51
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
52
|
Buffet-style Cu(II) for enhance disulfiram-based cancer therapy. J Colloid Interface Sci 2022; 624:734-746. [PMID: 35696791 DOI: 10.1016/j.jcis.2022.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 01/26/2023]
Abstract
Studies have shown that disulfiram (DSF) can combine with Cu2+ to form bis(N, N-diethyldithiocarbamate) copper(II) complex (CuET) as antitumor drugs. However, there is insufficient endogenous Cu2+ dose to eradicate cancer cells selectively. Inspired by the buffet, we use Cu2+ doped hollow zeolitic imidazolate framework nanoparticles (HZIFCu) as the carrier and equipped with DSF and indocyanine green (ICG) and targeted by folic acid (FA) (D&I@HZIFCu-FA) to enhance DSF-based cancer therapy. D&I@HZIFCu-FA could effectively supply Cu2+ by a buffet-style, assisting the "DSF-to-CuET" transformation in the tumor. Additionally, self-supply Cu2+ could convert H2O2 into ·OH by triggering a Fenton-like reaction for chemo-dynamic therapy, and ICG achieves photothermal therapy for tumors under laser irradiation. This work provides a buffet-style for Cu2+ to make DSF a strong candidate for cancer treatment by combining chemotherapy, chemo-dynamic therapy, and photothermal therapy and inspires more research about its applications in tumor therapy.
Collapse
|
53
|
Du T, Yang T, Xu L, Li X, Yang G, Zhou S. An Implantable Polydopamine Nanoparticle‐in‐Nanofiber Device for Synergistic Cancer Photothermal/Chemotherapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Tianyi Du
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ting Yang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ling Xu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Xilin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Guang Yang
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
54
|
Wang X, Cheng Y, Han X, Yan J, Wu Y, Song P, Wang Y, Li X, Zhang H. Functional 2D Iron-Based Nanosheets for Synergistic Immunotherapy, Phototherapy, and Chemotherapy of Tumor. Adv Healthc Mater 2022; 11:e2200776. [PMID: 35912918 DOI: 10.1002/adhm.202200776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Indexed: 01/27/2023]
Abstract
Immunotherapy efficacy has been limited by tumor-associated macrophages (TAMs), which are the most abundant immune regulatory cells infiltrating around tumor tissues. The repolarization of pro-tumor M2 TAMs to anti-tumor M1 TAMs is a very promising immunotherapeutic strategy for cancer therapy. In this manuscript, multifunctional 2D iron-based nanosheets (FeNSs) are synthesized via a simple hydrothermal method for the first time, which not only possess photothermal and photodynamic properties, but also can repolarize TAMs from M2 to M1. After modifying with polyethylene glycol and loading with bioreductive prodrug banoxantrone (AQ4N), abbreviated as AP FeNSs, it can effectively repolarize TAMs from M2 to M1 and deliver AQ4N to tumor microenvironment (TME). Moreover, the repolarized M1 TAMs overexpress inducible nitric oxide synthase, which can convert nontoxic AQ4N to cytotoxic AQ4 under hypoxic TME, enabling immunomodulation-activated chemotherapy. A series of in vitro and in vivo results corroborate that AP FeNSs effectively exert photothermal and photodynamic effects and repolarize M2 TAMs to M1 TAMs, releasing inflammatory factors and activating the chemotherapeutic effect, thereby realizing synergistic tumor therapy.
Collapse
Affiliation(s)
- Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yan Cheng
- College of Life Science, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, P. R. China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yunyun Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
55
|
Wang T, Gao Z, Zhang Y, Hong Y, Tang Y, Shan K, Kong X, Wang Z, Shi Y, Ding D. A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor. J Control Release 2022; 351:272-283. [PMID: 36116581 DOI: 10.1016/j.jconrel.2022.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Triple negative breast cancer (TNBC) is an immunosuppressive "cold" tumor that lacks immune cell infiltration and activation, resulting in a poor response to immune checkpoint blockade (ICB) therapies. In addition, TNBC is poorly responsive to targeted therapies due to the absence of efficient molecular targets. A strategy that can block molecular signal transduction, stimulate immunogenicity, and activate the immune response is a promising approach to achieve ideal clinical benefit. Herein, we designed and synthesized an aggregation-induced emission luminogen (AIEgen)-conjugated self-assembling peptide that targets epidermal growth factor receptor (EGFR), named TPA-FFG-LA. TPA-FFG-LA peptides form nanoassemblies on the surface of EGFR-positive TNBC cells and are internalized into cells through endocytosis, which inhibit EGFR signaling transduction and provoke lysosomal membrane permeabilization (LMP). Upon light irradiation, the aggregated AIEgens produce massive reactive oxygen species (ROS) to exacerbate LMP and trigger immunogenic cell death (ICD), resulting in elimination of residual EGFR-negative tumor cells and exerting long-term antitumor effects. The in vitro and in vivo experiments verified that TPA-FFG-LA nanoassemblies suppress tumor growth, provoke immune cell activation and infiltration, and cause EGFR degradation and LMP. These results suggest that the combination of supramolecular assembly induced molecular targeting effects and lysosome dysfunction with ICD-stimulated immune activation is a plausible strategy for the efficient therapy of immunosuppressive TNBC.
Collapse
Affiliation(s)
- Tianjiao Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Youhong Tang
- Australia-China Joint Centre for Personal Health Technologies, Medical Device Research Institute, Flinders University, South Australia 5042, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Zhiming Wang
- AIE Institute, Center for Aggregation-Induced Emission, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Shi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
56
|
Wu P, Han J, Gong Y, Liu C, Yu H, Xie N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics 2022; 14:pharmaceutics14101990. [PMID: 36297426 PMCID: PMC9612242 DOI: 10.3390/pharmaceutics14101990] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy has shown impressive anti-tumor activity in patients with advanced and early-stage malignant tumors, thus improving long-term survival. However, current cancer immunotherapy is limited by barriers such as low tumor specificity, poor response rate, and systemic toxicities, which result in the development of primary, adaptive, or acquired resistance. Immunotherapy resistance has complex mechanisms that depend on the interaction between tumor cells and the tumor microenvironment (TME). Therefore, targeting TME has recently received attention as a feasibility strategy for re-sensitizing resistant neoplastic niches to existing cancer immunotherapy. With the development of nanotechnology, nanoplatforms possess outstanding features, including high loading capacity, tunable porosity, and specific targeting to the desired locus. Therefore, nanoplatforms can significantly improve the effectiveness of immunotherapy while reducing its toxic and side effects on non-target cells that receive intense attention in cancer immunotherapy. This review explores the mechanisms of tumor microenvironment reprogramming in immunotherapy resistance, including TAMs, CAFs, vasculature, and hypoxia. We also examined whether the application of nano-drugs combined with current regimens is improving immunotherapy clinical outcomes in solid tumors.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jun Han
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Correspondence: (H.Y.); (N.X.); Tel.:+86-158-8455-5293 (N.X.)
