51
|
Gao Y, Yeh HY, Bowker B, Zhuang H. Effects of different antioxidants on quality of meat patties treated with in-package cold plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
53
|
Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114809] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, cold atmospheric pressure plasma (CAPP) technology has received substantial attention due to its valuable properties including operational simplicity, low running cost, and environmental friendliness. Several different gases (air, nitrogen, helium, argon) and techniques (corona discharge, dielectric barrier discharge, plasma jet) can be used to generate plasma at atmospheric pressure and low temperature. Plasma treatment is routinely used in materials science to modify the surface properties (e.g., wettability, chemical composition, adhesion) of a wide range of materials (e.g., polymers, textiles, metals, glasses). Moreover, CAPP seems to be a powerful tool for the inactivation of various pathogens (e.g., bacteria, fungi, viruses) in the food industry (e.g., food and packing material decontamination, shelf life extension), agriculture (e.g., disinfection of seeds, fertilizer, water, soil) and medicine (e.g., sterilization of medical equipment, implants). Plasma medicine also holds great promise for direct therapeutic treatments in dentistry (tooth bleaching), dermatology (atopic eczema, wound healing) and oncology (melanoma, glioblastoma). Overall, CAPP technology is an innovative, powerful and effective tool offering a broad application potential. However, its limitations and negative impacts need to be determined in order to receive regulatory approval and consumer acceptance.
Collapse
|
54
|
Nasiru MM, Frimpong EB, Muhammad U, Qian J, Mustapha AT, Yan W, Zhuang H, Zhang J. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Compr Rev Food Sci Food Saf 2021; 20:2626-2659. [PMID: 33876887 DOI: 10.1111/1541-4337.12740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
Decontamination of meat is commonly practiced to get rid of or decrease the microbial presence on the meat surface. Dielectric barrier discharge cold atmospheric plasma (DBD-CAP) as innovative technology is a food microbial inactivation technique considered in high regard by food scientists and engineers in present times. However, cold atmospheric plasma application is at the experimental stage, due to lack of sufficient information on its mode of action in inactivating microbes, food shelf-life extensibility, whereas, the nutritional value of food is preserved. In this review, we have appraised recent work on DBD-CAP concerning the decontamination treatment of meat products, highlighting the processing value results on the efficacy of the DBD-CAP microbial inactivation technique. Also, the paper will review the configurations, proposed mechanisms, and chemistry of DBD-CAP. Satisfactory microbial inactivation was observed. In terms of DBD-CAP application on sensory evaluation, inferences from reviewed literature showed that DBD has no significant effect on meat color and tenderness, whereas in contrast, TBARS values of fresh and processed meat are affected. DBD seems economically efficient and environmentally sustainable.
Collapse
Affiliation(s)
- Mustapha Muhammad Nasiru
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Federal University Dutsin-Ma, Kankara-Katsina Road, Dutsin-Ma, Katsina, 821101, Nigeria
| | - Evans Boateng Frimpong
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Umair Muhammad
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jing Qian
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | | | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China.,College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, Jiangsu, 210095, PR China
| |
Collapse
|
55
|
|
56
|
Nilsen‐Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 2021; 20:1333-1380. [DOI: 10.1111/1541-4337.12715] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Julie Nilsen‐Nygaard
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | | | - Tanja Radusin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Bjørn Tore Rotabakk
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Jawad Sarfraz
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Nusrat Sharmin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Morten Sivertsvik
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Izumi Sone
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Marit Kvalvåg Pettersen
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| |
Collapse
|
57
|
Non-Thermal Plasma-A New Green Priming Agent for Plants? Int J Mol Sci 2020; 21:ijms21249466. [PMID: 33322775 PMCID: PMC7763604 DOI: 10.3390/ijms21249466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Since the earliest agricultural attempts, humankind has been trying to improve crop quality and yields, as well as protect them from adverse conditions. Strategies to meet these goals include breeding, the use of fertilisers, and the genetic manipulation of crops, but also an interesting phenomenon called priming or adaptive response. Priming is based on an application of mild stress to prime a plant for another, mostly stronger stress. There are many priming techniques, such as osmopriming, halopriming, or using physical agents. Non-thermal plasma (NTP) represents a physical agent that contains a mixture of charged, neutral, and radical (mostly reactive oxygen and nitrogen species) particles, and can cause oxidative stress or even the death of cells or organisms upon interaction. However, under certain conditions, NTP can have the opposite effect, which has been previously documented for many plant species. Seed surface sterilization and growth enhancement are the most-reported positive effects of NTP on plants. Moreover, some studies suggest the role of NTP as a promising priming agent. This review deals with the effects of NTP treatment on plants from interaction with seed and cell surface, influence on cellular molecular processes, up to the adaptive response caused by NTP.
