51
|
Food-Grade Quercetin-Loaded Nanoemulsion Ameliorates Effects Associated with Parkinson's Disease and Cancer: Studies Employing a Transgenic C. elegans Model and Human Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11071378. [PMID: 35883869 PMCID: PMC9312062 DOI: 10.3390/antiox11071378] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
A nanosized food-grade quercetin-loaded nanoemulsion (QNE) system comprising capmul MCM NF (oil) and cremophor RH 40 (surfactant) was developed using a high-speed homogenization technique. The developed QNE was studied for its significant neuroprotective (anti-Parkinsonism) and cytotoxicity (anticancer) effects against Caenorhabditis elegans (C. elegans) strains and human cancer cells, respectively. HR-TEM studies revealed that the QNE was spherical with a mean globule size of ~50 nm. Selected area electron diffraction (SAED) studies results demonstrated that QNE was amorphous. In vivo results show that QNE potentially reduced the α-Syn aggregation, increased mitochondrial and fat content, and improved the lifespan in transgenic C. elegans strain NL5901. QNE significantly downregulated the reactive oxygen species (ROS) levels in wild-type C. elegans strain N2. In vitro results of the MTT assay show that QNE significantly exhibited chemotherapeutic effects in all treated human cancer cells in an order of cytotoxicity: HeLa cells > A549 cells > MIA PaCa-2 cells, based on the IC50 values at 24 h. Conclusively, the QNE showed improved solubility, targetability, and neuroprotective effects against the PD-induced C. elegans model, and also cytotoxicity against human cancer cells and could be potentially used as an anti-Parkinson’s or anticancer agent.
Collapse
|
52
|
Zhai Y, Sun J, Sun C, Zhao H, Li X, Yao J, Su J, Xu X, Xu X, Hu J, Daglia M, Han B, Kai G. Total flavonoids from the dried root of Tetrastigma hemsleyanum Diels et Gilg inhibit colorectal cancer growth through PI3K/AKT/mTOR signaling pathway. Phytother Res 2022; 36:4263-4277. [PMID: 35831026 DOI: 10.1002/ptr.7561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022]
Abstract
The dried root of Tetrastigma hemsleyanum Diels et Gilg is used as a traditional Chinese medicine in southern China, as a folk remedy for carcinomas and gastrointestinal diseases. The total flavonoids of T. hemsleyanum (THTF) provide its main bioactive constituents. However, the mechanisms underlying its potential activity on colorectal cancer are still unknown. Here, we investigated the antitumor effect of THTF on colorectal cancer in vitro and in vivo. It was found that THTF inhibited HCT-116 and HT-29 cell growth, with an IC50 of 105.60 and 140.80 μg/mL, respectively. THTF suppressed clonogenicity and promoted apoptosis in HCT-116. In vivo, THTF (120 mg/kg) delayed tumor growth in HCT-116 xenografts without influencing on body weight, organ pathology and indexes, and blood routine level. Mechanistically, THTF inhibited the expression of PI3K, AKT, and mTOR at the protein level and transcriptional levels. Molecular docking indicated eight compounds in THTF (kaempferol 3-rutinoside, rutinum, isoquercitrin, L-epicatechin, quercetin, astragalin, kaempferol 3-sambubioside, and catechin) strongly bound with amino acid sites of PI3K and mTOR proteins, indicating a high affinity. The results suggest that THTF delayed colorectal tumor growth by inhibiting the PI3K/AKT/mTOR pathway and might be a potential candidate for colorectal cancer prevention.
Collapse
Affiliation(s)
- Yufei Zhai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Sun
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengtao Sun
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaxiong Yao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajia Su
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoqian Xu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiukun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Sciences, The Second Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
53
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
54
|
Xie J, Chen R, Wang Q, Mao H. Exploration and validation of Taraxacum mongolicum anti-cancer effect. Comput Biol Med 2022; 148:105819. [PMID: 35810695 DOI: 10.1016/j.compbiomed.2022.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
Taraxacum mongolicum gained a lot of concern and was applied in 93 formulas in China due to its fame as a traditional Chinese medicine. The earliest recorded application of Taraxacum mongolicum was traced back to the Han dynasty. Generations of doctors boosted the usage and enriched the pharmacological mechanism. Clinical application of the Taraxacum mongolicum is flourishing as it treats multiple diseases. This study aims to explore the anti-cancer effect, retrieve the active ingredients and screen the key targets of Taraxacum mongolicum in cancer therapy. We collected and evaluated 10 key active compounds to investigate the anti-cancer effect via 69 significant targets and a variety of biological processes and pathways. Gene Ontology (GO) enrichment analysis uncovered targets associated with protein phosphorylation, cell proliferation and apoptotic processes via regulation of kinases, ATP and enzyme binding activities. Half of the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were directly involved in cancer. Based on standard selection criteria, seven hub targets were obtained. These targets functioned through distinct patterns and pathways in realizing the anti-cancer effect. Molecular docking was conducted to validate the potential combination between compounds and hub targets to explore the pharmacological mechanism of key compounds in Taraxacum mongolicum against cancer. In summary, our findings indicate that the famous and widely used Chinese herb, Taraxacum mongolicum, shows good anti-cancer effect through its active compounds, targeted genes, and multiple involved biological processes. The results may provide a theoretical basis for subsequent experimental validation and drug development of Taraxacum mongolicum extract against cancer.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, Hubei, 435003, PR China
| | - Ruxi Chen
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, Hubei, 435003, PR China
| | - Qingzhi Wang
- Medical College of YiChun University, Xuefu Road No 576, Yichun, Jiangxi, 336000, PR China.
| | - Hui Mao
- Department of Dermatology, Huangshi Central Hospital, Huangshi, Hubei, 435000, PR China.
| |
Collapse
|
55
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
56
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
57
|
Keranmu A, Pan LB, Yu H, Fu J, Liu YF, Amuti S, Han P, Ma SR, Xu H, Zhang ZW, Chen D, Yang FY, Wang MS, Wang Y, Xing NZ, Jiang JD. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:403-431. [PMID: 35282731 DOI: 10.1080/10286020.2022.2045965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a plant-derived polyphenol flavonoid that has been proven to be effective for many diseases. However, the mechanism and in vivo metabolism of quercetin remains to be clarified. It achieves a wide range of biological effects through various metabolites, gut microbiota and its metabolites, systemic mediators produced by inflammation and oxidation, as well as by multiple mechanisms. The all-round disease treatment of quercetin is achieved through the organic combination of multiple channels. Therefore, this article clarifies the metabolic process of quercetin in the body, and explores the new pattern of action of quercetin in the treatment of diseases.
Collapse
Affiliation(s)
- Adili Keranmu
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi-Fang Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai Clinical Research Center of Tuberculosis, Shanghai 200433, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi 830011, China
| | - Pei Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Dong Chen
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei-Ya Yang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming-Shuai Wang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Nian-Zeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
58
|
Mirazimi SMA, Dashti F, Tobeiha M, Shahini A, Jafari R, Khoddami M, Sheida AH, EsnaAshari P, Aflatoonian AH, Elikaii F, Zakeri MS, Hamblin MR, Aghajani M, Bavarsadkarimi M, Mirzaei H. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front Pharmacol 2022; 13:860209. [PMID: 35462903 PMCID: PMC9019477 DOI: 10.3389/fphar.2022.860209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Many cellular signaling pathways contribute to the regulation of cell proliferation, division, motility, and apoptosis. Deregulation of these pathways contributes to tumor cell initiation and tumor progression. Lately, significant attention has been focused on the use of natural products as a promising strategy in cancer treatment. Quercetin is a natural flavonol compound widely present in commonly consumed foods. Quercetin has shown significant inhibitory effects on tumor progression via various mechanisms of action. These include stimulating cell cycle arrest or/and apoptosis as well as its antioxidant properties. Herein, we summarize the therapeutic effects of quercetin in gastrointestinal cancers (pancreatic, gastric, colorectal, esophageal, hepatocellular, and oral).