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Correspondence: (H.Y.); (N.X.); Tel.:+86-158-8455-5293 (N.X.)
| |
Collapse
|
57
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
58
|
Zhu J, Chang R, Wei B, Fu Y, Chen X, Liu H, Zhou W. Photothermal Nano-Vaccine Promoting Antigen Presentation and Dendritic Cells Infiltration for Enhanced Immunotherapy of Melanoma via Transdermal Microneedles Delivery. Research (Wash D C) 2022; 2022:9816272. [PMID: 36157510 PMCID: PMC9484834 DOI: 10.34133/2022/9816272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022] Open
Abstract
Immunotherapy has demonstrated the potential to cure melanoma, while the current response rate is still unsatisfactory in clinics. Extensive evidence indicates the correlation between the efficacy and pre-existing T-cell in tumors, whereas the baseline T-cell infiltration is lacking in low-response melanoma patients. Herein, we demonstrated the critical contribution of dendritic cells (DCs) on melanoma survival and baseline T-cell level, as well as the efficacy of immunotherapy. Capitalized on this fact, we developed a photothermal nano-vaccine to simultaneously promote tumor antigens presentation and DCs infiltration for enhanced immunotherapy. The nano-vaccine was composed of polyserotonin (PST) core and tannic acid (TA)/Mn2+ coordination-based metal-organic-framework (MOF) shell for β-catenin silencing DNAzyme loading, which was further integrated into dissolving microneedles to allow noninvasive and transdermal administration at melanoma skin. The nano-vaccine could rapidly penetrate skin upon microneedles insertion and exert a synergistically amplified photothermal effect to induce immunogenic cell death (ICD). The MOF shell then dissociated and released Mn2+ as a cofactor to self-activate DNAzyme for β-catenin suppression, which in turn caused a persistent CCL4 excretion to promote the infiltration of DCs into the tumor. Meanwhile, the liberated PST core could effectively capture and facilitate tumor antigens presentation to DCs. As a result, potent antitumor efficacies were achieved for both primary and distal tumors without any extra treatment, indicating the great promise of such a nano-vaccine for on-demand personalized immunotherapy of melanoma.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ruimin Chang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Benliang Wei
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yao Fu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Hong Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
59
|
Wang Y, Zhang Y, Zhang X, Zhang Z, She J, Wu D, Gao W. High Drug-Loading Nanomedicines for Tumor Chemo-Photo Combination Therapy: Advances and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14081735. [PMID: 36015361 PMCID: PMC9415722 DOI: 10.3390/pharmaceutics14081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of phototherapy and chemotherapy (chemo−photo combination therapy) is an excellent attempt for tumor treatment. The key requirement of this technology is the high drug-loading nanomedicines, which can load either chemotherapy drugs or phototherapy agents at the same nanomedicines and simultaneously deliver them to tumors, and play a multimode therapeutic role for tumor treatment. These nanomedicines have high drug-loading efficiency (>30%) and good tumor combination therapeutic effect with important clinical application potential. Although there are many reports of high drug-loading nanomedicines for tumor therapy at present, systematic analyses on those nanomedicines remain lacking and a comprehensive review is urgently needed. In this review, we systematically analyze the current status of developed high drug-loading nanomedicines for tumor chemo−photo combination therapy and summarize their types, methods, drug-loading properties, in vitro and in vivo applications. The shortcomings of the existing high drug-loading nanomedicines for tumor chemo−photo combination therapy and the possible prospective development direction are also discussed. We hope to attract more attention for researchers in different academic fields, provide new insights into the research of tumor therapy and drug delivery system and develop these nanomedicines as the useful tool for tumor chemo−photo combination therapy in the future.
Collapse
Affiliation(s)
- Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| |
Collapse
|
60
|
Liang D, Zhang X, Wang Y, Huo T, Qian M, Xie Y, Li W, Yu Y, Shi W, Liu Q, Zhu J, Luo C, Cao Z, Huang R. Magnetic covalent organic framework nanospheres-based miRNA biosensor for sensitive glioma detection. Bioact Mater 2022; 14:145-151. [PMID: 35310355 PMCID: PMC8892165 DOI: 10.1016/j.bioactmat.2021.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dong Liang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoyi Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, China
- Corresponding author
| | - Taotao Huo
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Min Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yibo Xie
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wenshuai Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yunqiu Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
- Corresponding author
| | - Wei Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qianqian Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhijuan Cao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
- Corresponding author.
| |
Collapse
|
61
|
Tao W, Cheng X, Sun D, Guo Y, Wang N, Ruan J, Hu Y, Zhao M, Zhao T, Feng H, Fan L, Lu C, Ma Y, Duan J, Zhao M. Synthesis of multi-branched Au nanocomposites with distinct plasmon resonance in NIR-II window and controlled CRISPR-Cas9 delivery for synergistic gene-photothermal therapy. Biomaterials 2022; 287:121621. [PMID: 35704964 DOI: 10.1016/j.biomaterials.2022.121621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Clinical implementation of photothermal therapy (PTT) is mainly hampered by limited tissue penetration, undesirable thermal damage to normal tissues, and thermotolerence induced by heat shock proteins (HSPs). To overcome these obstacles, we constructed a novel gene-photothermal synergistic therapeutic nanoplatform composed of a multi-branched Au nanooctopus (AuNO) core and mesoporous polydopamine (mPDA) shell, followed by CRISPR-Cas9 ribonucleoprotein (RNP) loading and then polyethylene glycol-folic acid (PEG-FA) coating. AuNO was simply synthesized by adjusting the ratio of cetyltrimethylammonium chloride (CTAC) and cetyltrimethylammonium bromide (CTAB), which showed significant localized surface plasmon resonances in the NIR-II window, and exhibited an excellent tissue penetration capability and high photothermal conversion efficiency (PCE, 47.68%). Even, the PCE could be further increased to 66.17% by mPDA coating. Furthermore, the sequential modification of AuNO@mPDA using RNP and PEG-FA can down-regulate HSP90α expression at tumor sites, enhance apoptosis and reduce the heat resistance of cancer cells. The synergistic effect of enhanced photothermal capacity and reduced thermoresistance addressed the multiple limitations of PTT, and presented excellent in vitro and in vivo antitumor efficacy, having great potential for the clinical application of PTT.
Collapse
Affiliation(s)
- Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaolan Cheng
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongdong Sun
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Guo
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Neng Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Ruan
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Hu
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Zhao
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Feng
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lu Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
62
|
Zeng Q, Liu Z, Niu T, He C, Qu Y, Qian Z. Application of nanotechnology in CAR-T-cell immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
63
|
Lei H, Kim JH, Son S, Chen L, Pei Z, Yang Y, Liu Z, Cheng L, Kim JS. Immunosonodynamic Therapy Designed with Activatable Sonosensitizer and Immune Stimulant Imiquimod. ACS NANO 2022; 16:10979-10993. [PMID: 35723442 DOI: 10.1021/acsnano.2c03395] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT) has garnered extensive attention as a noninvasive treatment for deep tumors. Furthermore, imiquimod (R837), an FDA-approved toll-like receptor 7 agonist, is commonly used in clinical settings as an immune adjuvant. We prepared an activatable sonodynamic sensitizer platform (MR) based on glutathione-sensitive disulfide bonds linking Leu-MB, the reduced form of methylene blue (MB), and R837 to achieve efficient combinatory SDT and immunotherapy for tumors without harming normal tissues. We also used the amphiphilic polymer C18PMH-PEG to create self-assembled MB-R837-PEG (MRP) nanoparticles for immunosonodynamic therapy (iSDT). iSDT is a cancer treatment that combines activatable SDT and immunotherapy. Our iSDT demonstrated an excellent sonodynamic effect only at the tumor site, demonstrating high specificity in killing tumor cells when compared to SDT reported in the literature. The iSDT improves its tumor-killing effect by inducing an immune response, which is accomplished by secreted immune adjuvants in the tumor site. MRP was selectively activated by glutathione in the tumor microenvironment to release MB and R837, exhibiting excellent antitumor sonodynamic and immune responses. In addition, when combined with an α-PD-L1 antibody for immune checkpoint blockade, this therapy effectively inhibited tumor metastasis. Furthermore, mice treated with iSDT and α-PD-L1 antibody did not develop tumors even after tumor reinoculation, indicating that long-term immune memory was achieved. The concept of sonodynamic sensitizer preparation as a next-generation iSDT based on a noninvasive synergistic therapeutic modality applicable in the near future is presented in this study.
