51
|
Morley JE, Morris JC, Berg-Weger M, Borson S, Carpenter BD, Del Campo N, Dubois B, Fargo K, Fitten LJ, Flaherty JH, Ganguli M, Grossberg GT, Malmstrom TK, Petersen RD, Rodriguez C, Saykin AJ, Scheltens P, Tangalos EG, Verghese J, Wilcock G, Winblad B, Woo J, Vellas B. Brain health: the importance of recognizing cognitive impairment: an IAGG consensus conference. J Am Med Dir Assoc 2016; 16:731-9. [PMID: 26315321 DOI: 10.1016/j.jamda.2015.06.017] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
Cognitive impairment creates significant challenges for patients, their families and friends, and clinicians who provide their health care. Early recognition allows for diagnosis and appropriate treatment, education, psychosocial support, and engagement in shared decision-making regarding life planning, health care, involvement in research, and financial matters. An IAGG-GARN consensus panel examined the importance of early recognition of impaired cognitive health. Their major conclusion was that case-finding by physicians and health professionals is an important step toward enhancing brain health for aging populations throughout the world. This conclusion is in keeping with the position of the United States' Centers for Medicare and Medicaid Services that reimburses for detection of cognitive impairment as part the of Medicare Annual Wellness Visit and with the international call for early detection of cognitive impairment as a patient's right. The panel agreed on the following specific findings: (1) validated screening tests are available that take 3 to 7 minutes to administer; (2) a combination of patient- and informant-based screens is the most appropriate approach for identifying early cognitive impairment; (3) early cognitive impairment may have treatable components; and (4) emerging data support a combination of medical and lifestyle interventions as a potential way to delay or reduce cognitive decline.
Collapse
Affiliation(s)
- John E Morley
- Divisions of Geriatric Medicine and Endocrinology, Saint Louis University School of Medicine, St Louis, MO.
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO
| | - Marla Berg-Weger
- Division of Geriatric Medicine, School of Social Work, Saint Louis University, St Louis, MO
| | - Soo Borson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Brian D Carpenter
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO
| | - Natalia Del Campo
- Institute of Aging, University Hospital of Toulouse, Toulouse, France
| | - Bruno Dubois
- Department of Neurology, Université Pierreet Marie Curie, Salpetriere Hospital, Paris, France
| | - Keith Fargo
- Scientific Programs and Outreach, Alzheimer's Association, Chicago, IL
| | - L Jaime Fitten
- Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA and Geriatric Psychiatry, Greater Los Angeles VA, Sepulveda Campus, Los Angeles, CA
| | - Joseph H Flaherty
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO
| | - Mary Ganguli
- Departments of Psychiatry, Neurology and Epidemiology, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, PA
| | - George T Grossberg
- Department of Neurology and Psychiatry, Geriatric Psychiatry, Saint Louis University School of Medicine, St Louis, MO
| | - Theodore K Malmstrom
- Department of Neurology and Psychiatry, Saint Louis University School of Medicine, St Louis, MO
| | - Ronald D Petersen
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| | - Carroll Rodriguez
- Public Policy and Communications, Alzheimer's Association, St Louis, MO
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN
| | - Philip Scheltens
- VU University Medical Center, Alzheimer Center, Amsterdam, The Netherlands
| | | | - Joe Verghese
- Division of Geriatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Gordon Wilcock
- Nuffield Department of Clinical Medicine, Oxford Institute of Population Ageing, Oxford, United Kingdom
| | - Bengt Winblad
- Division for Neurogeriatrics, Care Sciences and Society, Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Jean Woo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Bruno Vellas
- Department of Geriatrics, CHU Toulouse, Toulouse, France
| |
Collapse
|
53
|
Xu ZP, Yang SL, Zhao S, Zheng CH, Li HH, Zhang Y, Huang RX, Li MZ, Gao Y, Zhang SJ, Zhan PY, Zhang LF, Deng L, Wei S, Liu YC, Ye JW, Ren HJ, Li N, Kong CX, Wang X, Fang L, Zhou QZ, Jiang HW, Li JR, Wang Q, Ke D, Liu GP, Wang JZ. Biomarkers for Early Diagnostic of Mild Cognitive Impairment in Type-2 Diabetes Patients: A Multicentre, Retrospective, Nested Case-Control Study. EBioMedicine 2016; 5:105-13. [PMID: 27077117 PMCID: PMC4816853 DOI: 10.1016/j.ebiom.2016.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022] Open
Abstract
