-95.7%); adenocarcinoma of the pancreas (94.9%), lung (90.3%), cervix (90.0%), colorectum (75.2%), and gallbladder (68.8%); and serous high-grade ovarian cancer (86.0%). High STING expression was linked to adverse phenotypes in breast cancer, clear cell renal cell carcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, and papillary carcinoma of the thyroid (p < 0.05). In pTa urothelial carcinomas, STING expression was associated with low-grade carcinoma (p = 0.0002). Across all tumors, STING expression paralleled PD-L1 positivity of tumor and inflammatory cells (p < 0.0001 each) but was unrelated to the density of CD8+ lymphocytes. STING expression is variable across tumor types and may be related to aggressive tumor phenotype and PD-L1 positivity. The lack of relationship with tumor-infiltrating CD8+ lymphocytes argues against a significant IFN production by STING positive tumor cells.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julia Zerneke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| |
Collapse
|
54
|
Zhang L, Xiao J, Li Y, Liu B, Xie L. Efficacy and Safety of Chidamide in Combination with PD-1 Inhibitor and Radiotherapy for HER2-Negative Advanced Breast Cancer: Study Protocol of a Single Arm Prospective Study. Cancer Manag Res 2024; 16:691-701. [PMID: 38948681 PMCID: PMC11213541 DOI: 10.2147/cmar.s464677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose As one of the most important breakthroughs in cancer therapy, immune checkpoint inhibitors have greatly prolonged survival of patients with breast cancer. However, their application and efficacy are limited, especially for advanced HER2-negative breast cancer. It has been reported that epigenetic modulation of the histone deacetylase (HDAC) inhibitor chidamide, as well as immune microenvironment modulation of radiotherapy are potentially synergistic with immunotherapy. Thus, the combination of chidamide, radiotherapy and immunotherapy is expected to improve prognosis of patients with advanced HER2-negative breast cancer. Patients and Methods This is a single-arm, open, prospective clinical trial investigating the efficacy and safety of the combination of HDAC inhibitor chidamide, anti-PD-1 antibody sintilimab, and the novel immuno-radiotherapy, which aims to enhance efficacy of immunotherapy, in subsequent lines of therapy of HER2-negative breast cancer. Our study will include 35 patients with advanced breast cancer that has failed endocrine therapy and first-line chemotherapy. Participants will receive 30 mg of chidamide twice a week, 200 mg of sintilimab once every 3 weeks, combined with immuno-radiotherapy. Radiotherapy will be centrally 8 Gy for at least one lesion, and at least 1 Gy for the other lesions. We will complete three fractions of radiotherapy in one cycle. The primary endpoint is progression-free survival, and secondary endpoints are objective response rate, disease control rate and safety. Moreover, biomarkers including cytokines and lymphocyte subgroups will be explored. Conclusion As a single-arm clinical trial, the analysis of the influence of each single treatment is limited. Besides, our study is an open study, which involves neither randomization nor blinding. In spite of the abovementioned limitations, this prospective clinical trial will give an insight into subsequent lines of therapy of HER2-negative advanced breast cancer, prolong the survival or achieve long remission for these participants, and identify potential responders.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Xiao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Yishan Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Li Xie
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
55
|
Cui R, Li Y, Yu X, Wei C, Jiang O. Efficacy and safety of concurrent immune checkpoint inhibitors combined with radiotherapy or chemoradiotherapy for advanced non-small cell lung cancer: A systematic review and single-arm meta-analysis. PLoS One 2024; 19:e0304941. [PMID: 38865375 PMCID: PMC11168700 DOI: 10.1371/journal.pone.0304941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The recent usage of immunotherapy combined with chemoradiotherapy has improved survival in advanced non-small cell lung cancer (NSCLC) patients. However, determining the most effective therapy combination remains a topic of debate. Research suggests immune checkpoint inhibitors (ICIs) post-chemoradiotherapy enhance survival, but the impact of concurrent ICIs during chemoradiotherapy on rapid disease progression is unclear. This meta-analysis aims to assess the effectiveness and safety of concurrent ICIs with radiotherapy or chemoradiotherapy in advanced non-small cell lung cancer. METHODS We searched PubMed, Embase, the Cochrane Library, and Web of Science for relevant studies, extracting data on overall response rate (ORR), progression-free survival (PFS), overall survival (OS), and adverse events (AEs). RESULTS The analysis included ten studies with 490 participants. Stage III NSCLC ORR was 81.8%, while Stage IV ORR was 39.9%. One-year PFS and OS for Stage III were 68.2% and 82.6%, compared to 27.9% and 72.2% for Stage IV. Common adverse events included anemia (46.6%), nausea (47.6%), rash (36.4%), and radiation pneumonitis (36.3%). CONCLUSIONS Our meta-analysis shows concurrent ICIs with chemoradiotherapy are effective and safe in advanced NSCLC, particularly in stage III patients at risk of progression before starting ICIs after chemoradiotherapy. The findings support further phase III trials. The review protocol was registered on PROSPERO (CRD42023493685) and is detailed on the NIHR HTA programme website.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Yun Li
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Xinlin Yu
- Department of Oncology, The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Chun Wei
- Department of Oncology, The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ou Jiang
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| |
Collapse
|
56
|
Hsu S, Chao Y, Hu Y, Zhang Y, Hong W, Chen Y, Chen R, Zeng Z, Du S. Radiotherapy enhances efficacy of PD-1 inhibitors in advanced hepatocellular carcinoma: A propensity-matched real-world study. Chin Med J (Engl) 2024; 137:1332-1342. [PMID: 38725345 PMCID: PMC11191029 DOI: 10.1097/cm9.0000000000003124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND To address the need for immunotherapy in patients with advanced primary hepatocellular carcinoma (HCC), combination with radiotherapy (RT) has emerged as a promising strategy. In preclinical studies, irradiated tumors released tumor antigens to synergistically increase the antitumor effect of immunotherapy. Hence, we investigated whether RT enhances the efficacy of anti-programmed death receptor-1 (PD-1) inhibitors in advanced HCC in real-world practice. METHODS Between August 2018 and June 2021, 172 patients with advanced primary HCC were enrolled in the tertiary center (Zhongshan Hospital of Fudan University); 95 were treated with a combination of RT and the inhibitor of PD-1 (RT-PD1 cohort), and 77 were administered anti-PD-1 therapy (PD1 cohort). The first cycle of PD-1 inhibitors was administered within 60 days or concurrently with RT. Propensity score matching for bias reduction was used to evaluate the clinical outcomes. RESULTS Among 71 propensity-matched pairs, median progression-free survival was 5.7 months in the RT-PD1 cohort vs. 2.9 months in the PD1 cohort ( P <0.001). Median overall survival was 20.9 months in the RT-PD1 cohort vs. 11.2 months in the PD1 cohort ( P = 0.018). Compared with patients in the PD1 cohort, patients in the RT-PD1 cohort had significantly higher objective response rates (40.8%, 29/71 vs. 19.7%, 14/71, P = 0.006) and disease control rates (62.0%, 44/71 vs. 31.0%, 22/71, P <0.001). The incidences of toxic effects were not significantly different between the two cohorts. CONCLUSIONS RT plus anti-PD-1 therapy is well tolerated. RT enhances the efficacy of anti-PD-1 therapy in patients with advanced primary HCC by improving survival outcomes without increased toxic effects.