Collapse
Affiliation(s)
- Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
64
|
Halder J, Pradhan D, Biswasroy P, Rai VK, Kar B, Ghosh G, Rath G. Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. J Drug Target 2022; 30:1055-1075. [PMID: 35786242 DOI: 10.1080/1061186x.2022.2095389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Breast cancer (BC) is the deadliest malignant disorder globally, with a significant mortality rate. The development of tolerance throughout cancer treatment and non-specific targeting limits the drug's response. Currently, nano therapy provides an interdisciplinary area for imaging, diagnosis, and targeted drug delivery for BC. Several overexpressed biomarkers, proteins, and receptors are identified in BC, which can be potentially targeted by using nanomaterial for drug/gene/immune/photo-responsive therapy and bio-imaging. In recent applications, magnetic iron oxide nanoparticles (IONs) have shown tremendous attention to the researcher because they combine selective drug delivery and imaging functionalities. IONs can be efficaciously functionalised for potential application in BC therapy and diagnosis. In this review, we explored the current application of IONs in chemotherapeutics delivery, gene delivery, immunotherapy, photo-responsive therapy, and bio-imaging for BC based on their molecular mechanism. In addition, we also highlighted the effect of IONs' size, shape, dimension, and functionalization on BC targeting and imaging. To better comprehend the functionalization potential of IONs, this paper provides an outline of BC cellular development. IONs for BC theranostic are also reviewed based on their clinical significance and future aspects.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
65
|
Fan X, Yue T, Liu A, Xie X, Fang W, Wei Y, Zheng H, Zheng H, Zhou M, Piao J, Li F. Lignin-assisted construction of sub-10 nm supramolecular self-assembly for photothermal immunotherapy and potentiating anti-PD-1 therapy against primary and distant breast tumors. Asian J Pharm Sci 2022; 17:713-727. [DOI: 10.1016/j.ajps.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
|
66
|
Li Z, Yu Y, Zeng W, Ding F, Zhang D, Cheng W, Wang M, Chen H, Pan G, Mei L, Zeng X, Gao N. Mussel-Inspired Ligand Clicking and Ion Coordination on 2D Black Phosphorus for Cancer Multimodal Imaging and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201803. [PMID: 35616079 DOI: 10.1002/smll.202201803] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
As a promising 2D nanocarrier, the biggest challenge of bare black phosphorus nanosheets (BP NSs) lies in the inherent instability, while it can be improved by surface modification strategies to a great extent. Considering the existing infirm BP NSs surface modification strategies, A mussels-inspired strong adhesive biomimetic peptide with azide groups for surface modification to increase the stability of BP NSs is synthesized. The azide groups on the peptide can quickly and precisely bind to the targeting ligand through click chemistry, solving the problem of nonspecificity of secondary modification of other mussel-mimicking materials. Besides, a catechol-Gd3+ coordination network is further constructed for magnetic resonance imaging (MRI) and inducing intracellular endo/lysosome escape. The fabricated BP-DOX@Gd/(DOPA)4 -PEG-TL nanoplatform exhibits enhanced antitumor abilities through synergetic chemo/photothermal effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yongkang Yu
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Fan Ding
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dan Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wei Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Nansha Gao
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
67
|
Polysialylated nanoinducer for precisely enhancing apoptosis and anti-tumor immune response in B-cell lymphoma. Acta Biomater 2022; 149:321-333. [PMID: 35779772 DOI: 10.1016/j.actbio.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
B-cell lymphoma is one of the most common types of lymphoma, and chemotherapy is still the current first-line treatment. However, due to the systemic side effects caused by chemotherapy drugs, traditional regimens have limitations and are difficult to achieve ideal efficacy. Recent studies have found that CD22 (also known as Siglec-2), as a specific marker of B-cells, is significantly up-regulated on B-cell lymphomas. Inspired by the specific recognition and binding of sialic acid residues by CD22, a polysialic acid (PSA)-modified PLGA nanocarrier (SAPC NP) designed to target B-cell lymphoma was fabricated. Mitoxantrone (MTO) was further loaded into SAPC NP through hydrophobic interactions to obtain polysialylated immunogenic cell death (ICD) nanoinducer (MTO@SAPC NP). Cellular experiments confirmed that MTO@SAPC NP could be specifically taken up by two types of CD22+ B lymphoma cells including Raji and Ramos cells, unlike the poor endocytic performance in other lymphocytes or macrophages. MTO@SAPC NP was determined to enhance the ICD and show better apoptotic effect on CD22+ cells. In the mouse model of B-cell lymphoma, MTO@SAPC NP significantly reduced the systemic side effects of MTO through lymphoma targeting, then achieved enhanced anti-tumor immune response, better tumor suppressive effect, and improved survival rate. Therefore, the polysialylated ICD nanoinducer provides a new strategy for precise therapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: • Polysialic acid functionalized nanocarrier (SAPC NP) was designed and prepared. • SAPC NP is specifically endocytosed by two CD22+ B lymphoma cells. • Mitoxantrone-loaded nanoinducer (MTO@SAPC NP) promote immunogenic cell death and anti-tumor immune response. • "Polysialylation" is a potential new approach for precision treatment of B-cell lymphoma.
Collapse
|
68
|
Vascular bursts-mediated tumor accumulation and deep penetration of spherical nucleic acids for synergistic radio-immunotherapy. JOURNAL OF CONTROLLED RELEASE : OFFICIAL JOURNAL OF THE CONTROLLED RELEASE SOCIETY 2022; 348:1050-1065. [PMID: 35750133 DOI: 10.1016/j.jconrel.2022.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
While nanomedicines have attracted great interests for tumor therapy, their targeting and intra-tumoral penetrating efficiencies have been questioned. Here, we report a two-step low-dose radiotherapy (RT) strategy to realize significant accumulation and deep penetration of spherical nucleic acids (SNAs)-based nanomedicine for synergistic radio-immunotherapy. The first step RT was employed to recruit large amounts of macrophages into tumor. The tumor infiltrated macrophages not only served as nanoparticles drug depots, but also elicited dynamic bursts extravasation to enhance nanoparticles accumulation. We optimized the spatiotemporal combination of RT and SNAs administration for higher level of SNAs delivery, and the delivered SNAs promote M2-to-M1 phenotype switch of macrophages to increase phagocytosis of nanoparticles by 6-fold, resulting in positive feedback with even higher accumulation and intra-tumor penetration of SNAs. Through vascular bursts and macrophage repolarization, as high as 25-fold enhancement of nanoparticles accumulation was achieved as compared to passive targeting of nanoparticles, and the nanoparticles were eventually distributed throughout the tumor tissue with efficient deep penetration. Finally, SNAs in tumor simultaneously sensitized the second dose of RT and remodeled tumor immune microenvironment, resulting in a synergistic anticancer therapy in combination of anti-PD-L1 antibody (αPD-L1) with no noticeable side effects caused by either RT or αPD-L1.
Collapse
|
69
|
Kuang X, Wang Z, Luo Z, He Z, Liang L, Gao Q, Li Y, Xia K, Xie Z, Chang R, Wang Y, Liu Y, Zhao S, Su J, Wang Y, Situ W, Chen M, Zhao Y, Chen X, Xie H, Liu H. Ag nanoparticles enhance immune checkpoint blockade efficacy by promoting of immune surveillance in melanoma. J Colloid Interface Sci 2022; 616:189-200. [PMID: 35203032 DOI: 10.1016/j.jcis.2022.02.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
Immune checkpoint blockade (ICB) therapy, represented by programmed cell death protein 1 (PD-1) and its ligand (PD-L1) monoclonal antibodies (mAbs), has shown an obvious benefit for melanoma immunotherapy, but the overall response rate is still low. To find an effective combination therapy strategy, we successfully produced small size silver nanoparticles coated with sucrose (S-AgNPs) as potent adjuvants. The antitumor effects of S-AgNPs were tested in vitro and comparatively investigated in immunodeficient and immunocompetent mice with melanoma. Fluorescence-activated cell sorting and immunofluorescent staining analysis were conducted to identify the tumor microenvironments. The expression of PD-L1 in tumors was tested by multiple methods. The combination therapy and potential toxicity of S-AgNPs and PD-1 mAbs were assessed in melanoma-bearing mice. In our findings, S-AgNPs presented potent antitumor effects, good druggability and low systemic toxicity. Functionally, we found that S-AgNPs exhibited better antitumor effects in immunocompetent mice. Mechanistically, we showed that S-AgNPs suppress tumor cell proliferation by inducing cellular apoptosis and promote cytotoxic CD8+ T cell infiltration and activity. Preclinically, S-AgNPs showed excellent local antitumor activity and mild systemic immunotoxicity with PD-1 mAbs in the inhibition of melanoma proliferation, providing a novel clinical combination treatment strategy.
