51
|
Zhang R, Nishiyama Y, Ramamoorthy A. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. J Chem Phys 2015; 143:164201. [PMID: 26520504 PMCID: PMC4617735 DOI: 10.1063/1.4933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
52
|
Wang S, Parthasarathy S, Xiao Y, Nishiyama Y, Long F, Matsuda I, Endo Y, Nemoto T, Yamauchi K, Asakura T, Takeda M, Terauchi T, Kainosho M, Ishii Y. Nano-mole scale sequential signal assignment by (1)H-detected protein solid-state NMR. Chem Commun (Camb) 2015; 51:15055-8. [PMID: 26317132 DOI: 10.1039/c5cc04618a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a 3D (1)H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D (13)C-detected SSNMR approach.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhang R, Ramamoorthy A. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. J Chem Phys 2015; 143:034201. [PMID: 26203019 PMCID: PMC4506299 DOI: 10.1063/1.4926834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/03/2015] [Indexed: 11/14/2022] Open
Abstract
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
54
|
Zhang R, Pandey MK, Nishiyama Y, Ramamoorthy A. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions. Sci Rep 2015; 5:11810. [PMID: 26138791 PMCID: PMC4490345 DOI: 10.1038/srep11810] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although 1H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Manoj Kumar Pandey
- RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- 1] RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan [2] JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
55
|
Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T, Takeda M, Terauchi T, Kainosho M, Ishii Y. Nano-mole scale side-chain signal assignment by 1H-detected protein solid-state NMR by ultra-fast magic-angle spinning and stereo-array isotope labeling. PLoS One 2015; 10:e0122714. [PMID: 25856081 PMCID: PMC4391754 DOI: 10.1371/journal.pone.0122714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/14/2015] [Indexed: 11/19/2022] Open
Abstract
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52-57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sudhakar Parthasarathy
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Akishima, Tokyo, Japan
- RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa, Japan
| | - Yuki Endo
- JEOL RESONANCE Inc., Akishima, Tokyo, Japan
| | | | - Kazuo Yamauchi
- School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
- Nuclear Magnetic Resonance Core Lab., King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Furocho, Chikusa-ku, Nagoya University, Nagoya, Japan 464–8601
| | - Tsutomu Terauchi
- SAIL Technologies Co., Inc., Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Furocho, Chikusa-ku, Nagoya University, Nagoya, Japan 464–8601
- Center for Priority Areas, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshitaka Ishii
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Structural Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
56
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
57
|
Gopinath T, Veglia G. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:143-53. [PMID: 25797011 PMCID: PMC4399235 DOI: 10.1016/j.jmr.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 05/05/2023]
Abstract
Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
58
|
Affiliation(s)
- Rob Kaptein
- Bijvoet Centre, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | |
Collapse
|
59
|
Jaroniec CP. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:50-9. [PMID: 25797004 PMCID: PMC4371136 DOI: 10.1016/j.jmr.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
60
|
Böckmann A, Ernst M, Meier BH. Spinning proteins, the faster, the better? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:71-9. [PMID: 25797006 DOI: 10.1016/j.jmr.2015.01.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/09/2015] [Accepted: 01/18/2015] [Indexed: 05/26/2023]
Abstract
Magic-angle spinning (MAS) is a technique that is a prerequisite for high-resolution solid-state NMR spectroscopy of proteins and other biomolecules. Recently, the 100 kHz limit for the rotation frequency has been broken, arguably making MAS rotors the man-made objects with the highest rotation frequency. This development is expected to have a significant impact on biomolecular NMR as it facilitates proton detection, which allows to partially compensate the loss in overall sensitivity associated with the small sample amounts that fit into MAS rotors with less than 1 mm outer diameter. Under these conditions, the mass-normalized sensitivity of a small rotor becomes much higher than that of larger-volume rotor.
Collapse
Affiliation(s)
- Anja Böckmann
- Institut de Biologie et Chimie des Protéines, BMSSI, UMR 5086 CNRS/Université de Lyon 1, 7 passage du Vercors, 69367 Lyon, France.
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
61
|
Suiter CL, Quinn CM, Lu M, Hou G, Zhang H, Polenova T. MAS NMR of HIV-1 protein assemblies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:10-22. [PMID: 25797001 PMCID: PMC4432874 DOI: 10.1016/j.jmr.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.