Collapse
Affiliation(s)
- Shujung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yencheng Chao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rongxin Chen
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
57
|
Salminen A. The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J Mol Med (Berl) 2024; 102:733-750. [PMID: 38600305 PMCID: PMC11106179 DOI: 10.1007/s00109-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
58
|
Li XJY, Qu JR, Zhang YH, Liu RP. The dual function of cGAS-STING signaling axis in liver diseases. Acta Pharmacol Sin 2024; 45:1115-1129. [PMID: 38233527 PMCID: PMC11130165 DOI: 10.1038/s41401-023-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Numerous liver diseases, such as nonalcoholic fatty liver disease, hepatitis, hepatocellular carcinoma, and hepatic ischemia-reperfusion injury, have been increasingly prevalent, posing significant threats to global health. In recent decades, there has been increasing evidence linking the dysregulation of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING)-related immune signaling to liver disorders. Both hyperactivation and deletion of STING can disrupt the immune microenvironment dysfunction, exacerbating liver disorders. Consequently, there has been a surge in research investigating medical agents or mediators targeting cGAS-STING signaling. Interestingly, therapeutic manipulation of the cGAS-STING pathway has yielded inconsistent and even contradictory effects on different liver diseases due to the distinct physiological characteristics of intrahepatic cells that express and respond to STING. In this review, we comprehensively summarize recent advancements in understanding the dual roles of the STING pathway, highlighting that the benefits of targeting STING signaling depend on the specific types of target cells and stages of liver injury. Additionally, we offer a novel perspective on the suitability of STING agonists and antagonists for clinical assessment. In conclusion, STING signaling remains a highly promising therapeutic target, and the development of STING pathway modulators holds great potential for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiao-Jiao-Yang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Jiao-Rong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
59
|
Bao Y, Pan Z, Zhao L, Qiu J, Cheng J, Liu L, Qian D. BIBR1532 combined with radiotherapy induces ferroptosis in NSCLC cells and activates cGAS-STING pathway to promote anti-tumor immunity. J Transl Med 2024; 22:519. [PMID: 38816831 PMCID: PMC11138045 DOI: 10.1186/s12967-024-05331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Telomerase, by safeguarding damaged telomeres and bolstering DNA damage repair, has the capacity to heighten the radioresistance of tumour cells. Thus, in turn, can compromise the efficacy of radiotherapy (RT) and radioimmunotherapy. Our previous studies have revealed that the highly selective telomerase inhibitor, BIBR1532, possesses the potential to enhance the radiosensitivity of Non-small cell lung cancer (NSCLC). In this study, we delve further into the impact of BIBR1532 on the immune activation induced by RT and elucidate the underlying mechanisms. METHODS Biological information analyses, immunofluorescence assays, western blot assays, flow cytometry analysis were conducted to elucidate the functions of the combination of BIBR1532 with radiotherapy in NSCLC. Intracellular levels of lipid peroxides, glutathione, malondialdehyde, and Fe2+ were measured as indicators of ferroptosis status. Both in vitro and in vivo studies were conducted to examine the antitumor effects. RESULTS Our findings indicate that the confluence of BIBR1532 with RT significantly augments the activation of the cGAS-STING pathway in both in vivo and in vitro settings, thereby fostering an effective anti-tumoral immune response. The effects can be ascribed to two key processes. Firstly, ionizing radiation, in precipitating DNA double-strand breaks (DSBs), prompts the release of tumour-derived double-stranded DNA (dsDNA) into the cytoplasm. Subsequently, BIBR1532 amplifies the activation of antigen-presenting cells by dsDNA post-RT and instigates the cGAS-STING pathway. Secondly, BIBR1532 enhances the ferroptosis response in NSCLC following RT, thereby promoting unrestrained lipid peroxidation and elevated levels of reactive oxygen species (ROS) within tumour cells. This ultimately leads to mitochondrial stress and the release of endogenous mitochondrial DNA (mtDNA) into the cytoplasm, thus facilitating the activation of the STING pathway and the induction of a type I interferon (IFN)-linked adaptive immune response. CONCLUSION This study underscores the potential of BIBR1532 as an efficacious and safe radiosensitizer and radioimmunotherapy synergist, providing robust preclinical research evidence for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yawei Bao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhipeng Pan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Luqi Zhao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5039, USA
| | - Jieping Qiu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
60
|
He M, Liang C, Pang Y, Jiang M, Long M, Yao Z, Wang X, Zhang R, Wu Q, Liang S, Li J. A Novel Nomogram to Predict Prognosis of Advanced Hepatocellular Carcinoma Treated with Intensity-Modulated Radiotherapy Plus Anti-PD1. J Hepatocell Carcinoma 2024; 11:913-925. [PMID: 38799002 PMCID: PMC11128222 DOI: 10.2147/jhc.s459683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose The combination of radiotherapy and monoclonal antibody against programmed cell death 1 (anti-PD1) showed preliminary efficacy in hepatocellular carcinoma (HCC). This study aimed to identify the prognostic factors and construct a nomogram to predict the overall survival (OS) of patients with advanced HCC after treatment with intensity-modulated radiotherapy (IMRT) plus anti-PD1. Patients and Methods The OS and progression-free survival (PFS) of 102 patients with BCLC stage C HCC was analyzed using the Kaplan-Meier method. Potential independent prognostic factors were determined using univariate and multivariate Cox regression analyses. A nomogram was established to predict prognosis whose accuracy and reliability was verified by a calibration curve and area under the receiver operating characteristic curve (AUROC). Results The median PFS and OS rates of the 102 patients with advanced HCC were 9.9 months and 14.3 months, respectively. Ninety-three patients were evaluated for efficacy, including five (5.38%) with complete response and 48 (51.61%) with partial response, with an overall response rate of 56.99%. Grade 3 and 4 adverse reactions (AEs) were observed in 32.35% of patients; no grade 5 AEs occurred. Multivariate Cox analysis revealed albumin and alpha-fetoprotein levels, neutrophil counts 3-4 weeks after IMRT initiation, and platelet-to-lymphocyte ratio 3-4 weeks after IMRT initiation to be independent prognostic factors. The nomogram model constructed using these factors had good consistency and accuracy with 1-3 years AUROC of 78.7, 78.6, and 93.5, respectively. Conclusion IMRT plus anti-PD1 showed promising efficacy and controllable adverse reactions in treating advanced HCC. The nomogram model demonstrated good reliability and clinical applicability.
Collapse
Affiliation(s)
- Meiling He
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Chunfeng Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Yadan Pang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Mengjie Jiang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Meiying Long
- School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Zhongqiang Yao
- Department of General Affairs, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Xiaoting Wang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Ruijun Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Qiaoyuan Wu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Shixiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| | - Jianxu Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People’s Republic of China
| |
Collapse
|
61
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
62
|
Meng S, Jiangtao B, Haisong W, Mei L, Long Z, Shanfeng L. RNA m 5C methylation: a potential modulator of innate immune pathways in hepatocellular carcinoma. Front Immunol 2024; 15:1362159. [PMID: 38807595 PMCID: PMC11131105 DOI: 10.3389/fimmu.2024.1362159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Shanfeng
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
63
|
Zhai M, Lin Z, Wang H, Yang J, Li M, Li X, Zhang L, Zhang T. Can rectal MRI and endorectal ultrasound accurately predict the complete response to neoadjuvant immunotherapy for rectal cancer? Gastroenterol Rep (Oxf) 2024; 12:goae027. [PMID: 38590912 PMCID: PMC11001488 DOI: 10.1093/gastro/goae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Background Standardized assessments of clinical complete response (cCR) to neoadjuvant chemoradiotherapy (nCRT) for rectal cancer have been established, but their utility and accuracy remain unclear. This study aimed to evaluate the clinical diagnostic value of rectal magnetic resonance imaging (MRI) and endorectal ultrasonography (ERUS) for the determination of cCRs after neoadjuvant immunotherapy and to investigate the concordance between cCR and pathological complete response (pCR). Methods Ninety-four patients with rectal cancer treated with neoadjuvant radiotherapy with or without immunotherapy were included. The sensitivity, specificity, and accuracy of each evaluation method were calculated. Results Combined MRI and ERUS assessments found cCR in seven of the 94 patients in our cohort. In the non-immunotherapy group, the sensitivity, specificity, and accuracy of MRI for diagnosing cCR were 50.0%, 85.2%, and 77.1%, respectively, whereas those of ERUS were 50.0%, 92.6%, and 82.9%, respectively; those of combined MRI and ERUS were 25.0%, 96.3%, and 87.5%, respectively. In the immunotherapy group, the sensitivity, specificity, and accuracy with which MRI identified CR were 51.7%, 76.7%, and 64.4%, respectively; those of ERUS were 13.8%, 90.0%, and 52.5%, respectively, and those of combined MRI and ERUS were 10.3%, 96.7%, and 54.2%, respectively. We also found that 32 of 37 patients with pCR did not meet the cCR evaluation criteria. Of these pCR patients, 78.4% (29/37) received immunotherapy. In the entire cohort, there were five pCRs among the seven cCRs. Of the four cCRs that occurred in the immunotherapy group, three were pCRs. Conclusions Rectal MRI and/or ERUS did not provide sufficiently accurate assessments of cCR in patients with rectal cancer receiving neoadjuvant therapy, especially immunotherapy, and cCR did not predict pCR.
Collapse
Affiliation(s)
- Menglan Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, P. R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, P. R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, P. R. China
| | - Jinru Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Mingjie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, Hubei, P. R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|
64
|
Ma J, Xin Y, Wang Q, Ding L. Roles of cGAS-STING Pathway in Radiotherapy Combined with Immunotherapy for Hepatocellular Carcinoma. Mol Cancer Ther 2024; 23:447-453. [PMID: 38049087 DOI: 10.1158/1535-7163.mct-23-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/14/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Although great strides have been made in the management and treatment of hepatocellular carcinoma (HCC), its prognosis is still poor yielding a high mortality. Immunotherapy is recommended for treating advanced HCC, but its efficiency is hampered because of hepatic immunosuppression. Stimulator of interferon genes (STING) pathway, serving as a critical cytoplasmic DNA-sensing process, is reported to initiate the antitumor immune response, and link the innate immunity to the adaptive immune system. Radiotherapy has been well acknowledged to induce destruction and release of tumor-derived DNA into the cytoplasm, which then activates the cGAS-STING pathway. On this basis, radiotherapy can be used as a sensitizer for immunotherapy, and its combination with immunotherapy may bring in changes to the suboptimal efficacy of immune checkpoint inhibitor monotherapy. In this review, we summarized the roles of cGAS-STING pathway in regulation of radiotherapy combined with immunotherapy for treating HCC.