Collapse
Affiliation(s)
- Xinwei Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China
| | - Zhenxing Wang
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhongwei Luo
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zehui He
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Long Liang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Qian Gao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China
| | - Youyou Li
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kun Xia
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zuozhong Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiyi Wang
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiwei Liu
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weiyi Situ
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mingliang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China
| | - Yuetao Zhao
- School of Life Sciences, Central South University, Hunan 410013, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China.
| | - Hui Xie
- Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China; Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China; Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan 410008, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan 410008, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
70
|
Luo Z, Luo L, Lu Y, Zhu C, Qin B, Jiang M, Li X, Shi Y, Zhang J, Liu Y, Shan X, Yin H, Guan G, Du Y, Cheng N, You J. Dual-binding nanoparticles improve the killing effect of T cells on solid tumor. J Nanobiotechnology 2022; 20:261. [PMID: 35672752 PMCID: PMC9171930 DOI: 10.1186/s12951-022-01480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractAdoptive cell therapy (ACT) was one of the most promising anti-tumor modalities that has been confirmed to be especially effective in treating hematological malignancies. However, the clinical efficacy of ACT on solid tumor was greatly hindered by the insufficient tumor-infiltration of cytotoxic CD8 + T cells. Herein, we constructed a nanoplatform termed dual-binding magnetic nanoparticles (DBMN) that comprised PEG-maleimide (Mal), hyaluronic acid (HA) and Fe3O4 for adoptive T cell-modification and ACT-sensitization. After a simple co-incubation, DBMN was anchored onto the cell membrane (Primary linking) via Michael addition reaction between the Mal and the sulfhydryl groups on the surface of T cells, generating magnetized T cells (DBMN-T). Directed by external magnetic field and in-structure Fe3O4, DBMN-T was recruited to solid tumor where HA bond with the highly expressed CD44 on tumor cells (Secondary Linking), facilitating the recognition and effector-killing of tumor cells. Bridging adoptive T cells with host tumor cells, our DBMN effectively boosted the anti-solid tumor efficacy of ACT in a mouse model and simultaneously reduced toxic side effects.
Collapse
|
71
|
Melo BL, Lima-Sousa R, Alves CG, Moreira AF, Correia IJ, de Melo-Diogo D. Chitosan-based injectable in situ forming hydrogels containing dopamine-reduced graphene oxide and resveratrol for breast cancer chemo-photothermal therapy. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108529] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Heptamethine Cyanine-Loaded Nanomaterials for Cancer Immuno-Photothermal/Photodynamic Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14051015. [PMID: 35631600 PMCID: PMC9144181 DOI: 10.3390/pharmaceutics14051015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
The development of strategies capable of eliminating metastasized cancer cells and preventing tumor recurrence is an exciting and extremely important area of research. In this regard, therapeutic approaches that explore the synergies between nanomaterial-mediated phototherapies and immunostimulants/immune checkpoint inhibitors have been yielding remarkable results in pre-clinical cancer models. These nanomaterials can accumulate in tumors and trigger, after irradiation of the primary tumor with near infrared light, a localized temperature increase and/or reactive oxygen species. These effects caused damage in cancer cells at the primary site and can also (i) relieve tumor hypoxia, (ii) release tumor-associated antigens and danger-associated molecular patterns, and (iii) induced a pro-inflammatory response. Such events will then synergize with the activity of immunostimulants and immune checkpoint inhibitors, paving the way for strong T cell responses against metastasized cancer cells and the creation of immune memory. Among the different nanomaterials aimed for cancer immuno-phototherapy, those incorporating near infrared-absorbing heptamethine cyanines (Indocyanine Green, IR775, IR780, IR797, IR820) have been showing promising results due to their multifunctionality, safety, and straightforward formulation. In this review, combined approaches based on phototherapies mediated by heptamethine cyanine-loaded nanomaterials and immunostimulants/immune checkpoint inhibitor actions are analyzed, focusing on their ability to modulate the action of the different immune system cells, eliminate metastasized cancer cells, and prevent tumor recurrence.
Collapse
|
73
|
Fu J, Liu T, Feng X, Zhou Y, Chen M, Wang W, Zhao Y, Lu C, Quan G, Cai J, Pan X, Wu C. A Perfect Pair: Stabilized Black Phosphorous Nanosheets Engineering with Antimicrobial Peptides for Robust Multidrug Resistant Bacteria Eradication. Adv Healthc Mater 2022; 11:e2101846. [PMID: 35114076 DOI: 10.1002/adhm.202101846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/27/2021] [Indexed: 11/11/2022]
Abstract
Black phosphorus (BP) nanosheets emerged as promising 2D nanomaterial that have been applied to eradicate antibiotic-resistant bacteria. However, their applications are limited by intrinsic ambient instability. Here, the ε-poly-l-lysine (ε-PL)-engineered BP nanosheets are constructed via simple electrostatic interaction to cater the demand for passivating BP with amplified antibacterial activity. The dual drug-delivery complex named BP@ε-PL can closely anchor onto the surface of bacteria, leading to membrane disintegration. Subsequently, in situ hyperthermia generated by BP under near-infrared (NIR) irradiation can precisely eradicate pathogenic bacteria. In vitro antibacterial studies verify the rapid disinfection ability of BP@ε-PL against Methicillin-resistant Staphylococcus aureus (MRSA) within 15 min. Moreover, ε-PL can serve as an effective protector to avoid chemical degradation of bare BP. The in vivo antibacterial study shows that a 99.4% antibacterial rate in a MRSA skin infection model is achieved, which is accompanied by negligible toxicity. In conclusion, this work not merely provides a new conjecture for protecting the BP, but also opens a novel window for synergistic antibiotic-resistant bacteria therapy based on antimicrobial peptides and 2D photothermal nanomaterial.
Collapse
Affiliation(s)
- Jintao Fu
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Ting Liu
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Yixian Zhou
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Minglong Chen
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Wenhao Wang
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Yiting Zhao
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Chao Lu
- College of Pharmacy Jinan University Guangzhou 510632 China
| | - Guilan Quan
- College of Pharmacy Jinan University Guangzhou 510632 China
| | - Jianfeng Cai
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xin Pan
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Chuanbin Wu
- College of Pharmacy Jinan University Guangzhou 510632 China
| |
Collapse
|
74
|
Li J, Zhang P, Zhou M, Liu C, Huang Y, Li L. Trauma-Responsive Scaffold Synchronizing Oncolysis Immunization and Inflammation Alleviation for Post-Operative Suppression of Cancer Metastasis. ACS NANO 2022; 16:6064-6079. [PMID: 35344338 DOI: 10.1021/acsnano.1c11562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor surgery can create an inflammatory trauma to aggravate residual tumor "seed" to colonize pre-metastatic niches (PMNs) "soil" at secondary sites, thereby promoting post-operative metastasis. However, two-pronged strategies for post-surgical elimination of asynchronous "seeds" and "soil" at different regions are currently lacking. Here, we have designed a hydrogel that can be injected into a resection cavity, where it immediately forms a scaffold and gradually degrades responding to enriched reactive oxygen species at adjacent trauma for local delivery and on-demand release of autologous cancer cells succumbing to oncolysis (ACCO) and anti-inflammatory agent. The autologous cell source self-provides a whole array of tumor-associated antigens, and the oncolysis orchestration of a subcellular cascade confers a self-adjuvanting property, together guaranteeing high immunogenicity of the ACCO vaccine that enables specific antitumor immunization. In parallel, inflammation alleviation exerted bidirectional functions to reshape the local immune landscape and resuscitate ACCO, leading to the eradication of residual tumor "seeds" while simultaneously intercepting the "seed-soil" crosstalk to normalize distant lung leading to regression of pre-existing PMN "soil". As a result, regional and metastatic recurrence were completely thwarted. Together, this framework synchronizing oncolysis immunization and inflammation alleviation provides an effective option for post-operative suppression of metastasis.
