51
|
Grigorian M, Mandal L, Hartenstein V. Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Dev Genes Evol 2011; 221:121-31. [PMID: 21509534 PMCID: PMC4278756 DOI: 10.1007/s00427-011-0364-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/07/2011] [Indexed: 01/11/2023]
Abstract
The Drosophila melanogaster hematopoietic organ, called lymph gland, proliferates and differentiates throughout the larval period. The lymph gland of the late larva is comprised of a large primary lobe and several smaller secondary lobes. Differentiation into two types of hemocytes, plasmatocytes and crystal cells, is confined to the outer layer (cortical zone) of the primary lobe; the center of the primary lobe (medullary zone), as well as the secondary lobes, contain only proliferating prohemocytes. A small cluster of cells located at the posterior tip of the primary lobe serves as a signaling center (PSC) that inhibits precocious differentiation of the medullary zone. The larval lymph gland is stabilized by layers of extracellular matrix (basement membranes) that surround individual hemocytes, groups of hemocytes, as well as the lymph gland as a whole. In this paper, we investigated the events shaping the lymph gland in the early pupa. The lymph gland dissociates and hemocytes disperse during the first 12 h after puparium formation (APF), leaving behind empty husks of basement membrane. Prior to lymph gland dissociation, cells of the medullary zone differentiate, expressing the early differentiation marker Peroxidasin (Pxn), as well as, in part, the late differentiation marker P1. Cells of the PSC spread throughout the pupal lymph gland prior to their dispersal. Cells of the secondary lobes undergo a rapid phase of proliferation that lasts until 8 h APF, followed by expression of Pxn and dispersal. These hemocytes do not express P1, indicating that they disperse prior to full maturation.
Collapse
Affiliation(s)
- Melina Grigorian
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | | | | |
Collapse
|
52
|
Erler S, Popp M, Lattorff HMG. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris). PLoS One 2011; 6:e18126. [PMID: 21479237 PMCID: PMC3066223 DOI: 10.1371/journal.pone.0018126] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/24/2011] [Indexed: 01/08/2023] Open
Abstract
The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge. Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment. Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription factor relish, which is necessary for effector gene expression.
Collapse
Affiliation(s)
- Silvio Erler
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Saale, Germany.
| | | | | |
Collapse
|
53
|
Kuo TH, Pike DH, Beizaeipour Z, Williams JA. Sleep triggered by an immune response in Drosophila is regulated by the circadian clock and requires the NFkappaB Relish. BMC Neurosci 2010; 11:17. [PMID: 20144235 PMCID: PMC2831041 DOI: 10.1186/1471-2202-11-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 02/09/2010] [Indexed: 11/27/2022] Open
Abstract
Background Immune challenge impacts behavior in many species. In mammals, this adaptive behavior is often manifested as an increase in sleep. Sleep has therefore been proposed to benefit the host by enhancing immune function and thereby overcome the challenge. To facilitate genetic studies on the relationship between sleep and immune function, we characterized the effect of the immune response on sleep in Drosophila melanogaster. Behavioral features of sleep as well as the innate immune response signaling pathways are well characterized in flies and are highly conserved in mammals. Results An immune response induced by infection with Gram-negative bacteria or by aseptic injury increased sleep in flies. The increase in sleep occurred during the morning hours after treatment and the magnitude of the effect was dependent on the time-of-day of inoculation or injury such that night-time treatment had a stronger effect than that during the daytime. This pattern persisted in constant darkness, indicating a role of the circadian clock. Mutants of the circadian clock gene, period, eliminated the increase in sleep observed in the morning, but instead showed enhanced sleep immediately after injury or infection. Null mutants of the Nuclear Factor κB (NFκB) Relish, which is central to the innate immune response, do not increase sleep in response to injury or infection at any time of day. Instead, they maintain a normal sleep pattern until they die. Expression of a full-length Relish transgene in the fat bodies of Relish mutants restored the morning increase in sleep during an immune response. Fat bodies are a major site of immune signalling in flies and have a key role in host defense. Conclusions These data demonstrate that an immune response increases sleep in flies in a manner that is gated by the circadian clock and that requires the NFκB Relish. These findings support a role of sleep in a recovery process and demonstrate a conserved feature of the Drosophila model of sleep.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
54
|