Collapse
Affiliation(s)
- Jianing Ma
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yuning Xin
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Qiang Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lijuan Ding
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
65
|
Hong W, Zhang Y, Wang S, Li Z, Zheng D, Hsu S, Zhou J, Fan J, Chen Z, Xia X, Zeng Z, Gao Q, Yu M, Du S. RECQL4 Inhibits Radiation-Induced Tumor Immune Awakening via Suppressing the cGAS-STING Pathway in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308009. [PMID: 38381090 DOI: 10.1002/advs.202308009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zongjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; Institute for Biotechnology, St. John's University, Queens, New York, NY10003, USA
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| |
Collapse
|
66
|
Wang L, Shen K, Gao Z, Ren M, Wei C, Yang Y, Li Y, Zhu Y, Zhang S, Ding Y, Zhang T, Li J, Zhu M, Zheng S, Yang Y, Du S, Wei C, Gu J. Melanoma Derived Exosomes Amplify Radiotherapy Induced Abscopal Effect via IRF7/I-IFN Axis in Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304991. [PMID: 38286661 PMCID: PMC10987102 DOI: 10.1002/advs.202304991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/11/2023] [Indexed: 01/31/2024]
Abstract
Radiotherapy (RT) can induce tumor regression outside the irradiation field, known as the abscopal effect. However, the detailed underlying mechanisms remain largely unknown. A tumor-bearing mouse model is successfully constructed by inducing both subcutaneous tumors and lung metastases. Single-cell RNA sequencing, immunofluorescence, and flow cytometry are performed to explore the regulation of tumor microenvironment (TME) by RT. A series of in vitro assays, including luciferase reporter, RNA Pulldown, and fluorescent in situ hybridization (FISH) assays, are performed to evaluate the detailed mechanism of the abscopal effect. In addition, in vivo assays are performed to investigate combination therapy strategies for enhancing the abscopal effect. The results showed that RT significantly inhibited localized tumor and lung metastasis progression and improved the TME. Mechanistically, RT promoted the release of tumor-derived exosomes carrying circPIK3R3, which is taken up by macrophages. circPIK3R3 promoted Type I interferon (I-IFN) secretion and M1 polarization via the miR-872-3p/IRF7 axis. Secreted I-IFN activated the JAK/STAT signaling pathway in CD8+ T cells, and promoted IFN-γ and GZMB secretion. Together, the study shows that tumor-derived exosomes promote I-IFN secretion via the circPIK3R3/miR-872-3p/IRF7 axis in macrophages and enhance the anti-tumor immune response of CD8+ T cells.
Collapse
Affiliation(s)
- Lu Wang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Kangjie Shen
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Zixu Gao
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Ren
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Chenlu Wei
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yang Yang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yinlam Li
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yu Zhu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Simin Zhang
- Department of Plastic SurgeryShanghai Geriatric Medical CenterShanghai201104P. R. China
| | - Yiteng Ding
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Tianyi Zhang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Jianrui Li
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Zhu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoluan Zheng
- Department of Plastic SurgeryZhongshan Hospital Xiamen BranchFudan UniversityXiamen361015P. R. China
| | - Yanwen Yang
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shisuo Du
- Department of RadiotherapyZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Chuanyuan Wei
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Jianying Gu
- Department of Plastic SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
- Department of Plastic SurgeryZhongshan Hospital Xiamen BranchFudan UniversityXiamen361015P. R. China
| |
Collapse
|
67
|
Liu X, Zheng W, Zhang L, Cao Z, Cong X, Hu Q, Hou J, Jin X, Yuan Q, Lin L, Tan J, Lu J, Zhang Y, Zhang N. Arginine methylation-dependent cGAS stability promotes non-small cell lung cancer cell proliferation. Cancer Lett 2024; 586:216707. [PMID: 38331088 DOI: 10.1016/j.canlet.2024.216707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Cyclic GMP-AMP synthase (cGAS), promotes non-small cell lung cancer (NSCLC) cell proliferation. However, the specific mechanisms of cGAS-mediated NSCLC cell proliferation are largely unknown. In this study, we found asymmetric dimethylation by protein arginine methyltransferase 1 (PRMT1) at R127 of cGAS. This facilitated the binding of deubiquitinase USP7 and contributed to deubiquitination and stabilization of cGAS. PRMT1-and USP7-dependent cGAS stability, which also played a pivotal role in accelerating NSCLC cell proliferation through activating AKT pathway. We validated that the expression of cGAS and PRMT1 were positive correlated in human non-small cell lung cancer samples. Our study demonstrates a unique mechanism for managing cGAS stability by arginine methylation and indicates that PRMT1-cGAS-USP7 axis is a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weiguang Zheng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Lian Zhang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Ziyi Cao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qianying Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jingyao Hou
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xin Jin
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Qingxia Yuan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Luyao Lin
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jiang Tan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Na Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
68
|
Boustani J, Lecoester B, Baude J, Latour C, Limagne E, Ladjohoulou R, Morgand V, Froidurot L, Ghiringhelli F, Truc G, Adotévi O, Mirjolet C. Targeting two radiation-induced immunosuppressive pathways to improve the efficacy of normofractionated radiation therapy in a preclinical colorectal cancer model. Int J Radiat Biol 2024; 100:912-921. [PMID: 38506658 DOI: 10.1080/09553002.2024.2331115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE We have previously demonstrated in a murine colorectal cancer model that normofractionated RT (normoRT: 18 × 2 Gy) induced MDSC infiltration and PD-L1 expression, while hypofractionated RT (hypoRT: 3 × 8 Gy) induced Treg. Here, we wanted to assess whether the association of normoRT with treatments that target two radiation-induced immunosuppressive pathways (MDSC and PD-L1) could improve tumor control. MATERIALS AND METHODS Subcutaneous tumors were induced using colon tumor cells (CT26) in immunocompetent mice (BALB/c) and were treated with RT alone (18 × 2 Gy or 3 × 8 Gy), or concomitantly with 5-Fluorouracil (5FU) (10 mg/kg) to deplete MDSC, and/or anti-PD-L1 (10 mg/kg). We assessed the impact of these combinations on tumor growth and immune cells infiltration by flow cytometry. In addition, we performed tumor rechallenge experiments and IFN-γ ELISpots to study the long-term memory response. RESULTS Even though tumor growth was significantly delayed in the RT + 5FU compared to 5FU and untreated groups (p < .05), there was no significant difference between RT + 5FU (CRT) and RT alone. The rate of MDSC increased significantly 1 week after the end of normoRT (8.09% ± 1.03%, p < .05) and decreased with the addition of 5FU (3.39% ± 0.69%, p < .05). PD-L1 expressing tumor cells were increased after treatment. Adding anti-PD-L1 significantly delayed tumor growth, achieved the highest complete response rate, and induced a long-lasting protective specific anti-tumor immunity. CONCLUSIONS These results tend to demonstrate the interest of inhibiting two radiation-induced immunosuppressive mechanisms. In patients, the combination of normoRT with 5FU is already the standard of care in locally advanced rectal cancer. Adding an anti-PD-L1 to this treatment could show promising results.
