51
|
Yang S, Gao Z, Li T, Yang M, Zhang T, Dong Y, He ZG. Structural basis for interaction between Mycobacterium smegmatis Ms6564, a TetR family master regulator, and its target DNA. J Biol Chem 2013; 288:23687-95. [PMID: 23803605 DOI: 10.1074/jbc.m113.468694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Master regulators, which broadly affect expression of diverse genes, play critical roles in bacterial growth and environmental adaptation. However, the underlying mechanism by which such regulators interact with their cognate DNA remains to be elucidated. In this study, we solved the crystal structure of a broad regulator Ms6564 in Mycobacterium smegmatis and its protein-operator complex at resolutions of 1.9 and 2.5 Å, respectively. Similar to other typical TetR family regulators, two dimeric Ms6564 molecules were found to bind to opposite sides of target DNA. However, the recognition helix of Ms6564 inserted only slightly into the DNA major groove. Unexpectedly, 11 disordered water molecules bridged the interface of TetR family regulator DNA. Although the DNA was deformed upon Ms6564 binding, it still retained the conformation of B-form DNA. Within the DNA-binding domain of Ms6564, only two amino acids residues directly interacted with the bases of cognate DNA. Lys-47 was found to be essential for the specific DNA binding ability of Ms6564. These data indicate that Ms6564 can bind DNA with strong affinity but makes flexible contacts with DNA. Our study suggests that Ms6564 might slide more easily along the genomic DNA and extensively regulate the expression of diverse genes in M. smegmatis.
Collapse
Affiliation(s)
- Shifan Yang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Deng W, Li C, Xie J. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell Signal 2013; 25:1608-13. [PMID: 23602932 DOI: 10.1016/j.cellsig.2013.04.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 11/27/2022]
Abstract
Bacteria transcriptional regulators are classified by their functional and sequence similarities. Member of the TetR/AcrR family is two-domain proteins including an N-terminal HTH DNA-binding motif and a C-terminal ligand recognition domain. The C-terminal ligand recognition domain can recognize the very same compounds as their target transporters transferred. TetRs act as chemical sensors to monitor both the cellular environmental dynamics and their regulated genes underlying many events, such as antibiotics production, osmotic stress, efflux pumps, multidrug resistance, metabolic modulation, and pathogenesis. Compounds targeting Mycobacterium tuberculosis ethR represent promising novel antibiotic potentiater. TetR-mediated multidrug efflux pumps regulation might be good target candidate for the discovery of better new antibiotics against drug resistance.
Collapse
Affiliation(s)
- Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | | | | |
Collapse
|
53
|
Watanabe R, Doukyu N. Contributions of mutations in acrR and marR genes to organic solvent tolerance in Escherichia coli. AMB Express 2012; 2:58. [PMID: 23148659 PMCID: PMC3514110 DOI: 10.1186/2191-0855-2-58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 12/02/2022] Open
Abstract
The AcrAB-TolC efflux pump is involved in maintaining intrinsic organic solvent tolerance in Escherichia coli. Mutations in regulatory genes such as marR, soxR, and acrR are known to increase the expression level of the AcrAB-TolC pump. To identify these mutations in organic solvent tolerant E. coli, eight cyclohexane-tolerant E. coli JA300 mutants were isolated and examined by DNA sequencing for mutations in marR, soxR, and acrR. Every mutant carried a mutation in either marR or acrR. Among all mutants, strain CH7 carrying a nonsense mutation in marR (named marR109) and an insertion of IS5 in acrR, exhibited the highest organic solvent-tolerance levels. To clarify the involvement of these mutations in improving organic solvent tolerance, they were introduced into the E. coli JA300 chromosome by site-directed mutagenesis using λ red-mediated homologous recombination. Consequently, JA300 mutants carrying acrR::IS5, marR109, or both were constructed and named JA300 acrRIS, JA300 marR, or JA300 acrRIS marR, respectively. The organic solvent tolerance levels of these mutants were increased in the following order: JA300 < JA300 acrRIS < JA300 marR < JA300 acrRIS marR. JA300 acrRIS marR formed colonies on an agar plate overlaid with cyclohexane and p-xylene (6:4 vol/vol mixture). The organic solvent-tolerance level and AcrAB-TolC efflux pump-expression level in JA300 acrRIS marR were similar to those in CH7. Thus, it was shown that the synergistic effects of mutations in only two regulatory genes, acrR and marR, can significantly increase organic solvent tolerance in E. coli.