Collapse
Affiliation(s)
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raha Jafari
- Department of Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mehrad Khoddami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Parastoo EsnaAshari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Aflatoonian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fateme Elikaii
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Melika Sadat Zakeri
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammad Aghajani
- Infectious Disease Research Center, School of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Minoodokht Bavarsadkarimi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
59
|
Study on the Potential Molecular Mechanism of Xihuang Pill in the Treatment of Pancreatic Cancer Based on Network Pharmacology and Bioinformatics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4651432. [PMID: 35449823 PMCID: PMC9017490 DOI: 10.1155/2022/4651432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Objective We aimed to analyze the possible molecular mechanism of Xihuang pill (XHP) in the treatment of pancreatic cancer based on methods of network pharmacology, molecular docking, and bioinformatics. Methods The main active components and targets were obtained through the TCMSP database, the BATMAN-TCM database, and the Chemistry database. The active ingredients were screened according to the “Absorption, Distribution, Metabolism, Excretion” (ADME) principle and supplemented with literature. We searched GeneCards, OMIM, TTD, and DrugBank databases for pancreatic cancer targets. The targets of disease and ingredients were intersected to obtain candidate key targets. Then, we constructed a protein-protein interaction (PPI) network for protein interaction analysis and a composition-key target map to obtain essential effective ingredients. Metascape was used to perform functional enrichment analysis to screen critical targets and pathways. The expression and prognosis of key targets were examined and analyzed, and molecular docking was carried out. Results A total of 52 active ingredients of XHP, 121 candidate targets, and 52 intersecting targets were obtained. The core active ingredients of XHP for the treatment of pancreatic cancer were quercetin, 17-β-estradiol, ursolic acid, and daidzein. The core targets were EGFR, ESR1, MAPK1, MAPK8, MAPK14, TP53, and JUN, which were highly expressed genes of pancreatic cancer. Among them, EGFR and MAPK1 were significantly correlated with the survival of pancreatic cancer patients. The key pathway was the EGFR/MAPK pathway. The molecular docking results indicated that four active compositions had good binding ability to key targets. Conclusion The molecular mechanism of XHP for the treatment of pancreatic cancer involved multiple components, multiple targets, and multiple pathways. This research theoretically elucidated the ameliorative effect of XHP against pancreatic cancer and might provide new ideas for further research on the treatment of pancreatic cancer.
Collapse
|
60
|
Chen YY, Chen SY, Li TJ, Lin TW, Chen CC, Yen GC. 4-Acetylantroquinonol B enhances cell death and inhibits autophagy by downregulating the PI3K/Akt/MDR1 pathway in gemcitabine-resistant pancreatic cancer cells. Oncol Lett 2022; 23:128. [PMID: 35251348 PMCID: PMC8895450 DOI: 10.3892/ol.2022.13248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Gemcitabine (GEM) is a typical chemotherapeutic drug used to treat pancreatic cancer, but GEM resistance develops within weeks after chemotherapy. Hence, the development of a new strategy to overcome drug resistance is urgent. 4-Acetylantroquinonol B (4-AAQB), a ubiquinone derived from Taiwanofungus camphoratus, has hepatoprotective, anti-obesity, and antitumor activities. However, the role of 4-AAQB in enhancing GEM sensitivity is unclear. This study aimed to determine the underlying mechanisms by which 4-AAQB enhances cytotoxicity and GEM sensitivity. Cell viability was dramatically reduced by 4-AAQB (2 and 5 µM) treatment in the MiaPaCa-2 and GEM-resistant MiaPaCa-2 (MiaPaCa-2GEMR) human pancreatic cancer cells. 4-AAQB led to cell cycle arrest, upregulated the levels of reactive oxygen species (ROS), promoted apoptosis, and inhibited autophagy, which subsequently enhanced GEM chemosensitivity by suppressing the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1)-initiated PI3K/Akt/multidrug resistance protein 1 (MDR1) signaling pathway in both cell lines. Vascular endothelial growth factor A (VEGFA) expression, cell migration, and invasion were also inhibited by the 4-AAQB incubation. Overall, this combination treatment strategy might represent a novel approach for GEM-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ying-Yin Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan, R.O.C
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
61
|
Chen SY, Hsu YH, Wang SY, Chen YY, Hong CJ, Yen GC. Lucidone inhibits autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in pancreatic cancer cells. Phytother Res 2022; 36:1664-1677. [PMID: 35224793 DOI: 10.1002/ptr.7385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Gemcitabine (GEM) drug resistance remains a difficult challenge in pancreatic ductal adenocarcinoma (PDAC) treatment. Therefore, identifying a safe and effective treatment strategy for PDAC is urgent. Lucidone is a natural compound extracted from the fruits of Lindera erythrocarpa Makino. However, the role of lucidone in PDAC inhibition remains unclear. In addition, high-mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) are involved in multidrug resistance protein 1 (MDR1) regulation and GEM resistance. Thus, this study aimed to explore the function of lucidone in tumor cytotoxicity and chemosensitivity through the suppression of RAGE-initiated signaling in PDAC cells. The data showed that lucidone significantly promoted apoptotic cell death and inhibited the expression of autophagic proteins (Atg5, Beclin-1, LC3-II, and Vps34) and MDR1 by inhibiting the HMGB1/RAGE/PI3K/Akt axis in both MIA Paca-2 cells and MIA Paca-2GEMR cells (GEM-resistant cells). Notably, convincing data were also obtained in experiments involving RAGE-specific siRNA transfection. In addition, remarkable cell proliferation was observed after treatment with lucidone combined with GEM, particularly in MIA Paca-2GEMR cells, indicating that lucidone treatment enhanced chemosensitivity. Collectively, this study provided the underlying mechanism by which lucidone treatment inhibited HMGB1/RAGE-initiated PI3K/Akt/MDR1 signaling and consequently enhanced chemosensitivity in PDAC.