Collapse
Affiliation(s)
- Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Minglu Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
75
|
Zheng J, Sun Y, Long T, Yuan D, Yue S, Zhang N, Yang Z. Sonosensitizer nanoplatform-mediated sonodynamic therapy induced immunogenic cell death and tumor immune microenvironment variation. Drug Deliv 2022; 29:1164-1175. [PMID: 35393920 PMCID: PMC9004507 DOI: 10.1080/10717544.2022.2058653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecologic malignancies, and effective treatments are still lacking due to drug tolerance and tumor recurrence. In this study, we aimed to investigate the effects of sonodynamic therapy (SDT) on ovarian cancer and its potential mechanism. Folate receptor-targeted and ultrasound-responsive nanoparticles (NPs) were constructed using PLGA-PEG-FA (PLGA: poly (lactic-co-glycolic) acid, polyethylene glycol (PEG), FA: folate), the reactive oxygen species (ROS)-generating sonosensitizer IR780 and the oxygen-carrying material perfluorohexane (PFH), termed IRO@FA NPs. The antitumor effect of NPs triggered by ultrasound (US) was measured by an apoptosis assay in a C57/BL6 mouse model. Immunochemistry and flow cytometry were used to detect the proportion of CD3+ T, CD4+ T, CD8+ T cells and activated dendritic cells (DCs) in spleens and tumor tissues to assess variation in the immune response. Moreover, endoplasmic reticulum (ER) stress and immunogenic cell death (ICD) markers (high mobility group protein box-1, ATP and calreticulin) were detected to identify potential mechanisms. The results showed that IRO@FA NP-mediated SDT promoted ID8 cell apoptosis both in vitro and in vivo. The densities of CD3+ and CD8+ T lymphocytes and inflammatory markers were upregulated in tumor tissues. IRO@FA NP-mediated SDT prompted DC maturation and T lymphocyte infiltration by inducing ID8 cell ICD.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixuan Sun
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tengfei Long
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Yuan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Yue
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ni Zhang
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Yang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
76
|
Ou M, Lin C, Wang Y, Lu Y, Wang W, Li Z, Zeng W, Zeng X, Ji X, Mei L. Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy. J Control Release 2022; 345:755-769. [PMID: 35381273 DOI: 10.1016/j.jconrel.2022.03.059] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/24/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
The hypoxic tumor microenvironment is one of most major hurdles restraining the anti-tumor efficiency of photodynamic therapy (PDT). Herein, active photosynthetic Chlorophyceae (Chlorella, Chl) functionalized with black phosphorus nanosheets (BPNSs) through polyaspartic acid (PASP) and Fe3+ mediating "Lego building method" are utilized for photocatalyzed oxygen-evolving to realize photosynthesis enhanced synergistic photodynamic/chemodynamic/immune therapy. The Chl cells with inherent photosynthesis and distinct metabolites are able to ameliorate tumor hypoxia, enhance immune cells infiltration, and stimulate the proliferation and maturation of immune cells. BPNSs loaded on the surface of Chl cells construct a type-II heterojunction with the chlorophyll in Chl cells, which improves the conversion efficiency of light through thoroughly separating photo-excited electrons and holes for 1O2 generation and O2 evolution, respectively. Additionally, the lock between "Lego bricks", Fe3+, can both consume glutathione (GSH) and catalyze Fenton reaction with H2O2 to generate ·OH, mediating chemodynamic therapy (CDT). Moreover, Chl@BP-Fe also exhibited high biocompatibility and potential biodegradability, guaranteeing high potential for clinic applications of this synergistic photodynamic/chemodynamic/immune therapy.
Collapse
Affiliation(s)
- Meitong Ou
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chuchu Lin
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Lu
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
77
|
Li Z, You S, Mao R, Xiang Y, Cai E, Deng H, Shen J, Qi X. Architecting polyelectrolyte hydrogels with Cu-assisted polydopamine nanoparticles for photothermal antibacterial therapy. Mater Today Bio 2022; 15:100264. [PMID: 35517578 PMCID: PMC9062430 DOI: 10.1016/j.mtbio.2022.100264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Polydopamine nanoparticles (PDA NPs) are an appealing biomimetic photothermal agent for photothermal antibacterial treatment because of their long-term safety, excellent photostability, accessible manufacturing, and good biodegradability. However, the low photothermal conversion efficiency (PCE) of PDA NPs requires high-power and long-term near-infrared light irradiation, which severely restricts their practical application. In this work, PDA@Cu NPs were fabricated by growing Cu NPs in situ on the surface of PDA and then introduced into a polyelectrolyte hydrogel precursor (cationic polyethyleneimine/anionic pectin, named as CPAP). The formulated photothermal platform possessed a high PCE (55.4%), almost twice as much as pure PDA NPs (30.8%). Moreover, the designed CPAP/PDA@Cu captured and killed some bacteria by electrostatic adsorption, which helped enhance the antibacterial performance. As expected, the formed CPAP/PDA@Cu that combined the advantageous features of PDA@Cu NPs (high PCE) and CPAP matrix (inherent antibacterial activity and preventing NPs aggregation) can efficiently kill bacteria both in vitro and in vivo under the help of near-infrared laser irradiation. Taken together, this study offers a promising strategy for constructing a facile and safe PDA-based photothermal agent for photothermal antibacterial therapy. A facile polyelectrolyte photothermal antibacterial platform (CPAP) was synthesized. CPAP is composed of polyethyleneimine, pectin and polydopamine@Cu nanoparticles. CPAP displayed good biocompatibility and tunable physicochemical properties. CPAP possessed outstanding high-efficiency bacteria-killing capability.
Collapse
Affiliation(s)
- ZhangPing Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Shengye You
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ruiting Mao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Corresponding author.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China
- Corresponding author. School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Corresponding author. School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
78
|
Chen T, Zeng W, Tie C, Yu M, Hao H, Deng Y, Li Q, Zheng H, Wu M, Mei L. Engineered gold/black phosphorus nanoplatforms with remodeling tumor microenvironment for sonoactivated catalytic tumor theranostics. Bioact Mater 2022; 10:515-525. [PMID: 34901564 PMCID: PMC8637014 DOI: 10.1016/j.bioactmat.2021.09.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The imbalance between oxidants and antioxidants in cancer cells would evoke oxidative stress-induced cell death, which has been demonstrated to be highly effective in treating malignant tumors. Sonodynamic therapy (SDT) adopts ultrasound (US) as the excitation source to induce the production of reactive oxygen species (ROS), which emerges as a noninvasive therapeutic strategy with deep tissue penetration depth and high clinical safety. Herein, we construct novel sonoactivated oxidative stress amplification nanoplatforms by coating MnO2 on Au nanoparticle-anchored black phosphorus nanosheets and decorating soybean phospholipid subsequently (Au/BP@MS). The Au/BP@MS exhibit increased ROS generation efficiency under US irradiation in tumor tissues due to Au/BP nanosensitizer-induced improvement of electron-hole separation as well as MnO2-mediated O2 generation and GSH depletion, thus leading to notable inhibition effect on tumor growth. Moreover, tumor microenvironment-responsive biodegradability of Au/BP@MS endows them with enhanced magnetic resonance imaging guidance and clinical potential for cancer theranostics.
Collapse
Affiliation(s)
- Ting Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Huisong Hao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, 300192, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
79
|
Akhtar H, Pourmadadi M, Yazdian F, Rashedi H. Kosmotropic and chaotropic effect of biocompatible Fe3O4 nanoparticles on egg white lysozyme; the key role of nanoparticle-protein corona formation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
80
|
Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y, Xu X, Lei W, Yang Z, Ahmed S, Zhang H, Zhao G. Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 2022; 14:100236. [PMID: 35341094 PMCID: PMC8943324 DOI: 10.1016/j.mtbio.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
Collapse
|
81
|
Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022; 41:68. [PMID: 35183252 PMCID: PMC8857848 DOI: 10.1186/s13046-022-02272-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractCancer immunotherapy has emerged as a novel cancer treatment, although recent immunotherapy trials have produced suboptimal outcomes, with durable responses seen only in a small number of patients. The tumor microenvironment (TME) has been shown to be responsible for tumor immune escape and therapy failure. The vital component of the TME is tumor-associated macrophages (TAMs), which are usually associated with poor prognosis and drug resistance, including immunotherapies, and have emerged as promising targets for cancer immunotherapy. Recently, nanoparticles, because of their unique physicochemical characteristics, have emerged as crucial translational moieties in tackling tumor-promoting TAMs that amplify immune responses and sensitize tumors to immunotherapies in a safe and effective manner. In this review, we mainly described the current potential nanomaterial-based therapeutic strategies that target TAMs, including restricting TAMs survival, inhibiting TAMs recruitment to tumors and functionally repolarizing tumor-supportive TAMs to antitumor type. The current understanding of the origin and polarization of TAMs, their crucial role in cancer progression and prognostic significance was also discussed in this review. We also highlighted the recent evolution of chimeric antigen receptor (CAR)-macrophage cell therapy.