Collapse
Affiliation(s)
- Jihane Boustani
- Department of Radiation Oncology, University Hospital of Besançon, Besançon, France
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, Besançon, France
| | - Benoit Lecoester
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, Besançon, France
| | - Jérémy Baude
- Department of Radiation Oncology, Centre George François Leclerc, Dijon, France
| | - Charlène Latour
- INSERM UMR 1231, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Emeric Limagne
- INSERM UMR 1231, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Riad Ladjohoulou
- INSERM UMR 1231, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Véronique Morgand
- INSERM UMR 1231, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Lisa Froidurot
- INSERM UMR 1231, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| | - François Ghiringhelli
- INSERM UMR 1231, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Gilles Truc
- Department of Radiation Oncology, Centre George François Leclerc, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Olivier Adotévi
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Céline Mirjolet
- INSERM UMR 1231, Dijon, France
- Cancer Biology Research Platform, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France
| |
Collapse
|
69
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
70
|
Qiu J, Xia Y, Bao Y, Cheng J, Liu L, Qian D. Silencing PinX1 enhances radiosensitivity and antitumor-immunity of radiotherapy in non-small cell lung cancer. J Transl Med 2024; 22:228. [PMID: 38431575 PMCID: PMC10908107 DOI: 10.1186/s12967-024-05023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND We aimed to investigate the effects of PinX1 on non-small cell lung cancer(NSCLC) radiosensitivity and radiotherapy-associated tumor immune microenvironment and its mechanisms. METHODS The effect of PinX1 silencing on radiosensitivity in NSCLC was assessed by colony formation and CCK8 assay, immunofluorescence detection of γ- H2AX and micronucleus assay. Western blot was used to assess the effect of PinX1 silencing on DNA damage repair pathway and cGAS-STING pathway. The nude mouse and Lewis lung cancer mouse model were used to assess the combined efficacy of PinX1 silencing and radiotherapy in vivo. Changes in the tumor immune microenvironment were assessed by flow cytometry for different treatment modalities in the Lewis luuse model. The interaction protein RBM10 was screened by immunoprecipitation-mass spectrometry. RESULTS Silencing PinX1 enhanced radiosensitivity and activation of the cGAS-STING pathway while attenuating the DNA damage repair pathway. Silencing PinX1 further increases radiotherapy-stimulated CD8+ T cell infiltration and activation, enhances tumor control and improves survival in vivo; Moreover, PinX1 downregulation improves the anti-tumor efficacy of radioimmunotherapy, increases radioimmune-stimulated CD8+ T cell infiltration, and reprograms M2-type macrophages into M1-type macrophages in tumor tissues. The interaction of PinX1 and RBM10 may promote telomere maintenance by assisting telomerase localization to telomeres, thereby inhibiting the immunostimulatory effects of IR. CONCLUSIONS In NSCLC, silencing PinX1 significantly contributed to the radiosensitivity and promoted the efficacy of radioimmunotherapy. Mechanistically, PinX1 may regulate the transport of telomerase to telomeres through interacting with RBM10, which promotes telomere maintenance and DNA stabilization. Our findings reveal that PinX1 is a potential target to enhance the efficacy of radioimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Jieping Qiu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Xia
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yawei Bao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
71
|
Wang S, Wang H, Li C, Liu B, He S, Tu C. Tertiary lymphoid structures in cancer: immune mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e489. [PMID: 38469550 PMCID: PMC10925885 DOI: 10.1002/mco2.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/13/2024] Open
Abstract
Cancer is a major cause of death globally, and traditional treatments often have limited efficacy and adverse effects. Immunotherapy has shown promise in various malignancies but is less effective in tumors with low immunogenicity or immunosuppressive microenvironment, especially sarcomas. Tertiary lymphoid structures (TLSs) have been associated with a favorable response to immunotherapy and improved survival in cancer patients. However, the immunological mechanisms and clinical significance of TLS in malignant tumors are not fully understood. In this review, we elucidate the composition, neogenesis, and immune characteristics of TLS in tumors, as well as the inflammatory response in cancer development. An in-depth discussion of the unique immune characteristics of TLSs in lung cancer, breast cancer, melanoma, and soft tissue sarcomas will be presented. Additionally, the therapeutic implications of TLS, including its role as a marker of therapeutic response and prognosis, and strategies to promote TLS formation and maturation will be explored. Overall, we aim to provide a comprehensive understanding of the role of TLS in the tumor immune microenvironment and suggest potential interventions for cancer treatment.
Collapse
Affiliation(s)
- Siyu Wang
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Hua Wang
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chenbei Li
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Binfeng Liu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Shasha He
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopaedicsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Key Laboratory of Tumor Models and Individualized MedicineThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Shenzhen Research Institute of Central South UniversityGuangdongChina
- Changsha Medical UniversityChangshaChina
| |
Collapse
|
72
|
Sun L, Gao H, Wang H, Zhou J, Ji X, Jiao Y, Qin X, Ni D, Zheng X. Nanoscale Metal-Organic Frameworks-Mediated Degradation of Mutant p53 Proteins and Activation of cGAS-STING Pathway for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307278. [PMID: 38225693 DOI: 10.1002/advs.202307278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Activating cGAS-STING pathway has great potential to achieve effective antitumor immunotherapy. However, mutant p53 (mutp53), a commonly observed genetic alteration in over 50% of human cancer, will impede the therapeutic performance of the cGAS-STING pathway. Herein, multifunctional ZIF-8@MnO2 nanoparticles are constructed to degrade mutp53 and facilitate the cGAS-STING pathway. The synthesized ZIF-8@MnO2 can release Zn2+ and Mn2+ in cancer cells to induce oxidative stress and cytoplasmic leakage of fragmented mitochondrial double-stranded DNAs (dsDNAs). Importantly, the released Zn2+ induces variable degradation of multifarious p53 mutants through proteasome ubiquitination, which can alleviate the inhibitory effects of mutp53 on the cGAS-STING pathway. In addition, the released Mn2+ further increases the sensitivity of cGAS to dsDNAs as immunostimulatory signals. Both in vitro and in vivo results demonstrate that ZIF-8@MnO2 effectively promotes the cGAS-STING pathway and synergizes with PD-L1 checkpoint blockades, leading to remarkable regression of local tumors as well as distant metastases of breast cancer. This study proposes an inorganic metal ion-based nanoplatform to enhance the cGAS-STING-mediated antitumor immunotherapy, especially to those tumors with mutp53 expression.
Collapse
Affiliation(s)
- Li Sun
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hongbo Gao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yuxin Jiao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiaojia Qin
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
73
|
Pan B, Ke X, Qiu J, Ye D, Zhang Z, Zhang X, Luo Y, Yao Y, Wu X, Wang X, Tang N. LAIR1-mediated resistance of hepatocellular carcinoma cells to T cells through a GSK-3β/β-catenin/MYC/PD-L1 pathway. Cell Signal 2024; 115:111039. [PMID: 38199599 DOI: 10.1016/j.cellsig.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND An increasing number of studies have reported the involvement of oncogenes in the regulation of the immune system. LAIR1 is an immunosuppressive molecule and its role in immune-related diseases has been mainly reported. To date, it is unclear whether LAIR1 in tumor cells is involved in immune regulation. Therefore, the aim of this study was to investigate the role of LAIR1 in the immune microenvironment of hepatocellular carcinoma (HCC) to seek the novel therapeutic discoveries. METHODS Tumor Immune Dysfunction and Exclusion database was used to predict the response of LAIR1 expression to immune checkpoint blockade. CD8+ T cells were co-cultured with HCC cells, and the killing efficiency of leukocytes on HCC cells was detected by flow cytometry. Flow cytometry was also used to detect the expression of inhibitory receptors. In addition, Western blot, immunofluorescence, and nucleus/cytoplasm fractionation experiments were performed to explore the molecular mechanisms by which LAIR1 created a suppressive tumor microenvironment. RESULTS LAIR1 expression in HCC was associated with worse immune prognosis and T-cell dysfunction. HCC cells overexpressing LAIR1 co-cultured with CD8+ T cells induced exhaustion of latter. Mechanism studies indicated that LAIR1 in HCC cells up-regulated the phosphorylation of β-catenin by inducing the phosphorylation of GSK-3β, leading to the impairment of the expression and the nuclear localization signal of β-catenin. Low β-catenin expression and nuclear localization signal inhibited MYC-mediated PD-L1 expression. Therefore, PD-L1 up-regulated by LAIR1 caused the exhaustion of infiltrating CD8+ T cells in HCC, which aggravated the malignant progression of HCC. CONCLUSION LAIR1 increased PD-L1 expression through the GSK-3β/β-catenin/MYC/PD-L1 pathway and promoted immune evasion of HCC cells. Targeted inhibition of LAIR1 helped to enhance the immune killing effect of CD8+ T cells in HCC.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoling Ke
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongjie Ye
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yue Luo
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China; Lead contact.
| |
Collapse
|
74
|
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, Wang Y, Chen H, Shi Y, Wang R. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects. Front Immunol 2024; 15:1357101. [PMID: 38449871 PMCID: PMC10915027 DOI: 10.3389/fimmu.2024.1357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonggang Zhang
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Kuan Liu
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yue Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Huijing Chen
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ruiyao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
75
|
Chen G, Zheng D, Zhou Y, Du S, Zeng Z. Olaparib enhances radiation-induced systemic anti-tumor effects via activating STING-chemokine signaling in hepatocellular carcinoma. Cancer Lett 2024; 582:216507. [PMID: 38048841 DOI: 10.1016/j.canlet.2023.216507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors have been clinically approved for cancers with BRCA mutations and are known to augment radiotherapy responses, their roles in promoting the abscopal effect and mediating immunotherapy in BRCA-proficient hepatocellular carcinoma (HCC) remain underexplored. Our study elucidates that olaparib enhances the radio-sensitivity of HCC cells. Coadministration of olaparib and irradiation induces significant DNA damage by generating double-strand breaks (DSBs), as revealed both in vitro and in immune-deficient mice. These DSBs activate the cGAS-STING pathway, initiating immunogenic cell death in abscopal tumors. STING activation reprograms the immune microenvironment in the abscopal tumors, triggering the release of type I interferon and chemokines, including CXCL9, CXCL10, CXCL11, and CCL5. This in turn amplifies T cell priming against tumor neoantigens, leading to an influx of activated, neoantigen-specific CD8+ T-cells within the abscopal tumors. Furthermore, olaparib attenuated the immune exhaustion induced by radiation and enhances the responsiveness of HCC to immune checkpoint inhibitors. Collectively, our data advocate that a synergistic regimen of PARP inhibitors and radiotherapy can strategically reinforce both local (primary) and systemic (abscopal) tumor control, bolstering HCC susceptibility to immunotherapy.
Collapse
Affiliation(s)
- Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Danxue Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yimin Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
76
|
Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, He X, Guo JH, Wang RQ, Dai B, Zhou ZL. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171:116203. [PMID: 38280330 DOI: 10.1016/j.biopha.2024.116203] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.