Collapse
|
58
|
Stoleru V, Burlica R, Mihalache G, Dirlau D, Padureanu S, Teliban GC, Astanei D, Cojocaru A, Beniuga O, Patras A. Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate. Sci Rep 2020; 10:20920. [PMID: 33262393 PMCID: PMC7708473 DOI: 10.1038/s41598-020-77355-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Plasma activated water (PAW) can represent an alternative to chemical fertilizers in agriculture. The effects of PAW treatment applied in two concentrations (1.5 or 3.0 mg L-1 NO3-) on some morphological, physiological, biochemical parameters and yield of Lactuca sativa L. grown in two different pot volumes (400 or 3200 cm3) were investigated in this study. The results showed that both PAW concentrations did not influence the germination, once the process was initiated. Positive effects of the treatments were registered on the length of radicle and hypocotyls of lettuce at a concentration of 1.5 mg L-1 NO3- (PAW I), the chlorophyll content was significantly increased at a concentration of 3.0 mg L-1 NO3- (PAW II) and bigger pot volume, also the foliar weight and area. No significant differences between the treated and untreated plants were recorded for the root weight, leaf length and width. The dry weight was significantly higher for the lettuce treated with PAW I and II grown in big volume pots at 57 days after transplanting (DAT) and small volume pots at 64 DAT. The nitrites content of the lettuce grown in big pots was lower than of the lettuce grown in small pots, regardless of the PAW treatment. Contrary, the nitrates content was higher in the lettuce grown in big pots (up to 36.4 mg KNO3/g DW), compared to small pots (under 0.3 mg KNO3/g DW).
Collapse
Affiliation(s)
- Vasile Stoleru
- "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, 3 M. Sadoveanu Alley, 700490, Iaşi, Romania
| | - Radu Burlica
- "Gheorghe Asachi" Technical University of Iaşi, 67 Bd. D. Mangeron, 700050, Iaşi, Romania
| | - Gabriela Mihalache
- "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, 3 M. Sadoveanu Alley, 700490, Iaşi, Romania
- Integrated Center of Environmental Science Studies in the North East Region (CERNESIM), "Alexandru Ioan Cuza" University of Iasi, 11 Carol I, 700506, Iaşi, Romania
| | - Delicia Dirlau
- "Gheorghe Asachi" Technical University of Iaşi, 67 Bd. D. Mangeron, 700050, Iaşi, Romania
| | - Silvica Padureanu
- "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, 3 M. Sadoveanu Alley, 700490, Iaşi, Romania
| | - Gabriel-Ciprian Teliban
- "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, 3 M. Sadoveanu Alley, 700490, Iaşi, Romania
| | - Dragos Astanei
- "Gheorghe Asachi" Technical University of Iaşi, 67 Bd. D. Mangeron, 700050, Iaşi, Romania
| | - Alexandru Cojocaru
- "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, 3 M. Sadoveanu Alley, 700490, Iaşi, Romania
| | - Oana Beniuga
- "Gheorghe Asachi" Technical University of Iaşi, 67 Bd. D. Mangeron, 700050, Iaşi, Romania
| | - Antoanela Patras
- "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, 3 M. Sadoveanu Alley, 700490, Iaşi, Romania.
| |
Collapse
|
59
|
Optimization of in-package cold plasma treatment conditions for raw chicken breast meat with response surface methodology. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
60
|
Leal Vieira Cubas A, Medeiros Machado M, Tayane Bianchet R, Alexandra da Costa Hermann K, Alexsander Bork J, Angelo Debacher N, Flores Lins E, Maraschin M, Sousa Coelho D, Helena Siegel Moecke E. Oil extraction from spent coffee grounds assisted by non-thermal plasma. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
61
|
Fan X, Wang W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit Rev Food Sci Nutr 2020; 62:362-382. [DOI: 10.1080/10408398.2020.1816892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Wenli Wang
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
62
|
Yepez XV, Baykara H, Xu L, Keener KM. Cold Plasma Treatment of Soybean Oil with Hydrogen Gas. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ximena V. Yepez
- Facultad de Ingeniería Mecánica y Ciencias de la Producción Escuela Superior Politécnica del Litoral, ESPOL Km 30.5 Vía Perimetral Guayaquil P.O. Box 09‐01‐5863 Ecuador
- Department of Food Science Purdue University West Lafayette IN 47907 USA
| | - Haci Baykara
- Facultad de Ingeniería Mecánica y Ciencias de la Producción Escuela Superior Politécnica del Litoral, ESPOL Km 30.5 Vía Perimetral Guayaquil P.O. Box 09‐01‐5863 Ecuador
| | - Lei Xu
- Department of Food Science Purdue University West Lafayette IN 47907 USA
| | - Kevin M. Keener
- School of Engineering University of Guelph Guelph ON N1G 2W1 Canada
| |
Collapse
|
63
|
Marangoni Júnior L, Cristianini M, Anjos CAR. Packaging aspects for processing and quality of foods treated by pulsed light. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | - Marcelo Cristianini
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | | |
Collapse
|
64
|
Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article evaluates the effects of in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment on microbial inactivation, nitrate and nitrite contents, oral toxicity, and storage quality of protein-coated boiled chicken breast cubes (CBCs). ADCP treatment at 24 kV for 3 min inactivated natural mesophilic aerobic bacteria, Salmonella, and Tulane virus in CBCs by 0.7 ± 0.2, 1.4 ± 0.1 log CFU/cube, and 1.1 ± 0.2 log PFU/cube, respectively. ADCP treatment did not affect the nitrite content of CBCs (p > 0.05). Furthermore, the hematological and blood biochemical parameters from toxicity tests indicated the toxicological safety of ADCP-treated CBCs. Microbial counts of natural bacteria and Salmonella in ADCP-treated CBCs were lower than the ADCP-untreated CBCs by 0.7–0.9 and 1.4–1.7 log CFU/cube, respectively, throughout post-treatment storage at 4 °C for 21 d. ADCP treatment did not alter the pH, color, total volatile basic nitrogen, lipid oxidation, and tenderness of CBCs during storage at 4 and 24 °C, and did not change the sensory properties of CBCs following a 3 d storage period at 4 °C (p > 0.05). Thus, ADCP treatment has the potential to be applied as a method to increase the microbiological safety of packaged ready-to-eat chicken products, leading to overall toxicological safety.
Collapse
|
65
|
Daba GM, Elkhateeb WA. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Penetration and Microbial Inactivation by High Voltage Atmospheric Cold Plasma in Semi-Solid Material. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02506-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Feizollahi E, Misra NN, Roopesh MS. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 2020; 61:666-689. [PMID: 32208859 DOI: 10.1080/10408398.2020.1743967] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atmospheric cold plasma (ACP) is an emerging technology in the food industry with a huge antimicrobial potential to improve safety and extend the shelf life of food products. Dielectric barrier discharge (DBD) is a popular approach for generating ACP. Thanks to the numerous advantages of DBD ACP, it is proving to be successful in a number of applications, including microbial decontamination of foods. The antimicrobial efficacy of DBD ACP is influenced by multiple factors. This review presents an overview of ACP sources, with an emphasis on DBD, and an analysis of their antimicrobial efficacy in foods in open atmosphere and in-package modes. Specifically, the influence of process, product, and microbiological factors influencing the antimicrobial efficacy of DBD ACP are critically reviewed. DBD ACP is a promising technology that can improve food safety with minimal impact on food quality under optimal conditions. Once the issues pertinent to scale-up of plasma sources are appropriately addressed, the DBD ACP technology will find wider adaptation in food industry.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, NS, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
68
|
Yadav B, Spinelli AC, Misra NN, Tsui YY, McMullen LM, Roopesh MS. Effect of in-package atmospheric cold plasma discharge on microbial safety and quality of ready-to-eat ham in modified atmospheric packaging during storage. J Food Sci 2020; 85:1203-1212. [PMID: 32118300 DOI: 10.1111/1750-3841.15072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes is often responsible for postprocessing contamination of ready-to-eat (RTE) products including cooked ham. As an emerging technology, atmospheric cold plasma (ACP) has the potential to inactivate L. monocytogenes in packaged RTE meats. The objectives of this study were to evaluate the effect of treatment time, modified atmosphere gas compositions (MAP), ham formulation, and post-treatment storage (1 and 7 days at 4 °C) on the reduction of a five-strain cocktail of L. monocytogenes and quality changes in ham subjected to in-package ACP treatment. Initial average cells population on ham surfaces were 8 log CFU/cm2 . The ACP treatment time and gas composition significantly (P < 0.05) influenced the inactivation of L. monocytogenes, irrespective of ham formulations. When MAP1 (20% O2 + 40% CO2 + 40% N2 ) was used, there was a significantly higher log reduction (>2 log reduction) in L. monocytogenes on ham in comparison to MAP2 (50% CO2 + 50% N2 ) and MAP3 (100% CO2 ), irrespective of ham formulation. Addition of preservatives (that is, 0.1% sodium diacetate and 1.4% sodium lactate) or bacteriocins (that is, 0.05% of a partially purified culture ferment from Carnobacterium maltaromaticum UAL 307) did not significantly reduce cell counts of L. monocytogenes after ACP treatment. Regardless of type of ham, storage of 24 hr after ACP treatment significantly reduced cells counts of L. monocytogenes to approximately 4 log CFU/cm2 . Following 7 days of storage after ACP treatment, L. monocytogenes counts were below the detection limit (>6 log reduction) when samples were stored in MAP1. However, there were significant changes in lipid oxidation and color after post-treatment storage. In conclusion, the antimicrobial efficacy of ACP is strongly influenced by gas composition inside the package and post-treatment storage. PRACTICAL APPLICATION: Surface contamination of RTE ham with L. monocytogenes may occur during processing steps such as slicing and packaging. In-package ACP is an emerging nonthermal technology, which can be used as a postpackaging decontamination step in industrial settings. This study demonstrated the influence of in-package gas composition, treatment time, post-treatment storage, and ham formulation on L. monocytogenes inactivation efficacy of ACP. Results of present study will be helpful to optimize in-package ACP treatment and storage conditions to reduce L. monocytogenes, while maintaining the quality of ham.