Collapse
|
82
|
Wang W, Li Z, Nie X, Zeng W, Zhang Y, Deng Y, Chen H, Zeng X, Ma H, Zheng Y, Gao N. pH-Sensitive and Charge-Reversal Polymeric Nanoplatform Enhanced Photothermal/Photodynamic Synergistic Therapy for Breast Cancer. Front Bioeng Biotechnol 2022; 10:836468. [PMID: 35252143 PMCID: PMC8895045 DOI: 10.3389/fbioe.2022.836468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
As reported, breast cancer is one of the most common malignancies in women and has overtaken lung cancer as the most commonly diagnosed cancer worldwide by 2020. Currently, phototherapy is a promising anti-tumor therapy due to its fewer side effects, less invasiveness, and lower cost. However, its application in cancer therapeutics is limited by the incomplete therapeutic effect caused by low drug penetration and monotherapy. Herein, we built a charge-reversal nanoplatform (Ce6-PLGA@PDA-PAH-DMMA NPs), including polydopamine (PDA) and chlorin e6 (Ce6) for enhancing photothermal/photodynamic synergistic therapy. The PAH-DMMA charge-reversal layer enabled Ce6-PLGA@PDA-PAH-DMMA NPs to have long blood circulation at the normal physiological environment and to successfully realize charge reversal under the weakly acidic tumor microenvironment, improving cellular uptake. Besides, in vitro tests demonstrated that Ce6-PLGA@PDA-PAH-DMMA NPs had high photothermal conversion and greater anti-tumor activity than no charge-reversal nanoparticles, which overcame the limited tumor therapeutic efficacy of PTT or photodynamic therapy alone. Overall, the design of pH-responsive and charge-reversal nanoparticles (Ce6-PLGA@PDA-PAH-DMMA NPs) provided a promising approach for synergistic PTT/PDT therapy against breast cancer.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaozhong Nie
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yi Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yimin Deng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hualin Ma
- Shenzhen Key Laboratory of Kindey Diseases, Department of Nephrology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| | - Nansha Gao
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| |
Collapse
|
83
|
Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022; 282:121425. [DOI: 10.1016/j.biomaterials.2022.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
84
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
85
|
Ma J, Zhang Y, Sun H, Ding P, Chen DW. Fabrication of human serum albumin–imprinted photothermal nanoparticle for enhanced immunotherapy. J Mater Chem B 2022; 10:4226-4241. [DOI: 10.1039/d2tb00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal nanoparticles have been confirmed to induce antitumor immune response and turn “cold tumor” into “hot tumor”. However, their delivery efficacy to tumors is limited by the elimination from the...
Collapse
|
86
|
Wang H, Shang J, He Z, Zheng M, Jia H, Zhang Y, Yang W, Gao X, Gao F. Dual peptide nanoparticles platform for enhanced antigen-specific immune tolerance for treatment of experimental autoimmune encephalomyelitis. Biomater Sci 2022; 10:3878-3891. [DOI: 10.1039/d2bm00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current therapeutic strategies for autoimmune diseases including multiple sclerosis (MS) are directed toward nonspecific immunosuppression which has severe side effects. The induction of antigen-specific tolerance becomes an ideal therapy for...
Collapse
|
87
|
Xue J, Zhu Y, Bai S, He C, Du G, Zhang Y, Zhong Y, Chen W, Wang H, Sun X. Nanoparticles with rough surface improve the therapeutic effect of photothermal immunotherapy against melanoma. Acta Pharm Sin B 2021; 12:2934-2949. [PMID: 35755278 PMCID: PMC9214318 DOI: 10.1016/j.apsb.2021.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/20/2021] [Indexed: 01/01/2023] Open
Abstract
Photothermal therapy has been intensively investigated for treating cancer in recent years. However, the long-term therapeutic outcome remains unsatisfying due to the frequently occurred metastasis and recurrence. To address this challenge, immunotherapy has been combined with photothermal therapy to activate anti-tumor immunity and relieve the immunosuppressive microenvironment within tumor sites. Here, we engineered silica-based core‒shell nanoparticles (JQ-1@PSNs-R), in which silica cores were coated with the photothermal agent polydopamine, and a bromodomain-containing protein 4 (BRD4) inhibitor JQ-1 was loaded in the polydopamine layer to combine photothermal and immune therapy for tumor elimination. Importantly, to improve the therapeutic effect, we increased the surface roughness of the nanoparticles by hydrofluoric acid (HF) etching during the fabrication process, and found that the internalization of JQ-1@PSNs-R was significantly improved, leading to a strengthened photothermal killing effect as well as the increased intracellular delivery of JQ-1. In the animal studies, the multifunctional nanoparticles with rough surfaces effectively eradicated melanoma via photothermal therapy, successfully activated tumor-specific immune responses against residual tumor cells, and further prevented tumor metastasis and recurrence. Our results indicated that JQ-1@PSNs-R could serve as an innovative and effective strategy for combined cancer therapy.
Collapse
|
88
|
Huang P, Lian D, Ma H, Gao N, Zhao L, Luan P, Zeng X. New advances in gated materials of mesoporous silica for drug controlled release. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
89
|
Pivetta TP, Botteon CEA, Ribeiro PA, Marcato PD, Raposo M. Nanoparticle Systems for Cancer Phototherapy: An Overview. NANOMATERIALS 2021; 11:nano11113132. [PMID: 34835896 PMCID: PMC8625970 DOI: 10.3390/nano11113132] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces' functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.
Collapse
Affiliation(s)
- Thais P. Pivetta
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Caroline E. A. Botteon
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Paulo A. Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Priscyla D. Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence: ; Fax: +351-21-294-85-49
| |
Collapse
|
90
|
Revuri V, Rajendrakumar SK, Park M, Mohapatra A, Uthaman S, Mondal J, Bae WK, Park I, Lee Y. Heat-Confined Tumor-Docking Reversible Thermogel Potentiates Systemic Antitumor Immune Response During Near-Infrared Photothermal Ablation in Triple-Negative Breast Cancer. Adv Healthc Mater 2021; 10:e2100907. [PMID: 34541833 DOI: 10.1002/adhm.202100907] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) features immunologically "cold" tumor microenvironments with limited cytotoxic T lymphocyte (CTL) infiltration. Although ablation therapies have demonstrated modulation of "cold" TNBC tumors to inflamed "hot" tumors, recruitment of myeloid derived suppressor cells (MDSCs) at the tumors post ablation therapies prevents the infiltration of CTLs and challenge the antitumor potentials of T-cell therapies. Here, a thermal ablation immunotherapy strategy is developed to prevent the immune suppressive effects of MDSCs during photothermal ablation and induce a durable systemic antitumor immunity to eradicate TNBC tumors. An injectable pluronic F127/hyaluronic acid (HA)-based hydrogel embedded with manganese dioxide (BM) nanoparticles and TLR7 agonist resiquimod (R848) (BAGEL-R848), is synthesized to induce in situ laser-assisted gelation of the hydrogel and achieve desired ablation temperatures at a low laser-exposure time. Upon 808-nm laser irradiation, a significant reduction in the tumor burden is observed in BAGEL-R848-injected 4T1 tumor-bearing mice. The ablation induced immunogenic cell death and sustained release of R848 from BAGEL-R848 promotes dendritic cell maturation and reduced MDSCs localization in tumors. In addition, inflammatory M1 macrophages and CD8+IFN+ CTL are enriched in distant tumors in bilateral 4T1 tumor model, preventing metastatic tumor growth and signifying the potential of BAGEL-R848 to treat TNBC.