Collapse
Affiliation(s)
- Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Hao Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Yin Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Jie Hong
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
62
|
Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:823945. [PMID: 35309994 PMCID: PMC8924288 DOI: 10.3389/fbioe.2022.823945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar spondylosis. Over the past few years, the relevance between cellular senescence and IVDD has been widely studied, and the senescence-associated secretory phenotype (SASP) produced by senescent cells is found to remodel extracellular matrix (ECM) metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and suppression of SASP production by senomorphics/senostatics are effective strategies to alleviate degenerative diseases including IVDD. Here, we review the involvement of senescence in the process of IVDD; we also discuss the potential of senolytics on eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in the future.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| |
Collapse
|
63
|
Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconj J 2022; 38:717-734. [PMID: 35064413 DOI: 10.1007/s10719-021-10031-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
64
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
65
|
Tian M, Tang Y, Huang T, Liu Y, Pan Y. Amelioration of human peritoneal mesothelial cell co-culture-evoked malignant potential of ovarian cancer cells by acacetin involves LPA release-activated RAGE-PI3K/AKT signaling. Cell Mol Biol Lett 2021; 26:51. [PMID: 34886812 PMCID: PMC8903696 DOI: 10.1186/s11658-021-00296-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Ovarian cancer is a devastating gynecological malignancy and frequently presents as an advanced carcinoma with disseminated peritoneum metastasis. Acacetin exerts anti-cancerous effects in several carcinomas. Here, we sought to investigate acacetin function in ovarian cancer malignancy triggered by peritoneal mesothelial cells. Methods Peritoneal mesothelial cells were treated with acacetin, and then the conditioned medium was collected to treat ovarian cancer cells. Then, cell proliferation was analyzed by MTT assay. Transwell analysis was conducted to evaluate cell invasion. Protein expression was determined by western blotting. ELISA and qRT-PCR were applied to analyze inflammatory cytokine levels. The underlying mechanism was also explored. Results Acacetin suppressed cell proliferation and invasion, but enhanced cell apoptosis. Furthermore, mesothelial cell-evoked malignant characteristics were inhibited when mesothelial cells were pre-treated with acacetin via restraining cell proliferation and invasion, concomitant with decreases in proliferation-related PCNA, MMP-2 and MMP-9 levels. Simultaneously, acacetin reduced mesothelial cell-induced transcripts and production of pro-inflammatory cytokine IL-6 and IL-8 in ovarian cancer cells. Mechanically, acacetin decreased lysophosphatidic acid (LPA) release from mesothelial cells, and subsequent activation of receptor for advanced glycation end-products (RAGE)-PI3K/AKT signaling in ovarian cancer cells. Notably, exogenous LPA restored the above pathway, and offset the efficacy of acacetin against mesothelial cell-evoked malignancy in ovarian cancer cells, including cell proliferation, invasion and inflammatory cytokine production. Conclusions Acacetin may not only engender direct inhibition of ovarian cancer cell malignancy, but also antagonize mesothelial cell-evoked malignancy by blocking LPA release-activated RAGE-PI3K/AKT signaling. Thus, these findings provide supporting evidence for a promising therapeutic agent against ovarian cancer. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Meng Tian
- Critical Care Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yingjie Tang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Ting Huang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yingzheng Pan
- Department of Gynecological Endocrinology, Chongqing Health Center for Women and Children, No 120 Longshan Road, Yubei District, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
66
|
STK39 enhances the progression of Cholangiocarcinoma via PI3K/AKT pathway. iScience 2021; 24:103223. [PMID: 34746696 PMCID: PMC8551078 DOI: 10.1016/j.isci.2021.103223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Serine/threonine kinase 39 (STK39) is overexpressed in various tumor tissues and plays an essential role in tumor progression. In this study, we investigated the clinical value, as well as the potential functions and mechanisms of STK39 in cholangiocarcinoma (CCA). The results showed that STK39 was overexpressed in CCA and negatively associated with the prognosis of patients with CCA. Functionally, STK39 knockdown suppressed cell proliferation, migration, and invasion, while STK39 overexpression facilitated tumor aggressiveness. The tumor-promoting effects of STK39 in CCA were also validated by in vivo experiments. Mechanistically, RNA-seq analysis identified that STK39 enhanced the progression of CCA by activating PI3K/AKT signaling pathway. Furthermore, overexpression of STK39 could induce gemcitabine resistance in CCA cells. Moreover, the increased expression of STK39 may be mediated by the dysregulation of miR-26a-5p. In summary, STK39 could be served as a valuable prognostic candidate and a potential therapeutic target of CCA. STK39 was overexpressed in CCA, negatively associated with the prognosis of patients with CCA STK39 knockdown suppressed cell proliferation and invasion. STK39 overexpression facilitated tumor aggressiveness STK39 mediates oncogenic effects on CCA cells by activating the PI3K/AKT signaling pathway STK39 reduces CCA sensitivity to gemcitabine. Increased expression of STK39 may be mediated by dysregulation of miR-26a-5p
Collapse
|
67
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
68
|
Asgharian P, Tazehkand AP, Soofiyani SR, Hosseini K, Martorell M, Tarhriz V, Ahangari H, Cruz-Martins N, Sharifi-Rad J, Almarhoon ZM, Ydyrys A, Nurzhanyat A, Yessenbekova A, Cho WC. Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4393266. [PMID: 34777687 PMCID: PMC8580629 DOI: 10.1155/2021/4393266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers' interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | | | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Ablaikhanova Nurzhanyat
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
69
|
Li J, Chen X, Kang R, Zeh H, Klionsky DJ, Tang D. Regulation and function of autophagy in pancreatic cancer. Autophagy 2021; 17:3275-3296. [PMID: 33161807 PMCID: PMC8632104 DOI: 10.1080/15548627.2020.1847462] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenic KRAS mutation-driven pancreatic ductal adenocarcinoma is currently the fourth-leading cause of cancer-related deaths in the United States. Macroautophagy (hereafter "autophagy") is one of the lysosome-dependent degradation systems that can remove abnormal proteins, damaged organelles, or invading pathogens by activating dynamic membrane structures (e.g., phagophores, autophagosomes, and autolysosomes). Impaired autophagy (including excessive activation and defects) is a pathological feature of human diseases, including pancreatic cancer. However, dysfunctional autophagy has many types and plays a complex role in pancreatic tumor biology, depending on various factors, such as tumor stage, microenvironment, immunometabolic state, and death signals. As a modulator connecting various cellular events, pharmacological targeting of nonselective autophagy may lead to both good and bad therapeutic effects. In contrast, targeting selective autophagy could reduce potential side effects of the drugs used. In this review, we describe the advances and challenges of autophagy in the development and therapy of pancreatic cancer.Abbreviations: AMPK: AMP-activated protein kinase; CQ: chloroquine; csc: cancer stem cells; DAMP: danger/damage-associated molecular pattern; EMT: epithelial-mesenchymal transition; lncRNA: long noncoding RNA; MIR: microRNA; PanIN: pancreatic intraepithelial neoplasia; PDAC: pancreatic ductal adenocarcinoma; PtdIns3K: phosphatidylinositol 3-kinase; SNARE: soluble NSF attachment protein receptor; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
70
|
Adami BS, Diz FM, Oliveira Gonçalves GP, Reghelin CK, Scherer M, Dutra AP, Papaléo RM, de Oliveira JR, Morrone FB, Wieck A, Xavier LL. Morphological and mechanical changes induced by quercetin in human T24 bladder cancer cells. Micron 2021; 151:103152. [PMID: 34607251 DOI: 10.1016/j.micron.2021.103152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023]
Abstract
Quercetin is a flavonoid found in a great variety of foods such as vegetables and fruits. This compound has been shown to inhibit the proliferation of various types of cancer cells, as well as the growth of tumors in animal models. In the present study, we analyze morphological and mechanical changes produced by quercetin in T24 bladder cancer cells. Decreased cell viability and cell number were observed following quercetin treatment at 40 μM and 60 μM, respectively, as observed by the MTT assay and trypan blue exclusion test, supporting the hypothesis of quercetin anticancer effect. These assays also allowed us to determine the 40, 60, and 80 μM quercetin concentrations for the following analyses, Lactate Dehydrogenase assay (LDH); Nuclear Morphometric Analysis (NMA); and atomic force microscopy (AFM). The LDH assay showed no cytotoxic effect of quercetin on T24 cancer cells. The AFM showed morphological changes following quercetin treatment, namely decreased cell body, cytoplasmic retraction, and membrane condensation. Following quercetin treatment, the NMA evidenced an increased percentage of nuclei characteristic to the apoptotic and senescence processes. Cells also presented biophysical alterations consistent with cell death by apoptosis, as increased roughness and aggregation of membrane proteins, in a dose-dependent manner. Cellular elasticity, obtained through force curves, showed increased stiffness after quercetin treatment. Data presented herein demonstrate, for the first time, in a quantitative and qualitative form, the morphological and mechanical alterations induced by quercetin on bladder cancer cells.
Collapse
Affiliation(s)
- Bruno Silveira Adami
- Laboratório de Biologia Celular e Tecidual, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Fernando Mendonça Diz
- Pós-Graduação em Engenharia e Tecnologia de Materiais, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil; Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Gustavo Petry Oliveira Gonçalves
- Laboratório Central de Microscopia e Microanálise (LabCeMM), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Camille Kirinus Reghelin
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Matheus Scherer
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Artur Pereira Dutra
- Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Ricardo Meurer Papaléo
- Centro Interdisciplinar de Nanociências e Micro-Nanotecnologia - NanoPUCRS, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| | - Andrea Wieck
- Laboratório de Biologia Celular e Tecidual, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil.