Collapse
Affiliation(s)
- Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
62
|
Zhang R, Nishiyama Y, Sun P, Ramamoorthy A. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:55-66. [PMID: 25655451 PMCID: PMC4380770 DOI: 10.1016/j.jmr.2014.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/07/2014] [Accepted: 12/17/2014] [Indexed: 05/04/2023]
Abstract
The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed using numerical simulations for various phase cycles. Results obtained via numerical simulations are in excellent agreement with ultrafast MAS experimental results from the powder samples of glycine and l-alanine.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
63
|
Paluch P, Trébosc J, Nishiyama Y, Potrzebowski MJ, Malon M, Amoureux JP. Theoretical study of CP-VC: a simple, robust and accurate MAS NMR method for analysis of dipolar C-H interactions under rotation speeds faster than ca. 60 kHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:67-77. [PMID: 25662360 DOI: 10.1016/j.jmr.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
We show that Cross-Polarization with Variable Contact-time (CP-VC) allows an accurate determination of C-H dipolar interactions, which permits an easy detailed analysis of bond lengths and local dynamics, e.g. in biomolecules. The method presents a large dipolar scaling factor of 1/√2, leading to a better determination of dipolar interactions, especially for long C-H distances, and it allows the observation of very small local details such as those related either to CH(2) three spin systems, or even to hydrogen bonds. CP-VC is very simple to set up and very robust with respect to most experimental parameters, such as: rf-offsets, chemical-shift anisotropies, imperfect Hartmann-Hahn setting, and rf-inhomogeneity. The only required condition is the use of a sufficiently fast MAS spinning speed of at least ca. 60 kHz.
Collapse
Affiliation(s)
- P Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz 90-363, Poland
| | - J Trébosc
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France
| | - Y Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - M J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz 90-363, Poland
| | - M Malon
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - J P Amoureux
- UCCS, University Lille North of France, Villeneuve d'Ascq 59652, France; Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
64
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
65
|
Zhang R, Ramamoorthy A. Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 243:85-92. [PMID: 24792960 PMCID: PMC4057659 DOI: 10.1016/j.jmr.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 05/04/2023]
Abstract
The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA; School of Physics, Nankai University, Tianjin 300071, PR China
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
66
|
Chevelkov V, Habenstein B, Loquet A, Giller K, Becker S, Lange A. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:180-188. [PMID: 24667274 DOI: 10.1016/j.jmr.2014.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing (13)C detection only a single set of resonances was observed.
Collapse
Affiliation(s)
- Veniamin Chevelkov
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Birgit Habenstein
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Antoine Loquet
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
67
|
Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J, Schanda P. Probing transient conformational states of proteins by solid-state R(1ρ) relaxation-dispersion NMR spectroscopy. Angew Chem Int Ed Engl 2014; 53:4312-7. [PMID: 24644028 PMCID: PMC3997346 DOI: 10.1002/anie.201311275] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 11/21/2022]
Abstract
The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally accessible conformations are connected, and understanding their structures and relative energies is crucial in rationalizing protein function. Many biomolecular reactions take place within microseconds to milliseconds, and this timescale is therefore of central functional importance. Here we show that R1ρ relaxation dispersion experiments in magic-angle-spinning solid-state NMR spectroscopy make it possible to investigate the thermodynamics and kinetics of such exchange process, and gain insight into structural features of short-lived states.
Collapse
Affiliation(s)
- Peixiang Ma
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, DSV, IBS, 38027 Grenoble (France); CNRS, IBS, 38027 Grenoble (France)
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J, Schanda P. Bestimmung transienter Konformationszustände von Proteinen durch Festkörper-R1ρ-Relaxationsdispersions-NMR-Spektroskopie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
69
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-Resonance Magic-Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
70
|
Goldbourt A. Distance Measurements to Metal Ions and Other Quadrupolar Spins by Magic Angle Spinning Solid State NMR. Isr J Chem 2014. [DOI: 10.1002/ijch.201300108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
71
|
|
72
|
Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V. Conformational Dynamics of a Seven Transmembrane Helical Protein Anabaena Sensory Rhodopsin Probed by Solid-State NMR. J Am Chem Soc 2014; 136:2833-42. [DOI: 10.1021/ja411633w] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Jochem Struppe
- Bruker Biospin Ltd., Billerica, Massachusetts 01821, United States
| | | | - Józef R. Lewandowski
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
73
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-resonance magic-angle spinning NMR spectroscopy of deuterated solid proteins. Angew Chem Int Ed Engl 2014; 53:2438-42. [PMID: 24474388 DOI: 10.1002/anie.201308927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/03/2013] [Indexed: 11/12/2022]
Abstract
(1)H-detected magic-angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back-exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using (2)H excitation instead of (1)H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, "quadruple-resonance NMR spectroscopy", is presented which relies on an efficient (2)H-excitation and (2)H-(13)C cross-polarization (CP) step, combined with (1)H detection. We show that by using (2)H-excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.