Tokusumi T, Shoue DA, Tokusumi Y, Stoller JR, Schulz RA. New hemocyte-specific enhancer-reporter transgenes for the analysis of hematopoiesis in Drosophila. Genesis 2010; 47:771-4. [PMID: 19830816 DOI: 10.1002/dvg.20561] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Based on environmental challenges or altered genetic composition, Drosophila larvae can produce up to three types of blood cells that express genetic programs essential for their distinct functions. Using transcriptional enhancers for genes expressed exclusively in plasmatocytes, crystal cells, or lamellocytes, several new hemocyte-specific enhancer-reporter transgenes were generated to facilitate the analysis of Drosophila hematopoiesis. This approach took advantage of fluorescent variants of insulated P-element reporter vectors for multilabeling cell analyses; two additional color variants were generated in these studies. These vectors were successfully used to produce transgenic fly lines that label specific hemocyte lineages with separate colors. Combining three transgene reporters allowed for the unambiguous identification of plasmatocytes, crystal cells, and lamellocytes within a complex hemocyte population. While this work focused on the hematopoietic process, these new vectors can be used to mark multiple cell types or trace complex cell lineages during any chosen aspect of Drosophila development.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| | | | | | | | | |
Collapse
|
55
|
Eslin P, Prévost G, Havard S, Doury G. Immune resistance of Drosophila hosts against Asobara parasitoids: cellular aspects. ADVANCES IN PARASITOLOGY 2009; 70:189-215. [PMID: 19773071 DOI: 10.1016/s0065-308x(09)70007-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immunity of Drosophila relies on a variety of defenses cooperating to fight parasites and pathogens. The encapsulation reaction is the main hemocytic response neutralizing large parasites like endophagous parasitoids. The diversity of the mechanisms of immunoevasion evolved by Asobara parasitoids, together with the wide spectrum of Drosophila host species they can parasitize, make them ideal models to study and unravel the physiological and cellular aspects of host immunity. This chapter summarizes what could be learnt on the cellular features of the encapsulation process in various Drosophila spp., and also on the major role played by Drosophila hosts hemocytes subpopulations, both in a quantitative and qualitative manner, regarding the issue of the immune Asobara-Drosophila interactions.
Collapse
Affiliation(s)
- Patrice Eslin
- Laboratoire de Biologie des Entomophages, EA 3900 BioPI, Université de Picardie-Jules Verne, 80039 Amiens cedex, France
| | | | | | | |
Collapse
|
56
|
Liu F, Ling E, Wu S. Gene expression profiling during early response to injury and microbial challenges in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:16-33. [PMID: 19557735 DOI: 10.1002/arch.20320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To identify Bombyx mori genes involved in the early response to injury and microbial challenge, we performed genome-wide gene expression-profiling experiments using oligonucleotide DNA microarrays. Of approximately 23,000 genes examined, 465 displayed changes in mRNA expression levels. Of these, 306 were induced and 159 were repressed in response to injury (injection with phosphate buffer saline) or challenges by Gram-negative (Serratia marcescens), Gram-positive bacteria (Staphylococcus aureus), or fungus (Beauveria bassiana). Many of these differentially expressed genes can be assigned to specific functional groups of the innate immune response, including recognition, signaling, melanization and coagulation, and antimicrobial peptides. Seventeen percent of differentially expressed genes encode proteins with no obvious similarity to known functional domains. Of particular interest is a member of the juvenile hormone-binding protein family, which was highly induced by both injury and microbial challenges. The possible role of juvenile hormone in innate immunity is discussed.
Collapse
Affiliation(s)
- Fei Liu
- Research Center for Insect Science, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences Graduate School, Shanghai, People's Republic of China
| | | | | |
Collapse
|
57
|
In vivo detection of lamellocytes in Drosophila melanogaster. Immunol Lett 2009; 126:83-4. [DOI: 10.1016/j.imlet.2009.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 07/31/2009] [Accepted: 08/05/2009] [Indexed: 11/22/2022]
|
58
|
Markovic MP, Kylsten P, Dushay MS. Drosophila lamin mutations cause melanotic mass formation and lamellocyte differentiation. Mol Immunol 2009; 46:3245-50. [PMID: 19716177 DOI: 10.1016/j.molimm.2009.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/02/2009] [Accepted: 08/04/2009] [Indexed: 11/25/2022]
Abstract
The fruit fly immune system is a valuable model for invertebrate and innate immunity. Cellular immune reactions in Drosophila are of great interest, especially the molecular genetic mechanisms of hemocyte differentiation and the encapsulation of foreign bodies. Here we report that changes in the lamin gene cause melanotic masses. These darkened clusters of cells result from autoimmune-like encapsulation of self-tissue, as shown by the presence in lam larvae of lamellocytes, effector hemocytes that appear in larvae following wounding or parasitization. Lamins thus affect immunity in Drosophila, and lam mutations can serve as genetic tools to dissect cellular immune signaling and effector pathways.