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil; Laboratório Central de Microscopia e Microanálise (LabCeMM), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Porto Alegre, RS, CEP: 90619-900, Brazil
| |
Collapse
|
71
|
Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A, Hushmandi K, Ang HL, Sethi G, Kumar AP, Ahn KS, Nabavi N, Khan H, Makvandi P, Varma RS. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol 2021; 157:112576. [PMID: 34571052 DOI: 10.1016/j.fct.2021.112576] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Phd student of pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
72
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
73
|
Li T, Kuang T, Yang Z, Zhang Q, Zhang W, Fan Y. Co-treatment With Everolimus, an mTOR-Specific Antagonist, or Downregulation of ELK1 Enhances the Sensitivity of Pancreatic Cancer Cells to Genistein. Front Cell Dev Biol 2021; 9:633035. [PMID: 34540820 PMCID: PMC8448347 DOI: 10.3389/fcell.2021.633035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Genistein is a natural isoflavone with pharmacological or potentially anti-tumor properties. However, the resistance of cancer cells to genistein remains a major obstacle. This study focused on the mechanism implicated in the resistance of pancreatic cancer (PC) cells to genistein and the mechanism of action. First, key molecules and signaling pathways related to genistein resistance in PC cells were explored using bioinformatics tools. DEP domain containing MTOR interacting protein (DEPTOR), a typical inhibitor of the mammalian target of rapamycin (mTOR) signaling, was predicted to be poorly expressed in the genistein-resistant PC cells. Thereafter, genistein-resistant PC cells (Panc-1 and PaCa) were constructed. Altered expression of DEPTOR was introduced in cells, and everolimus (ELM), an mTOR-specific antagonist, was administrated in cells as well to examine their roles in genistein resistance. The cell apoptosis was examined in vitro and in vivo in mouse xenograft tumors. The upstream regulator of DEPTOR was predicted via bioinformatic tools. The bioinformatic analyses showed that the PI3K/AKT/mTOR signaling pathway was activated in the setting of DEPTOR downregulation in genistein-resistant PC cells. DEPTOR overexpression reduced the 50% inhibiting concentration (IC50) of genistein in PC cells and suppressed mTOR phosphorylation, and it increased caspase-3 activity, LDH release and apoptosis in PC cells. ELM treatment enhanced the sensitivity of PC cells to genistein in vitro and it strengthened the tumor-eliminating role of genistein in mice. ETS transcription factor ELK1 (ELK1), a transcription factor that negatively regulated DEPTOR transcription, was suppressed by genistein. Upregulation of ELK1 suppressed DEPTOR transcription and reduced the genistein sensitivity of cells, and it also blocked the genistein-sensitizing roles of ELM in PC cells. In conclusion, this study demonstrated that ELK1 reduces DEPTOR transcription, leading to mTOR phosphorylation and the drug resistance of PC cells.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoshuo Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiqi Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Fan
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2021; 63:2494-2508. [PMID: 34529530 DOI: 10.1080/10408398.2021.1976721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of cancer with chemotherapeutic drugs is associated with numerous adverse effects as well as the eventual development of resistance to chemotherapy. There is a great need for complementary therapies such as botanicals and nutritional supplements with little or no side effects that prevent resistance to chemotherapy and reduce its adverse effects. Inflammation plays a major role in the development of chemoresistance and the adverse effects of chemotherapy. Phytochemicals have well-established anti-inflammatory effects; thus, they could be used as complementary therapies along with chemotherapy to increase its efficacy and reduce its toxicity. Botanical compounds inhibit the NF-κB signaling pathway, which plays an important role in the generation of inflammation, chemotherapy resistance, and modulation of cell survival and apoptosis. Botanicals have previously been studied extensively for their cancer chemopreventive activities and are generally considered safe for human consumption. The present review focuses on the modulation of inflammation by phytochemicals and their role in increasing the efficacy and reducing the toxicity of cancer chemotherapy.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
75
|
Wang K, Miao X, Kong F, Huang S, Mo J, Jin C, Zheng Y. Integrating Network Pharmacology and Experimental Verification to Explore the Mechanism of Effect of Zuojin Pills in Pancreatic Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3749-3764. [PMID: 34511884 PMCID: PMC8427689 DOI: 10.2147/dddt.s323360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Background and Aim Pancreatic cancer is one of the most malignant tumors worldwide. Zuojin pills (ZJP), a traditional Chinese medicine (TCM) formula, which can treat a variety of cancers. However, the active compounds present in ZJP and the potential mechanisms through which ZJP acts against pancreatic cancer have not been thoroughly investigated. Methods Data on pancreatic cancer-related genes, bioactive compounds, and potential targets of ZJP were downloaded from public databases. Bioinformatics analysis, including protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, was conducted to identify important components, potential targets, and signaling pathways through which ZJP affects pancreatic cancer. The results of this analysis were verified by in vitro experiments. Results The network pharmacology analysis results showed that 41 compounds and 130 putative target genes of ZJP were associated with anti-pancreatic cancer effects. ZJP may exert its inhibitory effects against pancreatic cancer by acting on key targets such as JUN, TP53, and MAPK1. Moreover, KEGG analysis indicated that the anti-pancreatic cancer effect of ZJP was mediated by multiple pathways, such as the PI3K-AKT, IL-17, TNF, HIF-1, and P53 signaling pathways. Among these, the PI3K-AKT signaling pathway, which included the highest number of enriched genes, may play a more important role in treating pancreatic cancer. The in vitro results showed that ZJP significantly inhibits the cell cycle and cell proliferation through the PI3K/AKT/caspase pathway and that it can induce apoptosis of pancreatic cancer cells, consistent with the results predicted by network pharmacological methods. Conclusion This study preliminarily investigated the pharmacological effects of ZJP, which appear to be mediated by multiple compounds, targets and pathways, and its potential therapeutic effect on pancreatic cancer. Importantly, our work provides a promising approach for the identification of compounds in TCM and the characterization of therapeutic mechanisms.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Xiongying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Yanwen Zheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
76
|
Mechanism Prediction of Astragalus membranaceus against Cisplatin-Induced Kidney Damage by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9516726. [PMID: 34457031 PMCID: PMC8390139 DOI: 10.1155/2021/9516726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Background Cisplatin is a frequently used and effective chemotherapy drug in clinical practice, but severe side effects limit its use, among which nephrotoxicity is considered the most serious and prolonged damage to the body. Astragalus membranaceus (AM) is a well-known herbal medicine, and modern pharmacological studies have confirmed its antioxidant, immunomodulatory, and antiapoptotic effects. Clinical studies have shown that AM and its active components can attenuate cisplatin-induced kidney damage, but the molecular mechanism has not been fully expounded. Materials and Methods First, the components and targets information of AM were collected from the TCMSP, and the relevant targets of cisplatin-induced kidney damage were accessed from the GeneCards and OMIM databases. Then, the core targets were selected by the Venn diagram and network topology analysis, which was followed by GO and KEGG pathway enrichment analysis. Finally, we construct a component-target-pathway network. Furthermore, molecular docking was carried out to identify the binding activity between active components and key targets. Results A total of 20 active components and 200 targets of AM and 646 targets related to cisplatin-induced kidney damage were obtained. 91 intersection targets were found between AM and cisplatin-induced kidney damage. Then, 16 core targets were identified, such as MAPK1, TNF-α, and p53. Furthermore, GO and KEGG pathway enrichment analysis suggested that MAPK, Toll-like receptor, and PI3K-Akt signaling pathways may be of significance in the treatment of cisplatin-induced kidney damage by AM. Molecular docking indicated that quercetin and kaempferol had high binding affinities with many core targets. Conclusion In summary, the active components, key targets, and signaling pathways of AM in the treatment of cisplatin-induced kidney damage were predicted in this study, which contributed to the development and application of AM.