Collapse
Affiliation(s)
- Ümit Akbey
- Leibniz Institute for Molecular Pharmacology, Robert Roessle Str. 10, 13125 Berlin (Germany).
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Gopinath T, Veglia G. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra. J Chem Phys 2013; 138:184201. [PMID: 23676036 DOI: 10.1063/1.4803126] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-(13)C, (15)N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during (15)N-(13)C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-(13)C, (15)N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
75
|
Michaelis VK, Corzilius B, Smith AA, Griffin RG. Dynamic nuclear polarization of 17O: direct polarization. J Phys Chem B 2013; 117:14894-906. [PMID: 24195759 PMCID: PMC3922122 DOI: 10.1021/jp408440z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic nuclear polarization of (17)O was studied using four different polarizing agents: the biradical TOTAPOL and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms, and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and biradical polarizing agents. Enhancements were recorded at <88 K and were >100 using the trityl (OX063) radical and <10 with the other polarizing agents. The >10,000-fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei.
Collapse
Affiliation(s)
- Vladimir K. Michaelis
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | | | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
76
|
Park SH, Yang C, Opella SJ, Mueller LJ. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:164-168. [PMID: 24225529 PMCID: PMC3915937 DOI: 10.1016/j.jmr.2013.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 05/12/2023]
Abstract
Two-dimensional (15)N chemical shift/(1)H chemical shift and three-dimensional (1)H-(15)N dipolar coupling/(15)N chemical shift/(1)H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from (1)H detection at 600MHz under 50kHz magic angle spinning using ∼0.5mg of perdeuterated and uniformly (15)N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear (1)H-(15)N dipolar coupling frequency dimension is shown to select among (15)N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92039-0307, USA
| | - Chen Yang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92039-0307, USA.
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
77
|
Mote KR, Gopinath T, Veglia G. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 57:91-102. [PMID: 23963722 PMCID: PMC3883141 DOI: 10.1007/s10858-013-9766-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/26/2013] [Indexed: 05/11/2023]
Abstract
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R. Mote
- Department of Chemistry University of Minnesota, Minneapolis, MN 55455, USA
| | - T. Gopinath
- Department of Biochemistry, Molecular Biology & Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Chemistry University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology & Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
78
|
Sengupta I, Nadaud PS, Jaroniec CP. Protein structure determination with paramagnetic solid-state NMR spectroscopy. Acc Chem Res 2013; 46:2117-26. [PMID: 23464364 DOI: 10.1021/ar300360q] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ∼5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ∼20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2+)-tagged GB1 mutants to rapidly determine the global protein fold in a de novo fashion. Remarkably, these studies required quantitative measurements of only approximately four or five backbone amide (15)N longitudinal paramagnetic relaxation enhancements per residue, in the complete absence of the usual internuclear distance restraints. Importantly, this paramagnetic solid-state NMR methodology is general and can be directly applied to larger proteins and protein complexes for which a significant fraction of the signals can be assigned in standard 2D and 3D MAS NMR chemical shift correlation spectra.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philippe S. Nadaud
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
79
|
Asami S, Reif B. Proton-detected solid-state NMR spectroscopy at aliphatic sites: application to crystalline systems. Acc Chem Res 2013; 46:2089-97. [PMID: 23745638 DOI: 10.1021/ar400063y] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
When applied to biomolecules, solid-state NMR suffers from low sensitivity and resolution. The major obstacle to applying proton detection in the solid state is the proton dipolar network, and deuteration can help avoid this problem. In the past, researchers had primarily focused on the investigation of exchangeable protons in these systems. In this Account, we review NMR spectroscopic strategies that allow researchers to observe aliphatic non-exchangeable proton resonances in proteins with high sensitivity and resolution. Our labeling scheme is based on u-[(2)H,(13)C]-glucose and 5-25% H2O (95-75% D2O) in the M9 bacterial growth medium, known as RAP (reduced adjoining protonation). We highlight spectroscopic approaches for obtaining resonance assignments, a prerequisite for any study of structure and dynamics of a protein by NMR spectroscopy. Because of the dilution of the proton spin system in the solid state, solution-state NMR (1)HCC(1)H type strategies cannot easily be transferred to these experiments. Instead, we needed to pursue ((1)H)CC(1)H, CC(1)H, (1)HCC or ((2)H)CC(1)H type experiments. In protonated samples, we obtained distance restraints for structure calculations from samples grown in bacteria in media containing [1,3]-(13)C-glycerol, [2]-(13)C-glycerol, or selectively enriched glucose to dilute the (13)C spin system. In RAP-labeled samples, we obtained a similar dilution effect by randomly introducing protons into an otherwise deuterated matrix. This isotopic labeling scheme allows us to measure the long-range contacts among aliphatic protons, which can then serve as restraints for the three-dimensional structure calculation of a protein. Due to the high gyromagnetic ratio of protons, longer range contacts are more easily accessible for these nuclei than for carbon nuclei in homologous experiments. Finally, the RAP labeling scheme allows access to dynamic parameters, such as longitudinal relaxation times T1, and order parameters S(2) for backbone and side chain carbon resonances. We expect that these measurements will open up new opportunities to obtain a more detailed description of protein backbone and side chain dynamics.