Collapse
|
59
|
Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc Natl Acad Sci U S A 2009; 106:4805-9. [PMID: 19261847 DOI: 10.1073/pnas.0801766106] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The blood cells, or hemocytes, in Drosophila participate in the immune response through the production of antimicrobial peptides, the phagocytosis of bacteria, and the encapsulation of larger foreign particles such as parasitic eggs; these immune reactions are mediated by phylogenetically conserved mechanisms. The encapsulation reaction is analogous to the formation of granuloma in vertebrates, and is mediated by large specialized cells, the lamellocytes. The origin of the lamellocytes has not been formally established, although it has been suggested that they are derived from the lymph gland, which is generally considered to be the main hematopoietic organ in the Drosophila larva. However, it was recently observed that a subepidermal population of sessile blood cells is released into the circulation in response to a parasitoid wasp infection. We set out to analyze this phenomenon systematically. As a result, we define the sessile hemocytes as a novel hematopoietic compartment, and the main source of lamellocytes.
Collapse
|
60
|
Liu S, Sivakumar S, Wang Z, Bonning BC, Miller WA. The readthrough domain of pea enation mosaic virus coat protein is not essential for virus stability in the hemolymph of the pea aphid. Arch Virol 2009; 154:469-79. [PMID: 19240978 DOI: 10.1007/s00705-009-0327-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
A fraction of the coat protein (CP) subunits in virions of members of the family Luteoviridae contain a C-terminal extension called the readthrough domain (RTD). The RTD is necessary for persistent aphid transmission, but its role is unknown. It has been reported to be required for virion stability in the hemolymph. Here, we tested whether this was the case for pea enation mosaic virus (PEMV) virions in the pea aphid (Acyrthosiphon pisum) using RNA1Delta, a natural deletion mutant lacking the middle portion of the RTD ORF, and CPDeltaRTD, in which the entire RTD ORF was deleted. In infected plants, RNA1Delta virions were as abundant and stable as wild-type (WT) virions, while CPDeltaRTD virions were unstable. No RTD of any size was translated from artificial subgenomic mRNA of CPDeltaRTD or RNA1Delta in vitro. Thus, only the major CP was present in the mutant virions. Using real-time RT-PCR to detect virion RNA, no significant differences in the concentration or stability of WT and RNA1Delta virions were detected in the aphid hemolymph at much longer times than are necessary for virus transmission. Thus, the RTD is not necessary for stability of PEMV RNA in the aphid hemolymph, and it must play another role in aphid transmission.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Entomology, 418 Science II, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
61
|
Gregory L, Came PJ, Brown S. Stem cell regulation by JAK/STAT signaling in Drosophila. Semin Cell Dev Biol 2008; 19:407-13. [PMID: 18603010 DOI: 10.1016/j.semcdb.2008.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 06/12/2008] [Indexed: 11/16/2022]
Abstract
Stem cells have become one of the "buzz" topics in the last decade or so. One of the best systems to study adult stem cells in vivo is in the model organism, Drosophila melanogaster. One hundred years of genetic analysis, a sequenced and highly annotated genome and genomics makes this a difficult organism to avoid. The JAK/STAT pathway has been shown to regulate stem cells during haematopoiesis and gametogenesis in Drosophila. In this review we cover the current literature and contrast each group of stem cells with respect to JAK/STAT signaling.
Collapse
Affiliation(s)
- Lorna Gregory
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
62
|
Kurucz E, Váczi B, Márkus R, Laurinyecz B, Vilmos P, Zsámboki J, Csorba K, Gateff E, Hultmark D, Andó I. Definition of Drosophila hemocyte subsets by cell-type specific antigens. ACTA BIOLOGICA HUNGARICA 2008; 58 Suppl:95-111. [PMID: 18297797 DOI: 10.1556/abiol.58.2007.suppl.8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.