Collapse
|
77
|
Sun L, Lu B, Liu Y, Wang Q, Li G, Zhao L, Zhao C. Synthesis, characterization and antioxidant activity of quercetin derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1942059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lei Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Bo Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Yandan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Longxuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
78
|
Hua Q, Li T, Liu Y, Shen X, Zhu X, Xu P. Upregulation of KLK8 Predicts Poor Prognosis in Pancreatic Cancer. Front Oncol 2021; 11:624837. [PMID: 34395235 PMCID: PMC8362328 DOI: 10.3389/fonc.2021.624837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a growing cause of cancer-related mortality worldwide. Kallikrein-related peptidase 8 (KLK8) has potential clinical values in many cancers. However, the clinicopathological significances of KLK8 in PDAC remain unknown. We explored the relationship of KLK8 to clinicopathological features of PDAC based on public databases. KLK8 expression was examined in human PDAC tissues. Cell proliferation and apoptosis were evaluated in KLK8-overexpressed human pancreatic cancer cell lines Mia-paca-2 and Panc-1. The related signaling pathways of KLK8 involved in pancreatic cancer progression were analyzed by gene set enrichment analysis (GSEA) and further verified in in vitro studies. We found that KLK8 was up-regulated in tumor tissues in the TCGA-PAAD cohort, and was an independent prognostic factor for both overall survival and disease-free survival of PDAC. KLK8 mRNA and protein expressions were increased in PDAC tissues compared with para-cancerous pancreas. KLK8 overexpression exerted pro-proliferation and anti-apoptotic functions in Mia-paca-2 and Panc-1 cells. GSEA analysis showed that KLK8 was positively associated with PI3K-Akt-mTOR and Notch pathways. KLK8-induced pro-proliferation and anti-apoptotic effects in Mia-paca-2 and Panc-1 cells were attenuated by inhibitors for PI3K, Akt, and mTOR, but not by inhibitor for Notch. Furthermore, overexpression of KLK8 in Mia-paca-2 and Panc-1 cells significantly increased epidermal growth factor (EGF) levels in the culture media. EGF receptor (EGFR) inhibitor could block KLK8-induced activation of PI3K/Akt/mTOR pathway and attenuate pro-proliferation and anti-apoptotic of KLK8 in Mia-paca-2 and Panc-1 cells. In conclusion, KLK8 overexpression exerts pro-proliferation and anti-apoptotic functions in pancreatic cancer cells via EGF signaling-dependent activation of PI3K/Akt/mTOR pathway. Upregulated KLK8 in PDAC predicts poor prognosis and may be a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Qing Hua
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianjiao Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Fudan University Shanghai, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yixuan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Clinical Laboratory, Shanghai Cancer Centre, Fudan University, Shanghai, China
| | - Xuefang Shen
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Pingbo Xu
- Department of Anesthesiology, Shanghai Cancer Centre, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
79
|
Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell Int 2021; 21:349. [PMID: 34225730 PMCID: PMC8256549 DOI: 10.1186/s12935-021-02067-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a primary bone tumor. Although it is a rare disease in general, it is the most common primary bone tumor among children. Despite the significant advances made in the field of osteosarcoma treatment, the outcomes of this disease are still unfavorable. Besides, there is still no targeted therapy for osteosarcoma that can be used in clinical settings. Quercetin is a member of the phytochemical family which is used for different diseases including cardiovascular diseases, diabetes, and cancer. Its anti-cancer effects are examined in many types of cancer including breast, colon, lung, prostate, and pancreatic cancers and have shown promising results. Herein, the studies dealing with the antitumor roles of quercetin in osteosarcoma are reviewed in this article. We take a look into quercetin's ability to affect proliferation, apoptosis, invasion, and chemo-resistance of the osteosarcoma cells through regulating protein expression and signaling pathways.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
80
|
Ghafouri-Fard S, Shoorei H, Khanbabapour Sasi A, Taheri M, Ayatollahi SA. The impact of the phytotherapeutic agent quercetin on expression of genes and activity of signaling pathways. Biomed Pharmacother 2021; 141:111847. [PMID: 34198048 DOI: 10.1016/j.biopha.2021.111847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Quercetin is a flavonoid existing in different herbs, fruits, seeds, nuts and tea. It has beneficial effects on human health through mediating antioxidant activities, immune-modulatory impacts and regulating metabolic pathways. These effects are most probably induced through modulation of activity of signaling pathways and expression of genes. Several in vitro studies have verified anti-proliferative effects of quercetin and its effect on expression of apoptotic genes and cell cycle-related genes. Moreover, through modulation of a number of proteins such as NF-kB, PARP, STAT3, Bax, Bcl-2, COX2, and cytokines, quercetin has beneficial effects in neurodegenerative disorders, liver diseases and diabetes. PI3K/AKT is the mostly linked pathway with beneficial effects of quercetin. In the current manuscript, we explain the impact of quercetin on expression of genes and function of cellular signaling cascades in different contexts.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
81
|
Quercetin Induces Anticancer Activity by Upregulating Pro-NAG-1/GDF15 in Differentiated Thyroid Cancer Cells. Cancers (Basel) 2021; 13:cancers13123022. [PMID: 34208730 PMCID: PMC8233818 DOI: 10.3390/cancers13123022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Thyroid cancer is one of the most common cancers worldwide, and its incidence has increased over the last few decades. It is difficult to diagnose different types of thyroid cancer. Tumor tissues from papillary thyroid cancer patient showed higher expression of mature NAG-1, whereas adjacent normal tissues showed higher expression of pro-NAG-1. Several anti-cancer compounds increased pro-NAG-1 expression in thyroid cancer cell line. Quercetin (3,3’,4’,5,7-pentahydroxyflavone) is a flavonoid that is a major component of various plants, including raspberries, grapes, and onions. Quercetin induced apoptosis by inducing only pro-NAG-1 expression, but not mature NAG-1, mediated by the transcription factor C/EBP. This study indicates that pro-NAG-1 could be used as a useful biomarker for thyroid cancer and also provides a potential therapeutic target for the treatment of thyroid cancer with quercetin. Abstract Although the treatment of thyroid cancer has improved, unnecessary surgeries are performed due to a lack of specific diagnostic and prognostic markers. Therefore, the identification of novel biomarkers should be considered in the diagnosis and treatment of thyroid cancer. In this study, antibody arrays were performed using tumor and adjacent normal tissues of patients with papillary thyroid cancer, and several potential biomarkers were identified. Among the candidate proteins chosen based on the antibody array data, mature NAG-1 exhibited increased expression in tumor tissues compared to adjacent normal tissues. In contrast, pro-NAG-1 expression increased in normal tissues, as assessed by western blot analysis. Furthermore, pro-NAG-1 expression was increased when the thyroid cancer cells were treated with phytochemicals and nonsteroidal anti-inflammatory drugs in a dose-dependent manner. In particular, quercetin highly induced the expression of pro-NAG-1 but not that of mature NAG-1, with enhanced anticancer activity, including apoptosis induction and cell cycle arrest. Examination of the NAG-1 promoter activity showed that p53, C/EBPα, or C/EBPδ played a role in quercetin-induced NAG-1 expression. Overall, our study indicated that NAG-1 may serve as a novel biomarker for thyroid cancer prognosis and may be used as a therapeutic target for thyroid cancers.