Collapse
|
54
|
Bolla JR, Do SV, Long F, Dai L, Su CC, Lei HT, Chen X, Gerkey JE, Murphy DC, Rajashankar KR, Zhang Q, Yu EW. Structural and functional analysis of the transcriptional regulator Rv3066 of Mycobacterium tuberculosis. Nucleic Acids Res 2012; 40:9340-55. [PMID: 22821564 PMCID: PMC3467072 DOI: 10.1093/nar/gks677] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/22/2022] Open
Abstract
The Mmr multidrug efflux pump recognizes and actively extrudes a broad range of antimicrobial agents, and promotes the intrinsic resistance to these antimicrobials in Mycobacterium tuberculosis. The expression of Mmr is controlled by the TetR-like transcriptional regulator Rv3066, whose open reading frame is located downstream of the mmr operon. To understand the structural basis of Rv3066 regulation, we have determined the crystal structures of Rv3066, both in the absence and presence of bound ethidium, revealing an asymmetric homodimeric two-domain molecule with an entirely helical architecture. The structures underscore the flexibility and plasticity of the regulator essential for multidrug recognition. Comparison of the apo-Rv3066 and Rv3066-ethidium crystal structures suggests that the conformational changes leading to drug-mediated derepression is primarily due to a rigid body rotational motion within the dimer interface of the regulator. The Rv3066 regulator creates a multidrug-binding pocket, which contains five aromatic residues. The bound ethidium is found buried within the multidrug-binding site, where extensive aromatic stacking interactions seemingly govern the binding. In vitro studies reveal that the dimeric Rv3066 regulator binds to a 14-bp palindromic inverted repeat sequence in the nanomolar range. These findings provide new insight into the mechanisms of ligand binding and Rv3066 regulation.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Sylvia V. Do
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Feng Long
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Lei Dai
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Chih-Chia Su
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Hsiang-Ting Lei
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xiao Chen
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jillian E. Gerkey
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Daniel C. Murphy
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kanagalaghatta R. Rajashankar
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Qijing Zhang
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Edward W. Yu
- Department of Chemistry, Bioinformatics and Computational Biology Interdepartmental Graduate Program, Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
55
|
Regulation of RamA by RamR in Salmonella enterica serovar Typhimurium: isolation of a RamR superrepressor. Antimicrob Agents Chemother 2012; 56:6037-40. [PMID: 22948865 DOI: 10.1128/aac.01320-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RamA is a transcription factor involved in regulating multidrug resistance in Salmonella enterica serovar Typhimurium SL1344. Green fluorescent protein (GFP) reporter fusions were exploited to investigate the regulation of RamA expression by RamR. We show that RamR represses the ramA promoter by binding to a palindromic sequence and describe a superrepressor RamR mutant that binds to the ramA promoter sequence more efficiently, thus exhibiting a ramA inactivated phenotype.
Collapse
|
56
|
Epoxide-mediated CifR repression of cif gene expression utilizes two binding sites in Pseudomonas aeruginosa. J Bacteriol 2012; 194:5315-24. [PMID: 22843844 DOI: 10.1128/jb.00984-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR and morB regulatory region and the start of transcription, respectively. In addition, we found that CifR binds to each repression site with differing affinity. Mutagenesis of these binding sites resulted in a loss of DNA binding in vitro, and mutation of one of these sites in vivo resulted in an increase in transcription of both the cif and cifR genes. We characterized cif and cifR gene expression in sputum and found that, whereas cif gene expression varied relative to an in vitro coculture control, cifR gene expression was consistently higher. Analysis of a longitudinal sample of CF isolates from nine patients revealed that Cif protein was expressed over time, although variably, and these changes could not be linked to mutations in the cifR gene or the promoters of these genes. Finally, we tested CifR responsiveness to other epoxides and showed that CifR can respond to multiple epoxides to various degrees.