Collapse
Affiliation(s)
- Eva Kurucz
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Schlenke TA, Morales J, Govind S, Clark AG. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog 2008; 3:1486-501. [PMID: 17967061 PMCID: PMC2042021 DOI: 10.1371/journal.ppat.0030158] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 09/14/2007] [Indexed: 11/18/2022] Open
Abstract
Although host–parasitoid interactions are becoming well characterized at the organismal and cellular levels, much remains to be understood of the molecular bases for the host immune response and the parasitoids' ability to defeat this immune response. Leptopilina boulardi and L. heterotoma, two closely related, highly infectious natural parasitoids of Drosophila melanogaster, appear to use very different infection strategies at the cellular level. Here, we further characterize cellular level differences in the infection characteristics of these two wasp species using newly derived, virulent inbred strains, and then use whole genome microarrays to compare the transcriptional response of Drosophila to each. While flies attacked by the melanogaster group specialist L. boulardi (strain Lb17) up-regulate numerous genes encoding proteolytic enzymes, components of the Toll and JAK/STAT pathways, and the melanization cascade as part of a combined cellular and humoral innate immune response, flies attacked by the generalist L. heterotoma (strain Lh14) do not appear to initiate an immune transcriptional response at the time points post-infection we assayed, perhaps due to the rapid venom-mediated lysis of host hemocytes (blood cells). Thus, the specialist parasitoid appears to invoke a full-blown immune response in the host, but suppresses and/or evades downstream components of this response. Given that activation of the host immune response likely depletes the energetic resources of the host, the specialist's infection strategy seems relatively disadvantageous. However, we uncover the mechanism for one potentially important fitness tradeoff of the generalist's highly immune suppressive infection strategy. The fruitfly Drosophila melanogaster has become a model system for the study of innate immunity, and parasitic wasps are one of the most obvious natural pathogens of Drosophila, making this a great system for studying interactions between the host immune system and pathogen virulence proteins. We have focused on two closely related wasp species, Leptopilina boulardi and L. heterotoma, that successfully parasitize D. melanogaster hosts in nature. Both wasps inject venom loaded with virus-like particles into their hosts to prevent host-mediated melanotic encapsulation and killing of their eggs. However, there are substantial differences in the effects of the venom from these two wasp species. L. heterotoma venom causes lysis of host hemocytes (blood cells) and prevents the host from mounting any substantial immune transcriptional response, while L. boulardi venom has a relatively weak and localized effect on host hemocyte survival and does not prevent immune response activation. Thus, these wasps allow us to compare the benefits and drawbacks of relatively immune suppressive versus relatively immune evasive parasite infection strategies in a natural system.
Collapse
Affiliation(s)
- Todd A Schlenke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|
64
|
Mylonakis E, Casadevall A, Ausubel FM. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 2007; 3:e101. [PMID: 17676994 PMCID: PMC1933451 DOI: 10.1371/journal.ppat.0030101] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host–fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.
Collapse
|
65
|
Tanji T, Hu X, Weber ANR, Ip YT. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol 2007; 27:4578-88. [PMID: 17438142 PMCID: PMC1900069 DOI: 10.1128/mcb.01814-06] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inducible expression of antimicrobial peptide genes in Drosophila melanogaster is regulated by the conserved Toll and peptidoglycan recognition protein LC/immune deficiency (PGRP-LC/IMD) signaling pathways. It has been proposed that the two pathways have independent functions and mediate the specificity of innate immune responses towards different microorganisms. Scattered evidence also suggests that some antimicrobial target genes can be activated by both Toll and IMD, albeit to different extents. This dual activation can be mediated by independent stimulation or by cross-regulation of the two pathways. We show in this report that the Toll and IMD pathways can interact synergistically, demonstrating that cross-regulation occurs. The presence of Spätzle (the Toll ligand) and gram-negative peptidoglycan (the PGRP-LC ligand) together caused synergistic activation of representative target genes of the two pathways, including Drosomycin, Diptericin, and AttacinA. Constitutive activation of Toll and PGRP-LC/IMD could mimic the synergistic stimulation. RNA interference assays and promoter analyses demonstrate that cooperation of different NF-kappaB-related transcription factors mediates the synergy. These results illustrate how specific ligand binding by separate upstream pattern recognition receptors can be translated into a broad-spectrum host response, a hallmark of innate immunity.