Collapse
Affiliation(s)
- Jia-Wen Cui
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Yao Li
- College of Pharmacy, Macau University of Science and Technology (MUST), China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhi-Hua Xiao
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City 528200, Guangdong Province, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
77
|
Wang L, Zhou H, Chen Q, Lin Z, Jiang C, Chen X, Chen M, Liu L, Shao L, Liu X, Pan J, Wu J, Song J, Wu J, Zhang D. STING Agonist-Loaded Nanoparticles Promotes Positive Regulation of Type I Interferon-Dependent Radioimmunotherapy in Rectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307858. [PMID: 38063844 PMCID: PMC10870073 DOI: 10.1002/advs.202307858] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Indexed: 02/17/2024]
Abstract
Hypoxia-associated radioresistance in rectal cancer (RC) has severely hampered the response to radioimmunotherapy (iRT), necessitating innovative strategies to enhance RC radiosensitivity and improve iRT efficacy. Here, a catalytic radiosensitizer, DMPtNPS, and a STING agonist, cGAMP, are integrated to overcome RC radioresistance and enhance iRT. DMPtNPS promotes efficient X-ray energy transfer to generate reactive oxygen species, while alleviating hypoxia within tumors, thereby increasing radiosensitivity. Mechanistically, the transcriptomic and immunoassay analysis reveal that the combination of DMPtNPS and RT provokes bidirectional regulatory effects on the immune response, which may potentially reduce the antitumor efficacy. To mitigate this, cGAMP is loaded into DMPtNPS to reverse the negative impact of DMPtNPS and RT on the tumor immune microenvironment (TiME) through the type I interferon-dependent pathway, which promotes cancer immunotherapy. In a bilateral tumor model, the combination treatment of RT, DMPtNPS@cGAMP, and αPD-1 demonstrates a durable complete response at the primary site and enhanced abscopal effect at the distant site. This study highlights the critical role of incorporating catalytic radiosensitizers and STING agonists into the iRT approach for RC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
- Department of Oncologythe Second Affiliated Hospital of Nanchang UniversityNanchang360000P. R. China
| | - Han Zhou
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053P. R. China
| | - Qingjing Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Zhiwen Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Chenwei Jiang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Xingte Chen
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Mingdong Chen
- Department of Radiation OncologyMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Libin Liu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Lingdong Shao
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Jianji Pan
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Jingcheng Wu
- Department of Health ScienceTechnology and EducationNational Health Commission of the People's Republic of ChinaBeijing100088China
| | - Jibin Song
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| | - Junxin Wu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| |
Collapse
|
78
|
Khorasani M, Alaei M. cGAS-STING and PD1/PDL-1 pathway in breast cancer: a window to new therapies. J Recept Signal Transduct Res 2024; 44:1-7. [PMID: 38470108 DOI: 10.1080/10799893.2024.2325353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Breast cancer is a complex malignancy with diverse molecular and cellular subtypes and clinical outcomes. Despite advances in treatment, breast cancer remains a significant health challenge. However, recent advances in cancer immunotherapy have shown promising results in the treatment of breast cancer, particularly the use of inhibitors that target the immune checkpoint PD1/PDL1. Also, the cGAS-STING pathway, an important part of the innate immune response, has been considered as a major potential therapeutic target for breast cancer. In this narrative review, we provide an overview of the cGAS-STING and PD1/PDL-1 pathway in breast cancer, including their role in tumor development, progression, and response to treatment. We also discuss potential future directions for research.
Collapse
Affiliation(s)
- Milad Khorasani
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Clinical Biochemistry, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Alaei
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
79
|
Jiang X, Jiang X, Wu D, Xie W, Liu X, Zheng J. A pH-Sensitive Nanoparticle as Reactive Oxygen Species Amplifier to Regulate Tumor Microenvironment and Potentiate Tumor Radiotherapy. Int J Nanomedicine 2024; 19:709-725. [PMID: 38283195 PMCID: PMC10812755 DOI: 10.2147/ijn.s436160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Background Radiotherapy is a widely used clinical tool for tumor treatment but can cause systemic toxicity if excessive radiation is administered. Although numerous nanoparticles have been developed as radiosensitizers to reduce the required dose of X-ray irradiation, they often have limitations, such as passive reliance on radiation-induced apoptosis in tumors, and little consider the unique tumor microenvironment that contributes radiotherapy resistance. Methods In this study, we developed and characterized a novel self-assembled nanoparticle containing dysprosium ion and manganese ion (Dy/Mn-P). We systematically investigated the potential of Dy/Mn-P nanoparticles (NPs) as a reactive oxygen species (ROS) amplifier and radiosensitizer to enhance radiation therapy and modulate the tumor microenvironment at the cellular level. Additionally, we evaluated the effect of Dy/Mn-P on the stimulator of interferon genes (STING), an innate immune signaling pathway. Results Physicochemical analysis demonstrated the prepared Dy/Mn-P NPs exhibited excellent dispersibility and stability, and degraded rapidly at lower pH values. Furthermore, Dy/Mn-P was internalized by cells and exhibited selective toxicity towards tumor cells compared to normal cells. Our findings also revealed that Dy/Mn-P NPs improved the tumor microenvironment and significantly increased ROS generation under ionizing radiation, resulting in a ~70% increase in ROS levels compared to radiation therapy alone. This enhanced ROS generation inhibited ~92% of cell clone formation and greatly contributed to cytoplasmic DNA exposure. Subsequently, the activation of the STING pathway was observed, leading to the secretion of pro-inflammatory immune factors and maturation of dendritic cells (DCs). Conclusion Our study demonstrates that Dy/Mn-P NPs can potentiate tumor radiotherapy by improving the tumor microenvironment and increasing endogenous ROS levels within the tumor. Furthermore, Dy/Mn-P can amplify the activation of the STING pathway during radiotherapy, thereby triggering an anti-tumor immune response. This novel approach has the potential to expand the application of radiotherapy in tumor treatment.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Department of Dermatology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, People’s Republic of China
| | - Xiaohong Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Dongjie Wu
- Department of Dermatology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, People’s Republic of China
| | - Wanzhu Xie
- Department of Rehabilitation, Liuzhou Worker’s Hospital, Liuzhou, 545001, People’s Republic of China
| | - Xiong Liu
- Department of Dermatology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, People’s Republic of China
| | - Jintao Zheng
- Department of Biotechnology and Food Engineering, Guangdong Technology Israel Institute of Technology, Shantou, 515063, People’s Republic of China
| |
Collapse
|
80
|
Xie L, Zhang Z. Survival benefit of combined immunotherapy and chemoradiotherapy in locally advanced unresectable esophageal cancer: an analysis based on the SEER database. Front Immunol 2024; 15:1334992. [PMID: 38292873 PMCID: PMC10825045 DOI: 10.3389/fimmu.2024.1334992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Background While simultaneous chemoradiotherapy remains the established therapeutic modality for patients afflicted with locally advanced esophageal cancer, the effectiveness of this radical approach falls short of the desired outcome. Numerous investigations have illuminated the prospect of enhancing therapeutic efficacy through the amalgamation of chemoradiotherapy and immunotherapeutic interventions. Consequently, we embarked on an examination to scrutinize the potential survival advantages conferred by the confluence of chemoradiotherapy and immunotherapy in relation to locally advanced unresectable esophageal carcinoma, drawing upon the extensive SEER database for our analysis. Methods We extracted clinicopathological attributes and survival statistics of patients afflicted with locally advanced unresectable esophageal carcinoma, diagnosed within the temporal span encompassing the years 2004-2014 and 2019-2020, from the extensive SEER database. To discern disparities in both overall survival (OS) and cancer-specific survival (CSS) between the cohorts subjected to chemoradiotherapy combined with immunotherapy and chemoradiotherapy alone, we employed analytical tools such as Kaplan-Meier analysis, the Log-rank test, the Cox regression proportional risk model, and propensity-matched score (PSM) methodology. Results A total of 7,758 eligible patients were encompassed in this research, with 6,395 individuals having undergone chemoradiotherapy alone, while 1,363 patients received the combined treatment of chemoradiotherapy and immunotherapy. After 1:4 propensity score matching, 6,447 patients were successfully harmonized, yielding a well-balanced cohort. The Kaplan-Meier curves demonstrated a substantial enhancement in OS (P = 0.0091) and CSS (P < 0.001) for the group subjected to chemoradiotherapy combined with immunotherapy as compared to chemoradiotherapy alone. Further multivariable analysis with PSM confirmed that chemoradiotherapy combined with immunotherapy benefits OS(HR=0.89, 95% CI 0.81-0.98) and CSS (HR=0.68, 95% CI 0.61-0.76). In addition, Univariable and multivariable Cox regression analyses of the matched patient groups unveiled several independent prognostic factors for OS and CSS, including sex, age, marital status, tumor location, tumor size, pathologic grade, SEER historic staging, and treatment modality. Among these factors, being female, married, and receiving chemoradiotherapy combined with immunotherapy emerged as independent protective factors, while age exceeding 75 years, non-superior segment tumor location, tumor size greater than 6 cm, Grade 3-4 pathology, and regional SEER historic staging were all found to be independent risk factors. The survival advantage of the chemoradiotherapy combined with the immunotherapy group over the chemoradiotherapy alone group was substantial. Conclusions This investigation furnishes compelling evidence that the integration of immunotherapy with chemoradiotherapy confers a noteworthy survival advantage when contrasted with conventional chemoradiotherapy for individuals grappling with locally advanced unresectable esophageal carcinoma.