Collapse
|
57
|
Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S. Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. J Biol Chem 2012; 287:30755-68. [PMID: 22798069 DOI: 10.1074/jbc.m112.370916] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although heme is a crucial element for many biological processes including respiration, heme homeostasis should be regulated strictly due to the cytotoxicity of free heme molecules. Numerous lactic acid bacteria, including Lactococcus lactis, acquire heme molecules exogenously to establish an aerobic respiratory chain. A heme efflux system plays an important role for heme homeostasis to avoid cytotoxicity of acquired free heme, but its regulatory mechanism is not clear. Here, we report that the transcriptional regulator heme-regulated transporter regulator (HrtR) senses and binds a heme molecule as its physiological effector to regulate the expression of the heme-efflux system responsible for heme homeostasis in L. lactis. To elucidate the molecular mechanisms of how HrtR senses a heme molecule and regulates gene expression for the heme efflux system, we determined the crystal structures of the apo-HrtR·DNA complex, apo-HrtR, and holo-HrtR at a resolution of 2.0, 3.1, and 1.9 Å, respectively. These structures revealed that HrtR is a member of the TetR family of transcriptional regulators. The residue pair Arg-46 and Tyr-50 plays a crucial role for specific DNA binding through hydrogen bonding and a CH-π interaction with the DNA bases. HrtR adopts a unique mechanism for its functional regulation upon heme sensing. Heme binding to HrtR causes a coil-to-helix transition of the α4 helix in the heme-sensing domain, which triggers a structural change of HrtR, causing it to dissociate from the target DNA for derepression of the genes encoding the heme efflux system. HrtR uses a unique heme-sensing motif with bis-His (His-72 and His-149) ligation to the heme, which is essential for the coil-to-helix transition of the α4 helix upon heme sensing.
Collapse
Affiliation(s)
- Hitomi Sawai
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
58
|
Luhe AL, Gerken H, Tan L, Wu J, Zhao H. Alcohol tolerance of Escherichia coli acrR and marR regulatory mutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Lei HT, Shen Z, Surana P, Routh MD, Su CC, Zhang Q, Yu EW. Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni. Protein Sci 2011; 20:712-23. [PMID: 21328631 DOI: 10.1002/pro.602] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The TetR family of transcription regulators are diverse proteins capable of sensing and responding to various structurally dissimilar antimicrobial agents. Upon detecting these agents, the regulators allow transcription of an appropriate array of resistance markers to counteract the deleterious compounds. Campylobacter jejuni CmeR is a pleiotropic regulator of multiple proteins, including the membrane-bound multidrug efflux transporter CmeABC. CmeR represses the expression of CmeABC and is induced by bile acids, which are substrates of the CmeABC tripartite pump. The multiligand-binding pocket of CmeR has been shown to be very extensive and consists of several positively charged and multiple aromatic amino acids. Here we describe the crystal structures of CmeR in complexes with the bile acids, taurocholate and cholate. Taurocholate and cholate are structurally related, differing by only the anionic charged group. However, these two ligands bind distinctly in the binding tunnel. Taurocholate spans the novel bile acid binding site adjacent to and without overlapping with the previously determined glycerol-binding site. The anionic aminoethanesulfonate group of taurocholate is neutralized by a charge-dipole interaction. Unlike taurocholate, cholate binds in an anti-parallel orientation but occupies the same bile acid-binding site. Its anionic pentanoate moiety makes a water-mediated hydrogen bond with a cationic residue to neutralize the formal negative charge. These structures underscore the promiscuity of the multifaceted binding pocket of CmeR. The capacity of CmeR to recognize bile acids was confirmed using isothermal titration calorimetry and fluorescence polarization. The results revealed that the regulator binds these acids with dissociation constants in the micromolar region.
Collapse
Affiliation(s)
- Hsiang-Ting Lei
- Department of Chemistry, Iowa State University, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Hernández A, Ruiz FM, Romero A, Martínez JL. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog 2011; 7:e1002103. [PMID: 21738470 PMCID: PMC3128119 DOI: 10.1371/journal.ppat.1002103] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/19/2011] [Indexed: 12/30/2022] Open
Abstract
The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan.
Collapse
Affiliation(s)
- Alvaro Hernández
- Centro Nacional del Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | | | - Antonio Romero
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - José L. Martínez
- Centro Nacional del Biotecnología, CSIC, Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
61
|
Crystal structure of a putative transcriptional regulator SCO0520 from Streptomyces coelicolor A3(2) reveals an unusual dimer among TetR family proteins. ACTA ACUST UNITED AC 2011; 12:149-57. [PMID: 21625866 DOI: 10.1007/s10969-011-9112-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/14/2011] [Indexed: 10/18/2022]
Abstract
A structure of the apo-form of the putative transcriptional regulator SCO0520 from Streptomyces coelicolor A3(2) was determined at 1.8 Å resolution. SCO0520 belongs to the TetR family of regulators. In the crystal lattice, the asymmetric unit contains two monomers that form an Ω-shaped dimer. The distance between the two DNA-recognition domains is much longer than the corresponding distances in the known structures of other TetR family proteins. In addition, the subunits in the dimer have different conformational states, resulting in different relative positions of the DNA-binding and regulatory domains. Similar conformational modifications are observed in other TetR regulators and result from ligand binding. These studies provide information about the flexibility of SCO0520 molecule and its putative biological function.