Collapse
|
82
|
Li ZY, Chen SY, Weng MH, Yen GC. Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF-κB/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model. J Food Drug Anal 2021; 29:262-274. [PMID: 35696208 PMCID: PMC9261828 DOI: 10.38212/2224-6614.3346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Gemcitabine (GEM) is a first-line drug for pancreatic cancer therapy, but GEM resistance is easily developed in patients. Growing evidence suggests that cancer chemoprevention and suppression are highly associated with dietary phytochemical and microbiota composition. Ursolic acid (UA) has anti-inflammatory and anticancer effects; however, its role in improving cancer drug resistance in vivo remains unclear. In this study, the aim was to explore the role of UA in managing drug resistance-associated molecular mechanisms and the influence of gut microbiota. The in vitro results showed that receptor for advanced glycation end products (RAGE), nuclear factor kappa B p65 (NF-κB/p65), and multidrug resistance protein 1 (MDR1) protein levels were significantly increased in GEM-resistant pancreatic cancer cells (named MIA PaCa-2 GEMR) compared to MIA PaCa-2 cells. Downregulation of RAGE, pP65, and MDR1 protein expression not only was observed following UA treatment but also was seen in MIA PaCa-2 GEMR cells after transfection with a RAGE siRNA. Remarkably, the enhanced effects of UA coupled with GEM administration dramatically suppressed the RAGE/NF-κB/MDR1 cascade and consequently inhibited subcutaneous tumor growth. Moreover, UA could increase alpha diversity and regulate the composition of gut microbiota, especially in Ruminiclostridium 6. Taken together, these results provide the first direct evidence of MDR1 attenuation and chemosensitivity enhancement through inhibition of the RAGE/NF-κB signaling pathway in vitro and in vivo, implying that UA may be used as an adjuvant for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
| | | | - Ming-Hong Weng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| |
Collapse
|
83
|
Djamgoz MBA, Jentzsch V. Integrative Management of Pancreatic Cancer (PDAC): Emerging Complementary Agents and Modalities. Nutr Cancer 2021; 74:1139-1162. [PMID: 34085871 DOI: 10.1080/01635581.2021.1934043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Nicosia, Cyprus
| | - Valerie Jentzsch
- Department of Life Sciences, Imperial College London, London, UK
- Department of Health Policy, London School of Economics and Political Science, London, UK
| |
Collapse
|
84
|
Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, Siddiqui M, Biringer K, Kudela E, Pec M, Gadanec LK, Šudomová M, Hassan STS, Zulli A, Shakibaei M, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J 2021; 12:155-176. [PMID: 34025826 PMCID: PMC8126506 DOI: 10.1007/s13167-021-00242-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Cost-efficacy of currently applied treatments is an issue in overall cancer management challenging healthcare and causing tremendous economic burden to societies around the world. Consequently, complex treatment models presenting concepts of predictive diagnostics followed by targeted prevention and treatments tailored to the personal patient profiles earn global appreciation as benefiting the patient, healthcare economy, and the society at large. In this context, application of flavonoids as a spectrum of compounds and their nano-technologically created derivatives is extensively under consideration, due to their multi-faceted anti-cancer effects applicable to the overall cost-effective cancer management, primary, secondary, and even tertiary prevention. This article analyzes most recently updated data focused on the potent capacity of flavonoids to promote anti-cancer therapeutic effects and interprets all the collected research achievements in the frame-work of predictive, preventive, and personalized (3P) medicine. Main pillars considered are: - Predictable anti-neoplastic, immune-modulating, drug-sensitizing effects; - Targeted molecular pathways to improve therapeutic outcomes by increasing sensitivity of cancer cells and reversing their resistance towards currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
85
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
86
|
Saavedra-Leos MZ, Jordan-Alejandre E, López-Camarillo C, Pozos-Guillen A, Leyva-Porras C, Silva-Cázares MB. Nanomaterial Complexes Enriched With Natural Compounds Used in Cancer Therapies: A Perspective for Clinical Application. Front Oncol 2021; 11:664380. [PMID: 33869067 PMCID: PMC8047625 DOI: 10.3389/fonc.2021.664380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol and quercetin are natural compounds contained in many foods and beverages. Reports indicate implications for the health of the general population; on the other hand the use of both compounds has interesting results for the treatment of many diseases as cardiovascular affections, diabetes, Alzheimer's disease, viral and bacterial infections among others. Based on their capacities described as anti-inflammatory, antioxidant, and anti-aging, resveratrol and quercetin showed antiproliferative and anticancer activity specifically in maligned cells. These molecular characteristics trigger the pharmacological repurposing of both compounds and improved its research for treating different cancer types with interesting results at in vitro, in vivo, and clinical trial studies. Meanwhile, the development of different systems of drug release in specific sites as nanomaterials and specifically the nanoparticles, potentiates the personal treatment perspective in conjunct with the actual cancer therapies; regularly invasive and aggressive, the perspective of nanomedicine as higher effective and lower invasive has gained popularity. Knowledge of molecular interactions of resveratrol and quercetin in diseases confirms the evidence of multiple benefits, while the multiple analyses suggested a positive response for the treatment and diagnostics of cancer in different stages, including at metastatic stage. The present work reviews the reports related to the impact of resveratrol and quercetin in cancer treatment and its effects when the antioxidants are encapsulated in different nanoparticle systems, which improve the prospects of cancer treatment.
Collapse
Affiliation(s)
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Amaury Pozos-Guillen
- Laboratorio de Ciencias Básicas, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - César Leyva-Porras
- Laboratorio Nacional de Nanotecnología, Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Chihuahua, Mexico
| | | |
Collapse
|
87
|
Zheng P, Tang Z, Xiong J, Wang B, Xu J, Chen L, Cai S, Wu C, Ye L, Xu K, Chen Z, Wu Y, Xiao J. RAGE: A potential therapeutic target during FGF1 treatment of diabetes-mediated liver injury. J Cell Mol Med 2021; 25:4776-4785. [PMID: 33788387 PMCID: PMC8107085 DOI: 10.1111/jcmm.16446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
As a serious metabolic disease, diabetes causes series of complications that seriously endanger human health. The liver is a key organ for metabolizing glucose and lipids, which substantially contributes to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Exogenous fibroblast growth factor 1 (FGF1) has a great potential for the treatment of diabetes. Receptor of advanced glycation end products (RAGE) is a receptor for advanced glycation end products that involved in the development of diabetes‐triggered complications. Previous study has demonstrated that FGF1 significantly ameliorates diabetes‐mediated liver damage (DMLD). However, whether RAGE is involved in this process is still unknown. In this study, we intraperitoneally injected db/db mice with 0.5 mg/kg FGF1. We confirmed that FGF1 treatment not only significantly ameliorates diabetes‐induced elevated apoptosis in the liver, but also attenuates diabetes‐induced inflammation, then contributes to ameliorate liver dysfunction. Moreover, we found that diabetes triggers the elevated RAGE in hepatocytes, and FGF1 treatment blocks it, suggesting that RAGE may be a key target during FGF1 treatment of diabetes‐induced liver injury. Thus, we further confirmed the role of RAGE in FGF1 treatment of AML12 cells under high glucose condition. We found that D‐ribose, a RAGE agonist, reverses the protective role of FGF1 in AML12 cells. These findings suggest that FGF1 ameliorates diabetes‐induced hepatocyte apoptosis and elevated inflammation via suppressing RAGE pathway. These results suggest that RAGE may be a potential therapeutic target for the treatment of DMLD.
Collapse
Affiliation(s)
- Peipei Zheng
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Zonghao Tang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
| | - Jun Xiong
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Beini Wang
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Lulu Chen
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shufang Cai
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengbiao Wu
- Clinical Research Center, Affiliated Xiangshan Hospital, Wenzhou Medical University, Wenzhou, China
| | - Libing Ye
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Zimiao Chen
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jian Xiao
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
88
|
Patra S, Pradhan B, Nayak R, Behera C, Panda KC, Das S, Jena M, Bhutia SK. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytother Res 2021; 35:4194-4214. [DOI: 10.1002/ptr.7082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| | - Biswajita Pradhan
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Rabindra Nayak
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Chhandashree Behera
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Krishna Chandra Panda
- Department of Pharmaceutical Chemistry Roland Institute of Pharmaceutical Sciences Berhampur Odisha India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| | - Mrutyunjay Jena
- Post Graduate Department of Botany Berhampur University Berhampur Odisha India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
89
|
Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer. Biomolecules 2021; 11:biom11020135. [PMID: 33494431 PMCID: PMC7911475 DOI: 10.3390/biom11020135] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy, which is a conserved biological process and essential mechanism in maintaining homeostasis and metabolic balance, enables cells to degrade cytoplasmic constituents through lysosomes, recycle nutrients, and survive during starvation. Autophagy exerts an anticarcinogenic role in normal cells and inhibits the malignant transformation of cells. On the other hand, aberrations in autophagy are involved in gene derangements, cell metabolism, the process of tumor immune surveillance, invasion and metastasis, and tumor drug-resistance. Therefore, autophagy-targeted drugs may function as anti-tumor agents. Accumulating evidence suggests that flavonoids have anticarcinogenic properties, including those relating to cellular proliferation inhibition, the induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, the impairment of cell migration, invasion, tumor angiogenesis, and the reduction of multidrug resistance in tumor cells. Flavonoids, which are a group of natural polyphenolic compounds characterized by multiple targets that participate in multiple pathways, have been widely studied in different models for autophagy modulation. However, flavonoid-induced autophagy commonly interacts with other mechanisms, comprehensively influencing the anticancer effect. Accordingly, targeted autophagy may become the core mechanism of flavonoids in the treatment of tumors. This paper reviews the flavonoid-induced autophagy of tumor cells and their interaction with other mechanisms, so as to provide a comprehensive and in-depth account on how flavonoids exert tumor-suppressive effects through autophagy.