Collapse
Affiliation(s)
- Vishnu Revuri
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| | - Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Myong‐Suk Park
- Department of Hematology‐Oncology Chonnam National University Medical School Gwangju 61469 South Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Jagannath Mondal
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology‐Oncology Chonnam National University Medical School Gwangju 61469 South Korea
| | - In‐Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Yong‐Kyu Lee
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| |
Collapse
|
91
|
Chu H, Shen J, Wang C, Wei Y. Biodegradable iron-doped ZIF-8 based nanotherapeutic system with synergistic chemodynamic/photothermal/chemo-therapy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
92
|
Wang X, Gu Y, Li Q, Xu Y, Shi Y, Wang Z, Xia M, Li J, Wang D. Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property. Colloids Surf B Biointerfaces 2021; 209:112164. [PMID: 34735859 DOI: 10.1016/j.colsurfb.2021.112164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
IR825 is a kind of near-infrared (NIR) small molecule cyanine dye and has distinct near-infrared absorbance and excellent thermal conversion performance. Due to poor stability and insufficient therapy efficacy, various nano-systems have been developed as delivery vehicles for NIR dyes to improve their application in tumor treatment. Herein, we developed an intelligent polymer drug vehicle (Mal-PAH-PEG-DMMA/ poly (ethylene imine) - poly(ε-caprolactone) block polymers, MPPD/PEI-PCL) based on pH-responsive charge-reversal to deliver docetaxel (DTX) and photosensitizer (IR825) for chemo-photothermal combination therapy (MPPD@IR825/DTX NPs). MPPD@IR825/DTX NPs could undergo charge conversion in a slightly acidic microenvironment (pH 6.8), resulted in strong electrostatic repulsion to withdraw the shell of the polymer nanoparticles (MPPD), enhanced cellular uptake and increased drug release. MPPD@IR825/DTX NPs demonstrated nanoscale in size with good mono-dispersity and stability, triggered DTX release in response to acid environment and NIR stimulation, in the same time providing excellent photothermal conversion efficiency. In vitro and In vivo experiments confirmed that charge-reversal polymeric nanoparticles improved antitumor efficiency in 4T1 tumor cell modal than non-charge-reversal polymeric nanoparticles. Furthermore, in comparison with chemotherapy or photothermal therapy in a single treatment mode, chemo-photothermal combination therapy of MPPD@IR825/DTX NPs with laser irradiation showed highly efficient tumor ablation. In addition, the polymeric nanoparticles exhibited good biocompatibility and safety. Therefore, the design of charge-reversal polymeric nanoparticles (MPPD@IR825/DTX NPs) provides a new strategy and promising application for targeting and synergistic chemo-photothermal combination therapy.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, China
| | - Yaxuan Gu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Qi Li
- Department of Pharmacology, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yapeng Xu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, China
| | - Yifan Shi
- Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, China
| | - Zheran Wang
- Department of Mathematics and Statistics. College of Sciences and Mathematics. Auburn University, 221Parker Hall, Auburn, AL 36849, USA
| | - Mingyu Xia
- Department of Pharmacology, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Ji Li
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, China.
| |
Collapse
|
93
|
Baghban R, Afarid M, Soleymani J, Rahimi M. Were magnetic materials useful in cancer therapy? Biomed Pharmacother 2021; 144:112321. [PMID: 34656061 DOI: 10.1016/j.biopha.2021.112321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the major challenges fronting the biomedical basic researches in our time. The study and development of effective therapeutic strategies for cancer therapy are vital. Among the many probable core constituents of nanoparticles, magnetite-based nanoparticles have been widely studied for cancer therapy owing to their inherent magnetic features, multifunctional design, biodegradable and biocompatible properties. Magnetic nanoparticles have been also designed for utilizing as contrast enhancer agents for magnetic resonance imaging, drug delivery systems, and most recently as a therapeutic element in inducing cellular death in tumor ablation therapies. This review aimed to provide an overview of the various applications of magnetic nanoparticles and recent achievements in developing these advanced materials for cancer therapy.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
94
|
Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy. J Control Release 2021; 338:719-730. [PMID: 34509586 DOI: 10.1016/j.jconrel.2021.09.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
Given the difficulties of biodegradation of mesoporous silica nanoparticles (NPs), enrichment and penetration of tumor sites, and real-time monitoring of the treatment process, we developed a kind of mannose-doping doxorubicin-loading mesoporous silica nanoparticle (MSN-Man-DOX) and coated by polydopamine-Gd3+ (PDAGd) metal-phenolic networks, as well as modified by poly (2-Ethyl-2-Oxazoline) (PEOz), constructing a novel nanomedicine MSN-Man-DOX@PDA-Gd-PEOz. Its pH-responsive charge reversal, photothermal, biodegradation, drug release, and magnetic resonance imaging (MRI) properties were evaluated in vitro. Cellular uptake, tumor penetration, lysosomal escape properties, as well as cell safety and toxicity of the nanoplatform were investigated through cell experiments. Finally, the MRI, organ distribution, photothermal condition, and comprehensive anti-tumor therapy in vivo were evaluated comprehensively through animal experiments. Research results showed that MSN-Man-DOX@PDA-Gd-PEOz had outstanding tumor enrichment and penetration abilities, which can produce excellent treatment effects through the synergistic effect of chemotherapy and photothermal therapy (PTT) with the function of magnetic resonance imaging contrast agent for disease monitoring. Besides, after finishing the therapeutic effect MSN-Man-DOX@PDA-Gd-PEOz can be biodegraded, so it had a good prospect of clinical application.
Collapse
|
95
|
Xiang H, Xin C, Hu Z, Aigouy L, Chen Z, Yuan X. Long-Term Stable Near-Infrared-Short-Wave-Infrared Photodetector Driven by the Photothermal Effect of Polypyrrole Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45957-45965. [PMID: 34520660 DOI: 10.1021/acsami.1c11674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm. Under the illumination of λ = 1.5 μm, the maximum photoresponsivity was measured to be ∼1.3 A/W with a 131 μs photoresponse rise time. Owing to the excellent material stability from both PPy-NPs and the Pt pattern, the current photodetectors show long-term stable photoresponsivity when they were stored in air without encapsulation. The results suggest that the PPy-NPs/Pt hybrid PDs are promising candidates for a new type of low-cost and broadband due to their multiple advantages such as free of toxic heavy metals, air stability, and solution processing.
Collapse
Affiliation(s)
- Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Chenghao Xin
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhelu Hu
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Lionel Aigouy
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhuoying Chen
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Xiaojiao Yuan
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
96
|
Yu XY, Jin X, Shou ZX. Surface-engineered smart nanocarrier-based inhalation formulations for targeted lung cancer chemotherapy: a review of current practices. Drug Deliv 2021; 28:1995-2010. [PMID: 34569401 PMCID: PMC8477964 DOI: 10.1080/10717544.2021.1981492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the second most common and lethal cancer in the world. Chemotherapy is the preferred treatment modality for lung cancer and prolongs patient survival by effective controlling of tumor growth. However, owing to the nonspecific delivery of anticancer drugs, systemic chemotherapy has limited clinical efficacy and significant systemic adverse effects. Inhalation routes, on the other hand, allow for direct delivery of drugs to the lungs in high local concentrations, enhancing their anti-tumor activity with minimum side effects. Preliminary research studies have shown that inhaled chemotherapy may be tolerated with manageable adverse effects such as bronchospasm and cough. Enhancing the anticancer drugs deposition in tumor cells and limiting their distribution to other healthy cells will therefore increase their clinical efficacy and decrease their local and systemic toxicities. Because of the controlled release and localization of tumors, nanoparticle formulations are a viable option for the delivery of chemotherapeutics to lung cancers via inhalation. The respiratory tract physiology and lung clearance mechanisms are the key barriers to the effective deposition and preservation of inhaled nanoparticle formulations in the lungs. Designing and creating smart nanoformulations to optimize lung deposition, minimize pulmonary clearance, and improve cancerous tissue targeting have been the subject of recent research studies. This review focuses on recent examples of work in this area, along with the opportunities and challenges for the pulmonary delivery of smart nanoformulations to treat lung cancers.