Collapse
Affiliation(s)
- Takahiro Tanji
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
66
|
Rus F, Kurucz E, Márkus R, Sinenko SA, Laurinyecz B, Pataki C, Gausz J, Hegedus Z, Udvardy A, Hultmark D, Andó I. Expression pattern of Filamin-240 in Drosophila blood cells. Gene Expr Patterns 2006; 6:928-34. [PMID: 16616709 DOI: 10.1016/j.modgep.2006.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/18/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The expression pattern of Filamin-240 was studied in subsets of Drosophila blood cells by means of immunofluorescent staining and Western blot analysis with use of an antibody specific to a "filamin-folding domain", a consensus motif profile generated from the 20 existing filamin repeats. Expression of Filamin-240 is restricted to lamellocytes - a special blood cell type of the cellular immune response - and is involved in the regulation of lamellocyte development. In the cher1 homozygous larvae, which lack Filamin-240 protein, a vigorous lamellocyte differentiation occurs which is further enhanced upon in vivo immune challenge by a parasitic wasp, Leptopilina boulardi. By introducing a full-length transgene encoding the Drosophila Filamin-240 protein into the cher1 Filamin-deficient homozygous mutant, the mutant blood cell phenotype was rescued. These data demonstrate that the expression of Filamin-240 is strictly lamellocyte specific in Drosophila blood cells and that the protein is a suppressor of lamellocyte development.
Collapse
Affiliation(s)
- Florentina Rus
- Biological Research Center of the Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Arbouzova NI, Zeidler MP. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 2006; 133:2605-16. [PMID: 16794031 DOI: 10.1242/dev.02411] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High levels of interspecies conservation characterise all signal transduction cascades and demonstrate the significance of these pathways over evolutionary time. Here, we review advances in the field of JAK/STAT signalling, focusing on recent developments in Drosophila. In particular, recent results from genetic and genome-wide RNAi screens, as well as studies into the developmental roles played by this pathway, highlight striking levels of physical and functional conservation in processes such as cellular proliferation, immune responses and stem cell maintenance. These insights underscore the value of model organisms for improving our understanding of this human disease-relevant pathway.
Collapse
Affiliation(s)
- Natalia I Arbouzova
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
68
|
Abstract
All metazoans have evolved means to protect themselves from threats present in the environment: injuries, viruses, fungi, bacteria and other parasites. Insect protection includes innate physical barriers and both cellular and humoral responses. The insect innate immune response, best characterized in Drosophila melanogaster, is a rapid broad response, triggered by pathogen-associated molecular patterns (PAMPs) recognition, which produces a limited range of effectors that does not alter upon continued pathogen exposure and lacks immunological memory. The Drosophila response, particularly its humoral response, has been investigated by both low and high-throughput methods. Three signalling pathways conserved between insects and mammals have been implicated in this response: Toll (equivalent to mammalian TLR), Imd (equivalent to TNFalpha) and Hop (equivalent to JAK/STAT). This review provides an entry point to the insect immune system literature outlining the main themes in D. melanogaster bacterial pathogen detection and humoral and cellular immune responses. The Drosophila immune response is compared with other insects and the mammalian immune system.
Collapse
Affiliation(s)
- Vitor B Pinheiro
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
69
|
Eslin P, Doury G. The fly Drosophila subobscura: a natural case of innate immunity deficiency. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:977-83. [PMID: 16620975 DOI: 10.1016/j.dci.2006.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 05/08/2023]
Abstract
The Drosophila subobscura larvae were found to be unable to form a capsule around a parasitic egg or an inert foreign body. The specificity and physiological causes of this incapacity were also explored: analysis of the circulating hemocytes showed that no lamellocyte was ever found in D. subobscura host larvae. Therefore, the fly D. subobscura is the first discovered animal species to present an innate immunodeficiency against a wide range of parasites. This is contrary to the theories that propose that all organisms, in natural conditions, are potentially able to defend themselves against parasitization. This unexpected finding opens evolutionary debates about the cost of immune resistance not only at the level of a population, but also of a whole species. We believe this species of fruitfly could become a new model system to study genes involved in hematopoïesis, and in a larger context to better understand defence reactions in organisms.
Collapse
Affiliation(s)
- Patrice Eslin
- Laboratoire de Biologie des Entomophages, Faculté des Sciences, Université de Picardie Jules Verne, 33, rue Saint Leu, 80039 Amiens, France.
| | | |
Collapse
|