Collapse
|
62
|
Yudistira H, McClarty L, Bloodworth RAM, Hammond SA, Butcher H, Mark BL, Cardona ST. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium. Microb Pathog 2011; 51:186-93. [PMID: 21511027 DOI: 10.1016/j.micpath.2011.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 11/15/2022]
Abstract
Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.
Collapse
Affiliation(s)
- Harry Yudistira
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
63
|
Routh MD, Zalucki Y, Su CC, Zhang Q, Shafer WM, Yu EW. Efflux pumps of the resistance-nodulation-division family: a perspective of their structure, function, and regulation in gram-negative bacteria. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:109-46. [PMID: 21692368 DOI: 10.1002/9780470920541.ch3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Mathew D Routh
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | |
Collapse
|
64
|
Peters KM, Brooks BE, Schumacher MA, Skurray RA, Brennan RG, Brown MH. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity. PLoS One 2011; 6:e15974. [PMID: 21264225 PMCID: PMC3022030 DOI: 10.1371/journal.pone.0015974] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q) and QacR(E120Q) with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q)-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.
Collapse
Affiliation(s)
- Kate M. Peters
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia,
| | - Benjamin E. Brooks
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Centre Houston, Texas, United States of America
| | - Maria A. Schumacher
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Centre Houston, Texas, United States of America
| | - Ronald A. Skurray
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia,
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Centre Houston, Texas, United States of America
- * E-mail: (MHB); (RGB)
| | - Melissa H. Brown
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia,
- School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
- * E-mail: (MHB); (RGB)
| |
Collapse
|
65
|
Fluoroquinolone and multidrug resistance phenotypes associated with the overexpression of AcrAB and an orthologue of MarA in Yersinia enterocolitica. Int J Med Microbiol 2010; 300:457-63. [DOI: 10.1016/j.ijmm.2010.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/14/2010] [Accepted: 02/20/2010] [Indexed: 11/21/2022] Open
|
66
|
Wade H. MD recognition by MDR gene regulators. Curr Opin Struct Biol 2010; 20:489-96. [DOI: 10.1016/j.sbi.2010.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 06/02/2010] [Indexed: 11/28/2022]
|
67
|
Miller DJ, Zhang YM, Subramanian C, Rock CO, White SW. Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nat Struct Mol Biol 2010; 17:971-5. [PMID: 20639888 PMCID: PMC2935088 DOI: 10.1038/nsmb.1847] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 05/07/2010] [Indexed: 11/21/2022]
Abstract
DesT is a transcriptional repressor that regulates the genes that control the unsaturated:saturated fatty acid ratio available for membrane lipid synthesis. DesT bound to unsaturated acyl-CoA has a high affinity for its cognate palindromic DNA-binding site, whereas DesT bound to saturated acyl-CoA does not bind this site. Structural analyses of the DesT-oleoyl-CoA-DNA and DesT-palmitoyl-CoA complexes reveal that acyl chain shape directly influences the packing of hydrophobic core residues within the DesT ligand-binding domain. These changes are propagated to the paired DNA-binding domains via conformational changes to modulate DNA binding. These structural interpretations are supported by the in vitro and in vivo characterization of site-directed mutants. The regulation of DesT by the unsaturated:saturated ratio of acyl chains rather than the concentration of a single ligand is a paradigm for understanding transcriptional regulation of membrane lipid homeostasis.