Collapse
|
90
|
Liu Y, Shi C, He Z, Zhu F, Wang M, He R, Zhao C, Shi X, Zhou M, Pan S, Gao Y, Li X, Qin R. Inhibition of PI3K/AKT signaling via ROS regulation is involved in Rhein-induced apoptosis and enhancement of oxaliplatin sensitivity in pancreatic cancer cells. Int J Biol Sci 2021; 17:589-602. [PMID: 33613115 PMCID: PMC7893580 DOI: 10.7150/ijbs.49514] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023] Open
Abstract
Several natural products have been demonstrated to both enhance the anti-tumor efficacy and alleviate the side effects of conventional chemotherapy drugs. Rhein, a main constituent of the Chinese herb rhubarb, has been shown to induce apoptosis in various cancer types. However, the exact pharmacological mechanisms controlling the influence of Rhein on chemotherapy drug effects in pancreatic cancer (PC) remain largely undefined. In this study, we found that Rhein inhibited the growth and proliferation of PC cells through G1 phase cell cycle arrest. Moreover, Rhein induced caspase-dependent mitochondrial apoptosis of PC cells through inactivation of the PI3K/AKT pathway. Combination treatment of Rhein and oxaliplatin synergistically enhanced apoptosis of PC cells through increased generation of intracellular reactive oxygen species (ROS) and inactivation of the PI3K/AKT pathway. Pre-treatment with the ROS scavenger N-acetyl-L-cysteine attenuated the combined treatment-induced apoptosis and restored the level of phosphorylated AKT, indicating that ROS is an upstream regulator of the PI3K/AKT pathway. The combination therapy also exhibited stronger anti-tumor effects compared with single drug treatments in vivo. Taken together, these data demonstrate that Rhein can induce apoptosis and enhance the oxaliplatin sensitivity of PC cells, suggesting that Rhein may be an effective strategy to overcome drug resistance in the chemotherapeutic treatment of PC.
Collapse
Affiliation(s)
- Yuhui Liu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengjian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng He
- Department of General Surgery, Shiyan People's Hospital of Bao'an Distict, Shenzhen, Guangdong, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunle Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuhui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
91
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
92
|
Zang X, Cheng M, Zhang X, Chen X. Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct 2021; 12:6664-6681. [PMID: 34152346 DOI: 10.1039/d1fo00851j] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phytochemicals as dietary constituents are being widely explored for the prevention and treatment of various diseases. Quercetin, a major constituent of various dietary products, has attracted extensive interest due to its anti-proliferative capability, reversal of multidrug resistance, autophagy promotion and tumor microenvironment modulation on different cancer types. Although quercetin has shown potent medical value, its application as an antitumor drug is limited. Problems like poor solubility, bioavailability and stability, short half-life and weak tumor-targeting biodistribution make quercetin an unreliable candidate for cancer therapy. Nanoparticle based platforms have shown a number of advantages in delivering a hydrophobic drug like quercetin to diseased tissues. Quercetin nanoparticles have demonstrated high encapsulation efficiency, stability, sustained release, prolonged circulation time, improved accumulation at tumor sites and therapeutic efficiency. Moreover, a combination of quercetin with other diagnostic or therapeutic agents in one nanocarrier has achieved enhancements in detecting or treating tumors. In this review, we have tried to summarize the pharmacological activities of quercetin with regard to tumor cells and microenvironments in vitro and in vivo. Furthermore, various nanoformulations have been highlighted for quercetin delivery for cancer treatment. These results suggest that quercetin nanoparticles may be a promising antitumor therapeutic agent.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| | | | | | | |
Collapse
|
93
|
Wang W, Ning J, He Y, Zhai L, Xiang F, Yao L, Ye L, Wu L, Ji T, Tang Z. Unveiling the mechanism of Astragalus membranaceus in the treatment of gastrointestinal cancers based on network pharmacology. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
94
|
Guo Y, Tong Y, Zhu H, Xiao Y, Guo H, Shang L, Zheng W, Ma S, Liu X, Bai Y. Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-β/Smad signaling pathways. Cell Biol Toxicol 2020; 37:479-496. [PMID: 33070227 DOI: 10.1007/s10565-020-09562-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive type of malignant tumor with a poor prognosis and high mortality. Aberrant activation of hedgehog signaling plays a crucial role in the maintenance and progression of PDA. Here, we report that the dietary bioflavonoid quercetin has therapeutic potential for PDA by targeting sonic hedgehog (SHH) signaling. The effects of quercetin on the proliferation, apoptosis, migration, and invasion of pancreatic cancer cells (PCCs) and tumor growth and metastasis in PDA xenograft mouse models were evaluated. Additionally, SHH signaling activity was determined. Quercetin significantly inhibited PCC proliferation by downregulating c-Myc expression. In addition, quercetin suppressed epithelial-mesenchymal transition (EMT) by reducing TGF-β1 level, which resulted in inhibition of PCC migration and invasion. Moreover, quercetin induced PCC apoptosis through mitochondrial and death receptor pathways. In nude mouse models, PDA growth and metastasis were reduced by quercetin treatment. Mechanically, quercetin exerts its therapeutic effects on PDA by decreasing SHH activity. Interestingly, quercetin-induced SHH inactivation is mainly dependent on Gli2, but not Gli1. Enhance SHH activity by recombinant Shh protein abolished the quercetin-mediated inhibition of PCC proliferation, migration, and invasion. Furthermore, Shh activated TGF-β1/Smad2/3 signaling and promoted EMT by inducing the expression of Zeb2 and Snail1 that eventually resulted in a partial reversal of quercetin-mediated inhibition of PCC migration and invasion. We conclude that quercetin inhibited the growth, migration, and invasion and induced apoptosis of PCCs by antagonizing SHH and TGF-β/Smad signaling pathways. Thus, quercetin may be a potential candidate for PDA treatment.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Tong
- Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lumeng Shang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Wenjing Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Department of Laboratory Medicine, People's Hospital of Wenzhou City, Wenzhou, 325000, China
| | - Shumei Ma
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China.,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaodong Liu
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China. .,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Center for Health Assessment, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
95
|
Waghela BN, Vaidya FU, Ranjan K, Chhipa AS, Tiwari BS, Pathak C. AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol Cell Biochem 2020; 476:585-598. [PMID: 33025314 DOI: 10.1007/s11010-020-03928-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs) are formed as a result of non-enzymatic reaction between the free reducing sugars and proteins, lipids, or nucleic acids. AGEs are predominantly synthesized during chronic hyperglycemic conditions or aging. AGEs interact with their receptor RAGE and activate various sets of genes and proteins of the signal transduction pathway. Accumulation of AGEs and upregulated expression of RAGE is associated with various pathological conditions including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer. The role of AGE-RAGE signaling has been demonstrated in the progression of various types of cancer and other pathological disorders. The expression of RAGE increases manifold during cancer progression. The activation of AGE-RAGE signaling also perturbs the cellular redox balance and modulates various cell death pathways. The programmed cell death signaling often altered during the progression of malignancies. The cellular reprogramming of AGE-RAGE signaling with cell death machinery during tumorigenesis is interesting to understand the complex signaling mechanism of cancer cells. The present review focus on multiple molecular paradigms relevant to cell death particularly Apoptosis, Autophagy, and Necroptosis that are considerably influenced by the AGE-RAGE signaling in the cancer cells. Furthermore, the review also attempts to shed light on the provenience of AGE-RAGE signaling on oxidative stress and consequences of cell survival mechanism of cancer cells.