Collapse
Affiliation(s)
- Sam Asami
- Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Helmholtz-Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Bernd Reif
- Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Helmholtz-Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Munich Center for Integrated Protein Science (CIPSM) at Department of Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, D-85747 Garching, Germany
| |
Collapse
|
80
|
Ding Y, Yao Y, Marassi FM. Membrane protein structure determination in membrana. Acc Chem Res 2013; 46:2182-90. [PMID: 24041243 DOI: 10.1021/ar400041a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three-dimensional structure and the orientation of the protein within the membrane. When combined with dihedral angle restraints derived from analysis of isotropic chemical shifts, molecular fragment replacement, and de novo structure prediction, orientation restraints can yield high-quality three-dimensional structures with few or no distance restraints. Using complementary solid-state NMR methods based on oriented sample (OS) and magic angle spinning (MAS) approaches, one can resolve and assign multiple peaks through the use of (15)N/(13)C labeled samples and measure precise restraints to determine structures.
Collapse
Affiliation(s)
- Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M. Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
81
|
Goldbourt A. Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 2013; 24:705-15. [DOI: 10.1016/j.copbio.2013.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/28/2022]
|
82
|
Webber R, Penner GH. A combined deuterium NMR and quantum chemical investigation of inequivalent hydrogen bonds in organic solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 47-48:10-18. [PMID: 22883448 DOI: 10.1016/j.ssnmr.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
Deuterium magic angle spinning (MAS) NMR spectroscopy and quantum chemical calculations are used to investigate organic solids in which inequivalent hydrogen bonds are present. The use of (2)H MAS allows one to measure the chemical shift, δ, quadrupolar coupling constant, C(Q), and asymmetry in the quadrupolar interaction, η(Q), for each type of hydrogen bond present in the system. Quantum chemical calculations of the magnetic shielding (σ, which can be related to δ) and the electric field gradient (EFG, which can be related to C(Q)) are compared to the experimental results and are discussed with respect to the relative strengths of the hydrogen bonds within each system.
Collapse
Affiliation(s)
- Renee Webber
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
83
|
Gopinath T, Veglia G. 3D DUMAS: simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 220:79-84. [PMID: 22698806 PMCID: PMC3487463 DOI: 10.1016/j.jmr.2012.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/13/2012] [Indexed: 05/15/2023]
Abstract
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly (13)C, (15)N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from (1)H to (13)C and (15)N to acquire two 3D experiments simultaneously. This is made possible by bidirectional polarization transfer between (13)C and (15)N and the long living (15)N z-polarization in solid state NMR. To demonstrate the power of this approach, four 3D pulse sequences (NCACX, CANCO, NCOCX, CON(CA)CX) are combined into two pulse sequences (3D DUMAS-NCACX-CANCO, 3D DUMAS-NCOCX-CON(CA)CX) that allow simultaneous acquisition of these experiments, reducing the experimental time by approximately half. Importantly, the 3D DUMAS-NCACX-CANCO experiment alone makes it possible to obtain the majority of the backbone sequential resonance assignments for microcrystalline U-(13)C,(15)N ubiquitin. The DUMAS approach is general and applicable to many 3D experiments, nearly doubling the performance of NMR spectrometers.
Collapse
Affiliation(s)
- T. Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
84
|
Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:35-62. [PMID: 23076578 PMCID: PMC3555569 DOI: 10.1007/978-94-007-4954-2_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|