Background Both type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are common age-associated disorders and T2DM patients show an increased risk to suffer from AD, however, there is currently no marker to identify who in T2DM populations will develop AD. Since glycogen synthase kinase-3β (GSK-3β) activity, ApoE genotypes and olfactory function are involved in both T2DM and AD pathogenesis, we investigate whether alterations of these factors can identify cognitive impairment in T2DM patients. Methods The cognitive ability was evaluated using Minimum Mental State Examination (MMSE) and Clinical Dementia Rating (CDR), and the mild cognitive impairment (MCI) was diagnosed by Petersen's criteria. GSK-3β activity in platelet, ApoE genotypes in leucocytes and the olfactory function were detected by Western/dot blotting, the amplification refractory mutation system (ARMS) PCR and the Connecticut Chemosensory Clinical Research Center (CCCRC) test, respectively. The odds ratio (OR) and 95% confidence intervals (95% CI) of the biomarkers for MCI diagnosis were calculated by logistic regression. The diagnostic capability of the biomarkers was evaluated by receiver operating characteristics (ROC) analyses. Findings We recruited 694 T2DM patients from Jan. 2012 to May. 2015 in 5 hospitals (Wuhan), and 646 of them met the inclusion criteria and were included in this study. 345 patients in 2 hospitals were assigned to the training set, and 301 patients in another 3 hospitals assigned to the validation set. Patients in each set were randomly divided into two groups: T2DM without MCI (termed T2DM-nMCI) or with MCI (termed T2DM-MCI). There were no significant differences for sex, T2DM years, hypertension, hyperlipidemia, coronary disease, complications, insulin treatment, HbA1c, ApoE ε2, ApoE ε3, tGSK3β and pS9GSK3β between the two groups. Compared with the T2DM-nMCI group, T2DM-MCI group showed lower MMSE score with older age, ApoE ε4 allele, higher olfactory score and higher rGSK-3β (ratio of total GSK-3β to Ser9-phosphorylated GSK-3β) in the training set and the validation set. The OR values of age, ApoE ε4 gene, olfactory score and rGSK-3β were 1.09, 2.09, 1.51, 10.08 in the training set, and 1.06, 2.67, 1.47, 7.19 in the validation set, respectively. The diagnostic accuracy of age, ApoE ε4 gene, olfactory score and rGSK-3β were 0.76, 0.72, 0.66, 0.79 in the training set, and 0.70, 0.68, 0.73, 0.79 in the validation set, respectively. These four combined biomarkers had the area under the curve (AUC) of 82% and 86%, diagnostic accuracy of 83% and 81% in the training set and the validation set, respectively. Interpretation Aging, activation of peripheral circulating GSK-3β, expression of ApoE ε4 and increase of olfactory score are diagnostic for the mild cognitive impairment in T2DM patients, and combination of these biomarkers can improve the diagnostic accuracy. ApoE ε4 gene, platelet GSK-3β activation, olfactory dysfunction and aging are non-invasive, affordable and accessible biomarkers for diagnosing mild cognitive impairment in type 2 diabetes mellitus patients, and the combination of these non-invasive, affordable and accessible biomarkers can improve the accuracy of the diagnosis.
Epidemiological studies show that type 2 diabetes mellitus is an independent risk factor of Alzheimer disease, and a large proportion of diabetic patients will develop Alzheimer disease, but no early diagnostic tool to identify them. We find that ApoE ε4 gene, platelet GSK-3β activation, olfactory dysfunction and aging are early markers for dementia in type 2 diabetes patients, and combination of these non-invasive markers can improve the diagnostic accuracy. These findings shed light on the early identification in type 2 diabetes population who will develop Alzheimer disease and thus enable early intervention to this currently incurable neurodegenerative disorder.
Collapse
Key Words
- AD, Alzheimer's disease
- ARMS, amplification refractory mutation system
- AUC, the area under the curve
- Alzheimer's disease
- ApoE gene
- ApoE, apolipoprotein E
- CCCRC, Connecticut Chemosensory Clinical Research Center
- CDR, clinical dementia rating
- CI, confidence intervals
- GSK-3β, glycogen synthase kinase-3β
- Glycogen synthase kinase-3β
- HbA1c, hemoglobin A1c
- MCI, mild cognitive impairment
- MMSE, minimum mental state examination
- Mild cognitive impairment
- OR, odds ratio
- Olfactory score
- ROC, receiver operating characteristics
- T2DM, type 2 diabetes mellitus
- Type 2 diabetes mellitus
Collapse
Affiliation(s)
- Zhi-Peng Xu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Neurology, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Su-Lian Yang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi Zhao
- Department of Endocrinology, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Cheng-Hong Zheng
- Department of Endocrinology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan 430014, China
| | - Hong-Hua Li
- Department of Neurology, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Yao Zhang
- Li-Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Rong-Xi Huang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Gao
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu-Juan Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei-Yan Zhan
- Department of Neurology, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Li-Fang Zhang
- Department of Endocrinology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan 430014, China
| | - Lin Deng
- Department of Endocrinology, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan-Chao Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing-Wang Ye
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu-Jun Ren
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Na Li
- Department of Endocrinology, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Cai-Xia Kong
- Department of Endocrinology, The First Hospital of Wuhan, Wuhan 430022, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Fang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong-Wei Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing-Rong Li
- Health Service Center of Jianghan District, Wuhan 430014, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China
| |
Collapse
|