Collapse
Affiliation(s)
- Bhargav N Waghela
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Foram U Vaidya
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Kishu Ranjan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06519, USA
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Budhi Sagar Tiwari
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
96
|
Mehdizadehkashi A, Sadoughi F, Samimi M. Quercetin and cervical cancer: a view of great scope. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
97
|
Gao Y, Xu H, Pu T. MicroRNA-1179 suppresses the proliferation and enhances vincristine sensitivity of oral cancer cells via induction of apoptosis and modulation of MEK/ERK and PI3K/AKT signalling pathways. AMB Express 2020; 10:149. [PMID: 32809144 PMCID: PMC7434990 DOI: 10.1186/s13568-020-01082-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
The role of miR-1179 in the development of cancer has been proved by different studies. However, the expression profile and role of miR-1179 is yet to be explored in human oral cancer. Consistently, this study was undertaken to explore the molecular role of miR-1179 in regulation of the human oral cancer development and progression. The results showed miR-1179 to be significantly (p < 0.05) overexpressed in all the oral cancer cell lines relative to normal cells. The repression of miR-1179 transcript levels not only suppressed the proliferation of oral cancer cells but also increased their sensitivity to vincristine. The decline in proliferative rates was attributed to induction of autophagy in oral cancer cells as confirmed by transmission electron microscopic analysis. Western blot analysis showed that the expression of LC3B-II increased and that of beclin 1 decreased while LC3B-I expression remained constant upon miR-1179 inhibition. Inhibition of miR-1179 caused significant decrease in the migration and invasion of the oral cancer cells. The migration and invasion found to be 47% and 32% for SCC-9 and 24% and 28% for SCC-25 cells upon miR-1179 inhibition. At molecular level, the miR-1179 was shown to exert its anticancer effects via deactivation of MEK/ERK and PI3K/AKT signalling cascades. In conclusion, the findings point towards the potential of miR-1179 in the treatment of oral cancer.
Collapse
|
98
|
Lin JH, Chen SY, Lu CC, Lin JA, Yen GC. Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine-resistant human pancreatic cancer cells. Phytother Res 2020; 34:2053-2066. [PMID: 32185829 DOI: 10.1002/ptr.6669] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Gemcitabine (GEM) resistance in pancreatic adenocarcinoma mediated by the receptor for advanced glycation end products (RAGE) has been demonstrated. Therefore, investigating the safety and the potential of new auxiliary methods for pancreatic cancer treatment is urgent. Ursolic acid (UA), a natural pentacyclic triterpenoid found in apple peels, rosemary, and thyme, has been reported to have anticancer capacity. This study aimed to reveal the underlying mechanisms of UA in cell death and drug enhancement, especially in GEM-resistant pancreatic cancer cells. First, GEM-resistant cells (MIA Paca-2GEMR cells) were established by incrementally increasing GEM culture concentrations. UA treatment reduced cell viability through cell cycle arrest and endoplasmic reticulum (ER) stress, resulting in apoptosis and autophagy in a dose-dependent manner in MIA Paca-2 and MIA Paca-2GEMR cells. High RAGE expression in MIA Paca-2GEMR cells was suppressed by UA treatment. Interestingly, knocking down RAGE expression showed similar UA-induced effects in both cell lines. Remarkably, UA had a drug-enhancing effect by decreasing cell viability and increasing cell cytotoxicity when combined with GEM treatment. In conclusions, UA triggered ER stress, subsequently regulating apoptosis- and autophagy-related pathways and increasing GEM chemosensitivity in pancreatic cancer cells by inhibiting the expression of RAGE.
Collapse
Affiliation(s)
- Ji-Hua Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
99
|
Thyagarajan A, Forino AS, Konger RL, Sahu RP. Dietary Polyphenols in Cancer Chemoprevention: Implications in Pancreatic Cancer. Antioxidants (Basel) 2020; 9:651. [PMID: 32717779 PMCID: PMC7464582 DOI: 10.3390/antiox9080651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Naturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently attributed to their anti-inflammatory and antioxidant properties, particularly in regards to their antineoplastic activities. As many tumor types exhibit greater oxidative stress levels that are implicated in favoring autonomous cell growth activation, most chemotherapeutic agents can also enhance tumoral oxidative stress levels in part via generating reactive oxygen species (ROS). While ROS-mediated imbalance of the cellular redox potential can provide novel drug targets, as a consequence, this ROS-mediated excessive damage to cellular functions, including oncogenic mutagenesis, has also been implicated in inducing chemoresistance. This remains one of the major challenges in the treatment and management of human malignancies. Antioxidant-enriched natural compounds offer one of the promising approaches in mitigating some of the underlying mechanisms involved in tumorigenesis and metastasis, and therefore, have been extensively explored in cancer chemoprevention. Among various groups of dietary phytochemicals, polyphenols have been extensively explored for their underlying chemopreventive mechanisms in other cancer models. Thus, the current review highlights the significance and mechanisms of some of the highly studied polyphenolic compounds, with greater emphasis on pancreatic cancer chemoprevention.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA
| | - Andrew S. Forino
- Department of Anatomy and Physiology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA;
| | - Raymond L. Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
100
|
Patra S, Mishra SR, Behera BP, Mahapatra KK, Panigrahi DP, Bhol CS, Praharaj PP, Sethi G, Patra SK, Bhutia SK. Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Semin Cancer Biol 2020; 80:205-217. [PMID: 32450139 DOI: 10.1016/j.semcancer.2020.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is an intracellular catabolic self-cannibalism that eliminates dysfunctional cytoplasmic cargos by the fusion of cargo-containing autophagosomes with lysosomes to maintain cyto-homeostasis. Autophagy sustains a dynamic interlink between cytoprotective and cytostatic function during malignant transformation in a context-dependent manner. The antioxidant and immunomodulatory phyto-products govern autophagy and autophagy-associated signaling pathways to combat cellular incompetence during malignant transformation. Moreover, in a close cellular signaling circuit, autophagy regulates aberrant epigenetic modulation and inflammation, which limits tumor metastasis. Thus, manipulating autophagy for induction of cell death and associated regulatory phenomena will embark on a new strategy for tumor suppression with wide therapeutic implications. Despite the prodigious availability of lead pharmacophores in nature, the central autophagy regulating entities, their explicit target, as well as pre-clinical and clinical assessment remains a major question to be answered. In addition to this, the stage-specific regulation of autophagy and mode of action with natural products in regulating the key autophagic molecules, control of tumor-specific pathways in relation to modulation of autophagic network specify therapeutic target in caner. Moreover, the molecular pathway specificity and enhanced efficacy of the pre-existing chemotherapeutic agents in co-treatment with these phytochemicals hold high prevalence for target specific cancer therapeutics. Hence, the multi-specific role of phytochemicals in a cellular and tumor context dependent manner raises immense curiosity for investigating of novel therapeutic avenues. In this perspective, this review discusses about diverse implicit mechanisms deployed by the bioactive compounds in diagnosis and therapeutics approach during cancer progression with special insight into autophagic regulation.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Soumya R Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Bishnu P Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal K Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Debasna P Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Chandra S Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|