Collapse
Affiliation(s)
- Liangyun Xie
- Hebei Medical University, Shijiazhuang, China
- Department of Radiation Oncology, Affiliated Tangshan Worker’s Hospital, Hebei Medical University, Tangshan, China
| | - Zhi Zhang
- Department of Radiation Oncology, Affiliated Tangshan Worker’s Hospital, Hebei Medical University, Tangshan, China
| |
Collapse
|
81
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
82
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
83
|
Qiu X, Shi Z, Tong F, Lu C, Zhu Y, Wang Q, Gu Q, Qian X, Meng F, Liu B, Du J. Biomarkers for predicting tumor response to PD-1 inhibitors in patients with advanced pancreatic cancer. Hum Vaccin Immunother 2023; 19:2178791. [PMID: 36809234 PMCID: PMC10026926 DOI: 10.1080/21645515.2023.2178791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Pancreatic cancer is among the most lethal malignant neoplasms, and few patients with pancreatic cancer benefit from immunotherapy. We retrospectively analyzed advanced pancreatic cancer patients who received PD-1 inhibitor-based combination therapies during 2019-2021 in our institution. The clinical characteristics and peripheral blood inflammatory markers (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], lymphocyte-to-monocyte ratio [LMR], and lactate dehydrogenase [LDH]) were collected at baseline. Chi-squared and Fisher's exact tests were used to evaluate relationships between the above parameters and tumor response. Cox regression analyses were employed to assess the effects of baseline factors on patients' survival and immune-related adverse events (irAEs). Overall, 67 patients who received at least two cycles of PD-1 inhibitor were considered evaluable. A lower NLR was independent predictor for objective response rate (38.1% vs. 15.2%, P = .037) and disease control rate (81.0% vs. 52.2%, P = .032). In our study population, patients with lower LDH had superior progression-free survival (PFS) and overall survival(OS) (mPFS, 5.4 vs. 2.8 months, P < .001; mOS, 13.3 vs. 3.6 months, P < .001). Liver metastasis was verified to be a negative prognostic factor for PFS (2.4 vs. 7.8 months, P < .001) and OS (5.7 vs. 18.0 months, P < .001). The most common irAEs were hypothyroidism (13.4%) and rash (10.5%). Our study demonstrated that the pretreatment inflammatory markers were independent predictors for tumor response, and the baseline LDH level and liver metastasis were potential prognostic markers of survival in patients with pancreatic cancer treated with PD-1 inhibitors.
Collapse
Affiliation(s)
- Xin Qiu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhan Shi
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fan Tong
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yahui Zhu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qiaoli Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qing Gu
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
84
|
Tong F, Sun Y, Zhu Y, Sha H, Ni J, Qi L, Gu Q, Zhu C, Xi W, Liu B, Kong W, Du J. Making "cold" tumors "hot"- radiotherapy remodels the tumor immune microenvironment of pancreatic cancer to benefit from immunotherapy: a case report. Front Immunol 2023; 14:1277810. [PMID: 38179049 PMCID: PMC10765511 DOI: 10.3389/fimmu.2023.1277810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Immune checkpoint inhibitors have limited efficacy in metastatic pancreatic cancer due to the complex tumor immune microenvironment (TIME). Studies have shown that radiotherapy can cause cell lesions to release tumor antigens and then take part in the remodeling of the tumor environment and the induction of ectopic effects via regional and systemic immunoregulation. Here, we reported a case of advanced metastatic pancreatic cancer treated with immunotherapy combined with chemotherapy and radiotherapy and a sharp shift of the TIME from T3 to T2 was also observed. One hepatic metastasis within the planning target volume (PTV) was evaluated complete response (CR), the other one was evaluated partial response (PR) and 2 hepatic metastases outside the PTV were surprisingly considered PR. In the study, we found that immunotherapy combined with chemotherapy and radiotherapy achieved significant therapeutic benefits, which may provide a new strategy for the treatment of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Fan Tong
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Sun
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yahui Zhu
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huizi Sha
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiayao Ni
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Qi
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Gu
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Chan Zhu
- State Key Laboratory of Neurology and Oncology Drug Development Jiangsu Simcere Diagnostics Co, Ltd, Nanjing, China
| | - Wenjing Xi
- State Key Laboratory of Neurology and Oncology Drug Development Jiangsu Simcere Diagnostics Co, Ltd, Nanjing, China
| | - Baorui Liu
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weiwei Kong
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Du
- Department of oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
85
|
Wang C, Xu YH, Xu HZ, Li K, Zhang Q, Shi L, Zhao L, Chen X. PD-L1 blockade TAM-dependently potentiates mild photothermal therapy against triple-negative breast cancer. J Nanobiotechnology 2023; 21:476. [PMID: 38082443 PMCID: PMC10712197 DOI: 10.1186/s12951-023-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The present work was an endeavor to shed light on how mild photothermia possibly synergizes with immune checkpoint inhibition for tumor therapy. We established mild photothermal heating protocols to generate temperatures of 43 °C and 45 °C in both in vitro and in vivo mouse 4T1 triple-negative breast cancer (TNBC) models using polyglycerol-coated carbon nanohorns (CNH-PG) and 808 nm laser irradiation. Next, we found that 1) CNH-PG-mediated mild photothermia (CNH-PG-mPT) significantly increased expression of the immune checkpoint PD-L1 and type-1 macrophage (M1) markers in the TNBC tumors; 2) CNH-PG-mPT had a lower level of anti-tumor efficacy which was markedly potentiated by BMS-1, a PD-L1 blocker. These observations prompted us to explore the synergetic mechanisms of CNH-PG-mPT and BMS-1 in the context of tumor cell-macrophage interactions mediated by PD-L1 since tumor-associated macrophages (TAMs) are a major source of PD-L1 expression in tumors. In vitro, the study then identified two dimensions where BMS-1 potentiated CNH-PG-mPT. First, CNH-PG-mPT induced PD-L1 upregulation in the tumor cells and showed a low level of cytotoxicity which was potentiated by BMS-1. Second, CNH-PG-mPT skewed TAMs towards an M1-like anti-tumor phenotype with upregulated PD-L1, and BMS-1 bolstered the M1-like phenotype. The synergistic effects of BMS-1 and CNH-PG-mPT both on the tumor cells and TAMs were more pronounced when the two cell populations were in co-culture. Further in vivo study confirmed PD-L1 upregulation both in tumor cells and TAMs in the TNBC tumors following treatment of CNH-PG-mPT. Significantly, TAMs depletion largely abolished the anti-TNBC efficacy of CNH-PG-mPT alone and in synergy with BMS-1. Collectively, our findings reveal PD-L1 upregulation to be a key response of TNBC to mild photothermal stress, which plays a pro-survival role in the tumor cells while also acting as a brake on the M1-like activation of the TAMs. Blockade of mPT‑induced PD‑L1 achieves synergistic anti-TNBC efficacy by taking the intrinsic survival edge off the tumor cells on one hand and taking the brakes off the M1-like TAMs on the other. Our findings reveal a novel way (i.e. mild thermia plus PD-L1 blockade) to modulate the TAMs-tumor cell interaction to instigate a mutiny of the TAMs against their host tumor cells.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Yong-Hong Xu
- Department of Ophthalmology, Institute of Ophthalmological Research, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Lin Shi
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
86
|
Liu Z, Wang D, Zhang J, Xiang P, Zeng Z, Xiong W, Shi L. cGAS-STING signaling in the tumor microenvironment. Cancer Lett 2023; 577:216409. [PMID: 37748723 DOI: 10.1016/j.canlet.2023.216409] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
The cGAS-STING signaling is an important pathway involved in the regulation of tumor microenvironment, which affects many cellular functions including immune activation. Its role in combating tumor progression is widely recognized, especially with its function in inducing innate and adaptive immune responses, on which many immunotherapies have been developed. However, a growing number of findings also suggest a diversity of its roles in shaping tumor microenvironment, including functions that promote tumor progression. Here, we summarize the functions of the cGAS-STING signaling in tumor microenvironment to maintain tumor survival and proliferation through facilitating the forming of an immunosuppressive tumor microenvironment and discuss the current advances of STING-related immunotherapies.