Collapse
Affiliation(s)
- Darcie J. Miller
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Yong-Mei Zhang
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Charles O. Rock
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Stephen W. White
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| |
Collapse
|
68
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
69
|
Routh MD, Su CC, Zhang Q, Yu EW. Structures of AcrR and CmeR: insight into the mechanisms of transcriptional repression and multi-drug recognition in the TetR family of regulators. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:844-51. [PMID: 19130905 PMCID: PMC2729549 DOI: 10.1016/j.bbapap.2008.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/26/2008] [Accepted: 12/01/2008] [Indexed: 11/27/2022]
Abstract
The transcriptional regulators of the TetR family act as chemical sensors to monitor the cellular environment in many bacterial species. To perform this function, members of the TetR family harbor a diverse ligand-binding domain capable of recognizing the same series of compounds as the transporters they regulate. Many of the regulators can be induced by a wide array of structurally unrelated compounds. Binding of these structurally unrelated ligands to the regulator results in a conformational change that is transmitted to the DNA-binding region, causing the repressor to lose its DNA-binding capacity and allowing for the initiation of transcription. The multi-drug binding proteins AcrR of Escherichia coli and CmeR from Campylobacter jejuni are members of the TetR family of transcriptional repressors that regulate the expression of the multidrug resistant efflux pumps AcrAB and CmeABC, respectively. To gain insights into the mechanisms of transcriptional regulation and how multiple ligands induce the same physiological response, we determined the crystal structures of the AcrR and CmeR regulatory proteins. In this review, we will summarize the new findings with AcrR and CmeR, and discuss the novel features of these two proteins in comparison with other regulators in the TetR family.
Collapse
Affiliation(s)
- Mathew D. Routh
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, IA 50011, USA
| | - Chih-Chia Su
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Edward W. Yu
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, IA 50011, USA
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
70
|
Newberry KJ, Huffman JL, Miller MC, Vazquez-Laslop N, Neyfakh AA, Brennan RG. Structures of BmrR-drug complexes reveal a rigid multidrug binding pocket and transcription activation through tyrosine expulsion. J Biol Chem 2008; 283:26795-804. [PMID: 18658145 PMCID: PMC2546531 DOI: 10.1074/jbc.m804191200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/08/2008] [Indexed: 11/06/2022] Open
Abstract
BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.
Collapse
Affiliation(s)
- Kate J. Newberry
- Department of Biochemistry and
Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston,
Texas 77030-4009, Department of
Biochemistry and Molecular Biology, Oregon Health and Science University,
Portland, Oregon 97239, and Center
for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois
60607
| | - Joy L. Huffman
- Department of Biochemistry and
Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston,
Texas 77030-4009, Department of
Biochemistry and Molecular Biology, Oregon Health and Science University,
Portland, Oregon 97239, and Center
for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois
60607
| | - Marshall C. Miller
- Department of Biochemistry and
Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston,
Texas 77030-4009, Department of
Biochemistry and Molecular Biology, Oregon Health and Science University,
Portland, Oregon 97239, and Center
for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois
60607
| | - Nora Vazquez-Laslop
- Department of Biochemistry and
Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston,
Texas 77030-4009, Department of
Biochemistry and Molecular Biology, Oregon Health and Science University,
Portland, Oregon 97239, and Center
for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois
60607
| | - Alex A. Neyfakh
- Department of Biochemistry and
Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston,
Texas 77030-4009, Department of
Biochemistry and Molecular Biology, Oregon Health and Science University,
Portland, Oregon 97239, and Center
for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois
60607
| | - Richard G. Brennan
- Department of Biochemistry and
Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston,
Texas 77030-4009, Department of
Biochemistry and Molecular Biology, Oregon Health and Science University,
Portland, Oregon 97239, and Center
for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois
60607
| |
Collapse
|
71
|
Gu R, Li M, Su CC, Long F, Routh MD, Yang F, McDermott G, Yu EW. Conformational change of the AcrR regulator reveals a possible mechanism of induction. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:584-8. [PMID: 18607081 PMCID: PMC2443975 DOI: 10.1107/s1744309108016035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 05/27/2008] [Indexed: 11/11/2022]
Abstract
The Escherichia coli AcrR multidrug-binding protein represses transcription of acrAB and is induced by many structurally unrelated cytotoxic compounds. The crystal structure of AcrR in space group P222(1) has been reported previously. This P222(1) structure has provided direct information about the multidrug-binding site and important residues for drug recognition. Here, a crystal structure of this regulator in space group P3(1) is presented. Comparison of the two AcrR structures reveals possible mechanisms of ligand binding and AcrR regulation.
Collapse
Affiliation(s)
- Ruoyu Gu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Ming Li
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Chih-Chia Su
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Feng Long
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Mathew D. Routh
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Feng Yang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Gerry McDermott
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Edward W. Yu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|