Collapse
Affiliation(s)
- Barun Yadav
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| | - Ana Claudia Spinelli
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada.,Dept. of Food Science, Univ. of Campinas UNICAMP, Campinas, São Paulo, Brazil
| | - N N Misra
- Dept. of Electrical Engineering, Dalhousie Univ., Halifax, Nova Scotia, Canada.,Ingenium Naturae Pvt. Ltd., Mumbai, India
| | - Ying Y Tsui
- Dept. of Electrical & Computer Engineering, Univ. of Alberta, Edmonton, Alberta, Canada
| | - Lynn M McMullen
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| | - M S Roopesh
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
69
|
Liu C, Chen C, Jiang A, Sun X, Guan Q, Hu W. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102256] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
70
|
Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
71
|
Atmospheric cold plasma inactivation of Escherichia coli and Listeria monocytogenes in tender coconut water: Inoculation and accelerated shelf-life studies. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
72
|
Moutiq R, Misra NN, Mendonça A, Keener K. In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Sci 2019; 159:107942. [PMID: 31522105 DOI: 10.1016/j.meatsci.2019.107942] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/14/2023]
Abstract
Atmospheric cold plasma (ACP) is a promising non-thermal technology for controlling food spoilage. In this study, ACP treatment at 100 kV for 1, 3 and 5 min was applied to chicken breast samples. Approximately 2 log CFU/g reduction in natural microflora of chicken was achieved within 5 min of treatment and 24 h of storage. The observed reduction was attributed to the reactive oxygen and nitrogen species in cold plasma. For shelf-life study, control and ACP treated samples (100 kV for 5 min) were analysed for the population of mesophiles, psychrotrophs and Enterobacteriaceae as well as sample colour and pH over a storage period of 24 days. On day 24, the population of mesophiles, psychrotrophs and Enterobacteriaceae in treated chicken was respectively 1.5, 1.4 and 0.5 log lower than the control. These results suggest that in-package ACP is an effective technology to extend the shelf-life of poultry products.
Collapse
Affiliation(s)
- Rkia Moutiq
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - N N Misra
- Center for Crops Utilization Research, Iowa State University, Ames, IA, USA; Department of Engineering, Faculty of Agriculture, Dalhousie University, NS, Canada.
| | - Aubrey Mendonça
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA; Center for Crops Utilization Research, Iowa State University, Ames, IA, USA
| | - Kevin Keener
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA; Center for Crops Utilization Research, Iowa State University, Ames, IA, USA
| |
Collapse
|
73
|
Pan Y, Cheng JH, Sun DW. Cold Plasma-Mediated Treatments for Shelf Life Extension of Fresh Produce: A Review of Recent Research Developments. Compr Rev Food Sci Food Saf 2019; 18:1312-1326. [PMID: 33336905 DOI: 10.1111/1541-4337.12474] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
Abstract
Fresh produce, like fruits and vegetables, are important sources of nutrients and health-promoting compounds. However, incidences of foodborne outbreaks associated with fresh produce often occur; it is thus important to develop and expand decay-control technologies that can not only maintain the quality but can also control the biological hazards in postharvest, processing, and storage to extend their shelf life. It is under such a situation that plasma-mediated treatments have been developed as a novel nonthermal processing tool, offering many advantages and attracting much interest from researchers and the food industry. This review summarizes recent developments of cold plasma technology and associated activated water for shelf life extension of fresh produce. An overview of plasma generation and its physical-chemical properties as well as methods for improving plasma efficiency are first presented. Details of using the technology as a nonthermal agent in inhibiting spoilage and pathogenic microorganisms, inactivating enzymes, and modifying the barrier properties or imparting specific functionalities of packaging materials to extend shelf life of food produce are then reviewed, and the effects of cold plasma-mediated treatment on microstructure and quality attributes of fresh produce are discussed. Future prospects and research gaps of cold plasma are finally elucidated. The review shows that atmospheric plasma-mediated treatments in various gas mixtures can significantly inhibit microorganisms, inactive enzyme, and modify packaging materials, leading to shelf life extension of fresh produce. The quality attributes of treated produce are not compromised but improved. Therefore, plasma-mediated treatment has great potential and values for its application in the food industry.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510006, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|