Collapse
Affiliation(s)
- Ziqi Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jiarong Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
87
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
88
|
Ding Y, Weng S, Zhu N, Mi M, Xu Z, Zhong L, Yuan Y. Immunotherapy combined with local therapy in the late-line treatment of repair-proficient (pMMR)/microsatellite stable (MSS) metastatic colorectal cancer. Heliyon 2023; 9:e22092. [PMID: 38058653 PMCID: PMC10695980 DOI: 10.1016/j.heliyon.2023.e22092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, and at the initial visit, most patients are diagnosed with metastatic CRC (mCRC). However, immunotherapy is only and highly effective in a very small proportion of patients with mCRC having mismatch repair defect (dMMR)/high microsatellite instability, and the majority of the patients with mCRC having mismatch repair proficient (pMMR)/microsatellite stability (MSS) cannot benefit from it. At present, many clinical studies of immunotherapy combined with tyrosine kinase inhibitors (TKIs) are trying to regulate the immune microenvironment of pMMR/MSS mCRC, transforming a "cold tumor" into a "hot tumor," which has not only surprising effects but also certain limitations, i.e., the response could not be specific to metastasis. Therefore, regarding the bottleneck encountered by immunotherapy in patients with patients pMMR/MSS mCRC, this study summarized current research and possible mechanisms of immunotherapy combined with local therapy for metastasis, including radiotherapy, ablation, and transcatheter arterial chemoembolization.
Collapse
Affiliation(s)
- Yuwei Ding
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Shanshan Weng
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ning Zhu
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Mi Mi
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Ziheng Xu
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
| | - Liping Zhong
- Department of Oncology, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310052, China
| |
Collapse
|
89
|
Zhang P, Wang Y, Miao Q, Chen Y. The therapeutic potential of PD-1/PD-L1 pathway on immune-related diseases: Based on the innate and adaptive immune components. Biomed Pharmacother 2023; 167:115569. [PMID: 37769390 DOI: 10.1016/j.biopha.2023.115569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Currently, immunotherapy targeting programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1) has revolutionized the treatment strategy of human cancer patients. Meanwhile, PD-1/PD-L1 pathway has also been implicated in the pathogenesis of many immune-related diseases, such as autoimmune diseases, chronic infection diseases and adverse pregnancy outcomes, by regulating components of the innate and adaptive immune systems. Given the power of the new therapy, a better understanding of the regulatory effects of PD-1/PD-L1 pathway on innate and adaptive immune responses in immune-related diseases will facilitate the discovery of novel biomarkers and therapeutic drug targets. Targeting this pathway may successfully halt or potentially even reverse these pathological processes. In this review, we discuss recent major advances in PD-1/PD-L1 axis regulating innate and adaptive immune components in immune-related diseases. We reveal that the impact of PD-1/PD-L1 axis on the immune system is complex and manifold and multi-strategies on the targeted PD-1/PD-L1 axis are taken in the treatment of immune-related diseases. Consequently, targeting PD-1/PD-L1 pathway, alone or in combination with other treatments, may represent a novel strategy for future therapeutic intervention on immune-related diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yuting Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qianru Miao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ying Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
90
|
Yang J, Yang M, Wang Y, Sun J, Liu Y, Zhang L, Guo B. STING in tumors: a focus on non-innate immune pathways. Front Cell Dev Biol 2023; 11:1278461. [PMID: 37965570 PMCID: PMC10642211 DOI: 10.3389/fcell.2023.1278461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING) are involved in mediating innate immunity by promoting the release of interferon and other inflammatory factors. Mitochondrial DNA (mtDNA) with a double-stranded structure has greater efficiency and sensitivity in being detected by DNA sensors and thus has an important role in the activation of the cGAS-STING pathway. Many previous findings suggest that the cGAS-STING pathway-mediated innate immune regulation is the most important aspect affecting tumor survival, not only in its anti-tumor role but also in shaping the immunosuppressive tumor microenvironment (TME) through a variety of pathways. However, recent studies have shown that STING regulation of non-immune pathways is equally profound and also involved in tumor cell progression. In this paper, we will focus on the non-innate immune system pathways, in which the cGAS-STING pathway also plays an important role in cancer.
Collapse
Affiliation(s)
- Jiaying Yang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingtong Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
91
|
Tamai Y, Fujiwara N, Tanaka T, Mizuno S, Nakagawa H. Combination Therapy of Immune Checkpoint Inhibitors with Locoregional Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5072. [PMID: 37894439 PMCID: PMC10605879 DOI: 10.3390/cancers15205072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is estimated to be the fourth leading cause of cancer-related deaths globally, and its overall prognosis is dismal because most cases are diagnosed at a late stage and are unamenable to curative treatment. The emergence of immune checkpoint inhibitors (ICIs) has dramatically improved the therapeutic efficacy for advanced hepatocellular carcinoma; however, their response rates remain unsatisfactory, partly because >50% of HCC exhibit an ICI-nonresponsive tumor microenvironment characterized by a paucity of cytotoxic T cells (immune-cold), as well as difficulty in their infiltration into tumor sites (immune excluded). To overcome this limitation, combination therapies with locoregional therapies, including ablation, transarterial embolization, and radiotherapy, which are usually used for early stage HCCs, have been actively explored to enhance ICI efficacy by promoting the release of tumor-associated antigens and cytokines, and eventually accelerating the so-called cancer-immunity cycle. Various combination therapies have been investigated in early- to late-phase clinical trials, and some have shown promising results. This comprehensive article provides an overview of the immune landscape for HCC to understand ICI efficacy and its limitations and, subsequently, reviews the status of combinatorial therapies of ICIs with locoregional therapy for HCC.
Collapse
Affiliation(s)
- Yasuyuki Tamai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Takamitsu Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan;
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (Y.T.); (T.T.); (H.N.)
| |
Collapse
|
92
|
Ni J, Guo T, Zhou Y, Jiang S, Zhang L, Zhu Z. STING signaling activation modulates macrophage polarization via CCL2 in radiation-induced lung injury. J Transl Med 2023; 21:590. [PMID: 37667317 PMCID: PMC10476398 DOI: 10.1186/s12967-023-04446-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a prevalent complication of thoracic radiotherapy in cancer patients. A comprehensive understanding of the underlying mechanisms of RILI is essential for the development of effective prevention and treatment strategies. METHODS To investigate RILI, we utilized a mouse model that received 12.5 Gy whole-thoracic irradiation. The evaluation of RILI was performed using a combination of quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), histology, western blot, immunohistochemistry, RNA sequencing, and flow cytometry. Additionally, we established a co-culture system consisting of macrophages, lung epithelial cells, and fibroblasts for in vitro studies. In this system, lung epithelial cells were irradiated with a dose of 4 Gy, and we employed STING knockout macrophages. Translational examinations were conducted to explore the relationship between STING expression in pre-radiotherapy lung tissues, dynamic changes in circulating CCL2, and the development of RILI. RESULTS Our findings revealed significant activation of the cGAS-STING pathway and M1 polarization of macrophages in the lungs of irradiated mice. In vitro studies demonstrated that the deficiency of cGAS-STING signaling led to impaired macrophage polarization and RILI. Through RNA sequencing, cytokine profiling, and rescue experiments using a CCL2 inhibitor called Bindarit, we identified the involvement of CCL2 in the regulation of macrophage polarization and the development of RILI. Moreover, translational investigations using patient samples collected before and after thoracic radiotherapy provided additional evidence supporting the association between cGAS-STING signaling activity, CCL2 upregulation, and the development of radiation pneumonitis. CONCLUSIONS The cGAS-STING signaling pathway plays a crucial role in regulating the recruitment and polarization of macrophages, partly through CCL2, during the pathogenesis of RILI.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Long Zhang
- University of Shanghai for Science and Technology and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, Institute of Biomedical Sciences and Clinical Technology Transformation, School of Health Science and Engineering, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai, 200093, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
93
|
Abstract
Sepsis is triggered by microbial infection, injury, or even major surgery. Both innate and adaptive immune systems are involved in its pathogenesis. Cytoplasmic presence of DNA or RNA of the invading organisms or damaged nuclear material (in the form of micronucleus in the cytoplasm) in the host cell need to be eliminated by various nucleases; failure to do so leads to the triggering of inflammation by the cellular cGAS-STING system, which induces the release of IL-6, TNF-α, and IFNs. These cytokines activate phospholipase A2 (PLA2), leading to the release of polyunsaturated fatty acids (PUFAs), gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), which form precursors to various pro- and anti-inflammatory eicosanoids. On the other hand, corticosteroids inhibit PLA2 activity and, thus, suppress the release of GLA, AA, EPA, and DHA. PUFAs and their metabolites have a negative regulatory action on the cGAS-STING pathway and, thus, suppress the inflammatory process and initiate inflammation resolution. Pro-inflammatory cytokines and corticosteroids (corticosteroids > IL-6, TNF-α) suppress desaturases, which results in decreased formation of GLA, AA, and other PUFAs from the dietary essential fatty acids (EFAs). A deficiency of GLA, AA, EPA, and DHA results in decreased production of anti-inflammatory eicosanoids and failure to suppress the cGAS-STING system. This results in the continuation of the inflammatory process. Thus, altered concentrations of PUFAs and their metabolites, and failure to suppress the cGAS-STING system at an appropriate time, leads to the onset of sepsis. Similar abnormalities are also seen in radiation-induced inflammation. These results imply that timely administration of GLA, AA, EPA, and DHA, in combination with corticosteroids and anti-IL-6 and anti-TNF-α antibodies, may be of benefit in mitigating radiation-induced damage and sepsis.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA
| |
Collapse
|
94
|
Yu J, Li M, Ren B, Cheng L, Wang X, Ma Z, Yong WP, Chen X, Wang L, Goh BC. Unleashing the efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma: factors, strategies, and ongoing trials. Front Pharmacol 2023; 14:1261575. [PMID: 37719852 PMCID: PMC10501787 DOI: 10.3389/fphar.2023.1261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer, representing approximately 85% of cases. The diagnosis is often made in the middle and late stages, necessitating systemic treatment as the primary therapeutic option. Despite sorafenib being the established standard of care for advanced HCC in the past decade, the efficacy of systemic therapy remains unsatisfactory, highlighting the need for novel treatment modalities. Recent breakthroughs in immunotherapy have shown promise in HCC treatment, particularly with immune checkpoint inhibitors (ICIs). However, the response rate to ICIs is currently limited to approximately 15%-20% of HCC patients. Recently, ICIs demonstrated greater efficacy in "hot" tumors, highlighting the urgency to devise more effective approaches to transform "cold" tumors into "hot" tumors, thereby enhancing the therapeutic potential of ICIs. This review presented an updated summary of the factors influencing the effectiveness of immunotherapy in HCC treatment, identified potential combination therapies that may improve patient response rates to ICIs, and offered an overview of ongoing clinical trials focusing on ICI-based combination therapy.