Collapse
Affiliation(s)
- Xian-Yan Yu
- Department of Respiratory Medicine, Chun'an First People's Hospital, (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, PR China
| | - Xue Jin
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China
| | - Zhang-Xuan Shou
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
97
|
Zhang B, Shao CW, Zhou KM, Li Q, Duan YT, Yang YS, Zhu HL. A NIR-triggered multifunctional nanoplatform mediated by Hsp70 siRNA for chemo-hypothermal photothermal synergistic therapy. Biomater Sci 2021; 9:6501-6509. [PMID: 34582538 DOI: 10.1039/d1bm01006a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, hypothermal photothermal therapy (HPTT) seemed essential for the future clinical transformation of cancer optical therapies. However, at a lower working temperature, heat shock proteins (HSPs) seriously affect the anti-tumor effect of HPTT. This work reports a reasonable design of a dual-responsive nanoplatform for the synergistic treatment of chemotherapy and HPTT. We adopted a one-step method to wrap indocyanine green (ICG) into imidazole skeleton-8 (ZIF-8) and further loaded it with the chemotherapy drug doxorubicin (DOX). Furthermore, we introduced Hsp-70 siRNA to block the affection of HSPs at an upstream node, thereby avoiding the side effects of traditional heat shock protein inhibitors. The prepared ZIF-8@ICG@DOX@siRNA nanoparticles (ZID-Si NPs) could significantly improve the stability of siRNA to effectively down-regulate the expression of HSP70 protein during the photothermal therapy, thus realizing the pH-controlled and NIR-triggered release of the chemotherapeutical drug DOX. Moreover, tumors were also imaged accurately by ICG wrapped in ZID-Si nanoparticles. After the evaluation of the in vitro and in vivo photothermal effect as well as the anti-tumor activity, we found that the added Hsp-70 siRNA enhanced the synergistic anti-cancer activity of HPTT and chemotherapy. In summary, this work holds great potential in cancer treatment, and suggests better efficacy of synergistic chemo/HPTT than the single-agent therapy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.
| | - Chen-Wen Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.
| | - Kang-Min Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.
| | - Qin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.
| | - Yong-Tao Duan
- Henan provincial key laboratory of children's genetics and metabolic diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, PR China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.
| |
Collapse
|
98
|
Guo XX, Guo ZH, Lu JS, Xie WS, Zhong QZ, Sun XD, Wang XM, Wang JY, Liu M, Zhao LY. All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation. NANOSCALE 2021; 13:14525-14537. [PMID: 34473816 DOI: 10.1039/d1nr03869a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiotherapy (RT) is one of the main treatments for men with prostate cancer (PCa). To date, numerous sophisticated nano-formulations as radiosensitizers have been synthesized with inspiring therapeutic effects both in vitro and in vivo; however, almost all the attention has been paid on the enhanced dose deposition effect by secondary electrons of nanomaterials with high atomic numbers (Z); despite this, cell-cycle arrest, DNA damage, and also reactive oxygen species (ROS) production are critical working mechanisms that account for radiosensitization. Herein, an 'all-purpose' nanostrategy based on dose deposition enhancement, cell cycle arrest, and ROS production as prostate cancer radiosensitizer for potential clinical translation was proposed. The rather simple structure of docetaxel-loaded Au nanoparticles (NPs) with prostate specific membrane antigen (PSMA) ligand conjugation have been successfully synthesized. Enhanced cellular uptake achieved via the selective internalization of the NPs by PCa cells with positive PSMA expression could guarantee enhanced dose deposition. Moreover, the as-synthesized nanosystem could effectively arrest the cell cycle at G2/M phases, which would reduce the ability of DNA damage repair for more irradiation sensitive of the PCa cells. Moreover, the G2/M phase arrest would further promote cascade retention and the enrichment of NPs within the cells. Furthermore, ROS generation and double strand breaks greatly promoted by NPs under irradiation (IR) could also provide an underlying basis for effective radiosensitizers. In vitro and in vivo investigations confirmed the as-synthesized NPs as an effective nano-radiosensitizer with ideal safety. More importantly, all moieties within the present nanosystem have been approved by FDA for the purpose of PCa treatment, thus making it highly attractive for clinical translation.
Collapse
Affiliation(s)
- Xiao-Xiao Guo
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Zhen-Hu Guo
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing-Song Lu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wen-Sheng Xie
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiu-Zi Zhong
- Department of Radiotherapy, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Xiao-Dan Sun
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiu-Mei Wang
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian-Ye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ling-Yun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
99
|
Day NB, Wixson WC, Shields CW. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021; 11:2172-2196. [PMID: 34522583 PMCID: PMC8424374 DOI: 10.1016/j.apsb.2021.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.
Collapse
Key Words
- BW, body weight
- Biomaterials
- CpG, cytosine-phosphate-guanine
- DAMP, damage associated molecular pattern
- Drug delivery
- EPR, enhanced permeability and retention
- FFR, field free region
- HS-TEX, heat-stressed tumor cell exosomes
- HSP, heat shock protein
- ICD, immunogenic cell death
- IVIS, in vivo imaging system
- Immunotherapy
- MICA, MHC class I-related chain A
- MPI, magnetic particle imaging
- Magnetic hyperthermia
- Magnetic nanoparticles
- Microrobotics
- ODNs, oligodeoxynucleotides
- PARP, poly(adenosine diphosphate-ribose) polymerase
- PDMS, polydimethylsiloxane
- PEG, polyethylene glycol
- PLGA, poly(lactic-co-glycolic acid)
- PNIPAM, poly(N-isopropylacrylamide)
- PVA, poly(vinyl alcohol)
- SDF, stromal cell derived-factor
- SID, small implantable device
- SLP, specific loss power
Collapse
Affiliation(s)
- Nicole B Day
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - William C Wixson
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - C Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
100
|
Bevacqua E, Curcio M, Saletta F, Vittorio O, Cirillo G, Tucci P. Dextran-Curcumin Nanosystems Inhibit Cell Growth and Migration Regulating the Epithelial to Mesenchymal Transition in Prostate Cancer Cells. Int J Mol Sci 2021; 22:7013. [PMID: 34209825 PMCID: PMC8269310 DOI: 10.3390/ijms22137013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Functional nanocarriers which are able to simultaneously vectorize drugs to the site of interest and exert their own cytotoxic activity represent a significant breakthrough in the search for effective anticancer strategies with fewer side effects than conventional chemotherapeutics. Here, we propose previously developed, self-assembling dextran-curcumin nanoparticles for the treatment of prostate cancer in combination therapy with Doxorubicin (DOXO). Biological effectiveness was investigated by evaluating the cell viability in either cancer and normal cells, reactive oxygen species (ROS) production, apoptotic effect, interference with the cell cycle, and the ability to inhibit cell migration and reverse the epithelial to mesenchymal transition (EMT). The results proved a significant enhancement of curcumin efficiency upon immobilization in nanoparticles: IC50 reduced by a half, induction of apoptotic effect, and improved ROS production (from 67 to 134%) at low concentrations. Nanoparticles guaranteed a pH-dependent DOXO release, with a more efficient release in acidic environments. Finally, a synergistic effect between nanoparticles and Doxorubicin was demonstrated, with the free curcumin showing additive activity. Although in vivo studies are required to support the findings of this study, these preliminary in vitro data can be considered a proof of principle for the design of an effective therapy for prostate cancer treatment.
Collapse
Affiliation(s)
- Emilia Bevacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.B.); (M.C.); (G.C.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.B.); (M.C.); (G.C.)
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (F.S.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (F.S.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.B.); (M.C.); (G.C.)
| | - Paola Tucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.B.); (M.C.); (G.C.)
| |
Collapse
|