Collapse
Affiliation(s)
- Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
95
|
Jia H, Wei P, Zhou S, Hu Y, Zhang C, Liang L, Li B, Gan Z, Xia Y, Jiang H, Shao M, Guo S, Yang Z, Zhong J, Ren F, Zhang H, Zhang Y, Zhao T. Attenuated Salmonella carrying siRNA-PD-L1 and radiation combinatorial therapy induces tumor regression on HCC through T cell-mediated immuno-enhancement. Cell Death Discov 2023; 9:318. [PMID: 37640735 PMCID: PMC10462685 DOI: 10.1038/s41420-023-01603-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent type of aggressive liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Despite recent advancements in HCC treatment, it remains one of the deadliest cancers. Radiation therapy (RT) is among the locoregional therapy modalities employed to treat unresectable or medically inoperable HCC. However, radioresistance poses a significant challenge. It has been demonstrated that RT induced the upregulation of programmed death ligand 1 (PD-L1) on tumor cells, which may affect response to PD-1-based immunotherapy, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. Here, we utilized attenuated Salmonella as a carrier to explore whether attenuated Salmonella carrying siRNA-PD-L1 could effectively enhance the antitumor effect of radiotherapy on HCC-bearing mice. Our results showed that a combination of siRNA-PD-L1 and radiotherapy had a synergistic antitumor effect by inhibiting the expression of PD-L1 induced by radiation therapy. Mechanistic insights indicated that the combination treatment significantly suppressed tumor cell proliferation, promoted cell apoptosis, and stimulated immune cell infiltration and activation in tumor tissues. Additionally, the combination treatment increased the ratios of CD4+ T, CD8+ T, and NK cells from the spleen in tumor-bearing mice. This study presents a novel therapeutic strategy for HCC treatment, especially for patients with RT resistance.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Pengkun Wei
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Shijie Zhou
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Yuanyuan Hu
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Chunjing Zhang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Lirui Liang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Bingqing Li
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Zerui Gan
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Yuanling Xia
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Hanyu Jiang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Mingguang Shao
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Sheng Guo
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Zishan Yang
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Jiateng Zhong
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Huiyong Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Science And Technology, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
| | - Tiesuo Zhao
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, 453000, Xinxiang, Henan, P. R. China.
| |
Collapse
|
96
|
Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao Q, Jiang X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front Immunol 2023; 14:1247268. [PMID: 37600785 PMCID: PMC10436604 DOI: 10.3389/fimmu.2023.1247268] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Radiotherapy (RT) is an effective treatment option for cancer patients, which induces the production of reactive oxygen species (ROS) and causes oxidative stress (OS), leading to the death of tumor cells. OS not only causes apoptosis, autophagy and ferroptosis, but also affects tumor immune response. The combination of RT and immunotherapy has revolutionized the management of various cancers. In this process, OS caused by ROS plays a critical role. Specifically, RT-induced ROS can promote the release of tumor-associated antigens (TAAs), regulate the infiltration and differentiation of immune cells, manipulate the expression of immune checkpoints, and change the tumor immune microenvironment (TME). In this review, we briefly summarize several ways in which IR induces tumor cell death and discuss the interrelationship between RT-induced OS and antitumor immunity, with a focus on the interaction of ferroptosis with immunogenic death. We also summarize the potential mechanisms by which ROS regulates immune checkpoint expression, immune cells activity, and differentiation. In addition, we conclude the therapeutic opportunity improving radiotherapy in combination with immunotherapy by regulating OS, which may be beneficial for clinical treatment.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xueying Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
97
|
Ricco N, Kron SJ. Statins in Cancer Prevention and Therapy. Cancers (Basel) 2023; 15:3948. [PMID: 37568764 PMCID: PMC10417177 DOI: 10.3390/cancers15153948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Statins, a class of HMG-CoA reductase inhibitors best known for their cholesterol-reducing and cardiovascular protective activity, have also demonstrated promise in cancer prevention and treatment. This review focuses on their potential applications in head and neck cancer (HNC), a common malignancy for which established treatment often fails despite incurring debilitating adverse effects. Preclinical and clinical studies have suggested that statins may enhance HNC sensitivity to radiation and other conventional therapies while protecting normal tissue, but the underlying mechanisms remain poorly defined, likely involving both cholesterol-dependent and -independent effects on diverse cancer-related pathways. This review brings together recent discoveries concerning the anticancer activity of statins relevant to HNC, highlighting their anti-inflammatory activity and impacts on DNA-damage response. We also explore molecular targets and mechanisms and discuss the potential to integrate statins into conventional HNC treatment regimens to improve patient outcomes.
Collapse
Affiliation(s)
- Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
98
|
Shannon AH, Manne A, Diaz Pardo DA, Pawlik TM. Combined radiotherapy and immune checkpoint inhibition for the treatment of advanced hepatocellular carcinoma. Front Oncol 2023; 13:1193762. [PMID: 37554167 PMCID: PMC10405730 DOI: 10.3389/fonc.2023.1193762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common cancers and a leading cause of cancer related death worldwide. Until recently, systemic therapy for advanced HCC, defined as Barcelona Clinic Liver Cancer (BCLC) stage B or C, was limited and ineffective in terms of long-term survival. However, over the past decade, immune check point inhibitors (ICI) combinations have emerged as a potential therapeutic option for patients with nonresectable disease. ICI modulate the tumor microenvironment to prevent progression of the tumor. Radiotherapy is a crucial tool in treating unresectable HCC and may enhance the efficacy of ICI by manipulating the tumor microenvironment and decreasing tumor resistance to certain therapies. We herein review developments in the field of ICI combined with radiotherapy for the treatment of HCC, as well as look at challenges associated with these treatment modalities, and review future directions of combination therapy.
Collapse
Affiliation(s)
- Alexander H. Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Dayssy A. Diaz Pardo
- Department of Radiation Oncology, The Ohio State University, Comprehensive Cancer Center-James Hospital and Solove Research Institute, Columbus, OH, United States
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
99
|
Lin HS, Pang WP, Yuan H, Kong YZ, Long FL, Zhang RZ, Yang L, Fang QL, Pan AP, Fan XH, Li MF. Molecular subtypes based on DNA sensors predict prognosis and tumor immunophenotype in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:6798-6821. [PMID: 37451838 PMCID: PMC10415551 DOI: 10.18632/aging.204870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
DNA sensors play crucial roles in inflammation and have been indicated to be involved in antitumor or tumorigenesis, while it is still unclear whether DNA sensors have potential roles in the prognosis and immunotherapy of hepatocellular carcinoma (HCC). Herein, The Cancer Genome Atlas and Gene Expression Omnibus databases were used to analyze RNA sequencing data and clinical information. A total of 14 DNA sensors were collected and performed consensus clustering to determine their molecular mechanisms in HCC. Two distinct molecular subtypes (Clusters C1 and C2) were identified and were associated with different overall survival (OS). Immune subtype analysis revealed that C1 was mainly characterized by inflammation, while C2 was characterized by lymphocyte depletion. Immune scoring and immunomodulatory function analysis confirmed the different immune microenvironment of C1 and C2. Notably, significant differences in "Hot Tumor" Immunophenotype were observed between the two subtypes. Moreover, the prognostic model based on DNA sensors is capable of effectively predicting the OS of HCC patients. Besides, the chemotherapeutic drug analysis showed the different sensitivity of two subtypes. Taken together, our study shows that the proposed DNA sensors were a reliable signature to predict the prognosis and immunotherapy response with potential application in the clinical decision and treatment of HCC.
Collapse
Affiliation(s)
- Hong-Sheng Lin
- Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Wen-Peng Pang
- Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Hao Yuan
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yin-Zhi Kong
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Fu-Li Long
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Rong-Zhen Zhang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Li Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Qiao-Ling Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Ai-Ping Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Xiao-Hui Fan
- Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Ming-Fen Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| |
Collapse
|
100
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|