51
|
Aiello A, Accardi G, Candore G, Carruba G, Davinelli S, Passarino G, Scapagnini G, Vasto S, Caruso C. Nutrigerontology: a key for achieving successful ageing and longevity. IMMUNITY & AGEING 2016; 13:17. [PMID: 27213002 PMCID: PMC4875663 DOI: 10.1186/s12979-016-0071-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/01/2016] [Indexed: 02/02/2023]
Abstract
During the last two centuries the average lifespan has increased at a rate of approximately 3 months/year in both sexes, hence oldest old people are becoming the population with the fastest growth in Western World. Although the average life expectancy is increasing dramatically, the healthy lifespan is not going at the same pace. This underscores the importance of studies on the prevention of age-related diseases, in order to satisfactorily decrease the medical, economic and social problems associated to advancing age, related to an increased number of individuals not autonomous and affected by invalidating pathologies. In particular, data from experimental studies in model organisms have consistently shown that nutrient signalling pathways are involved in longevity, affecting the prevalence of age-related loss of function, including age-related diseases. Accordingly, nutrigerontology is defined as the scientific discipline that studies the impact of nutrients, foods, macronutrient ratios, and diets on lifespan, ageing process, and age-related diseases. To discuss the potential relevance of this new science in the attainment of successful ageing and longevity, three original studies performed in Sicily with local foods and two reviews have been assembled in this series. Data clearly demonstrate the positive effects of nutraceuticals, functional foods and Mediterranean Diet on several biological parameters. In fact, they could represent a prevention for many age-related diseases, and, although not a solution for this social plague, at least a remedy to alleviate it. Thus, the possibility to create a dietary pattern, based on the combined strategy of the use of both nutraceuticals and functional foods should permit to create a new therapeutic strategy, based not only on a specific bioactive molecule or on a specific food but on a integrated approach that, starting from the local dietary habits, can be led to a “nutrafunctional diet” applicable worldwide.
Collapse
Affiliation(s)
- Anna Aiello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Giuseppe Carruba
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, Palermo, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, 86100 Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), 87036 Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, School of Medicine, University of Molise, Campobasso, 86100 Italy
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy and Institute of biomedicine and molecular immunology "Alberto Monroy" CNR, Palermo, Italy
| | - Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| |
Collapse
|
52
|
FU PENG, HU QUAN. 3,4-Dihydroxyphenylethanol alleviates early brain injury by modulating oxidative stress and Akt and nuclear factor-κB pathways in a rat model of subarachnoid hemorrhage. Exp Ther Med 2016; 11:1999-2004. [PMID: 27168841 PMCID: PMC4840544 DOI: 10.3892/etm.2016.3101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a naturally occurring polyphenolic compound, present in olive oil and in the wastewater generated during olive oil processing. DOPET has various biological and pharmacological activities, including anticancer, antibacterial and anti-inflammatory effects. This study was designed to determine whether DOPET alleviates early brain injury (EBI) associated with subarachnoid hemorrhage (SAH) through suppression of oxidative stress and Akt and nuclear factor (NF)-κB pathways. Rats were randomly divided into the following groups: Sham group, SAH group, SAH + vehicle group and SAH + DOPET group. Mortality, blood-brain barrier (BBB) permeability and brain water content were assessed. Oxidative stress, Akt, NF-κB p65 and caspase-3 assays were also performed. DOPET induced a reduction in brain water content, and decreased the BBB permeability of SAH model rats. Furthermore, DOPET effectively controlled oxidative stress, NF-κB p65 and caspase-3 levels, in addition to significantly increasing Akt levels in the cortex following SAH. These results provide evidence that DOPET attenuates apoptosis in a rat SAH model through modulating oxidative stress and Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- PENG FU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - QUAN HU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
53
|
Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. IMMUNITY & AGEING 2016; 13:16. [PMID: 27081392 PMCID: PMC4831196 DOI: 10.1186/s12979-016-0070-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
An extensive literature describes the positive impact of dietary phytochemicals on overall health and longevity. Dietary phytochemicals include a large group of non-nutrients compounds from a wide range of plant-derived foods and chemical classes. Over the last decade, remarkable progress has been made to realize that oxidative and nitrosative stress (O&NS) and chronic, low-grade inflammation are major risk factors underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant negative immunoregulatory, and/or anti-O&NS activities in the context of brain aging. Despite the translational gap between basic and clinical research, the current understanding of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways could help in designing effective nutritional strategies to delay brain aging and improve cognitive function. This review attempts to summarise recent evidence indicating that specific phytochemicals may act as positive modulators of IO&NS pathways by attenuating pro-inflammatory pathways associated with the age-related redox imbalance that occurs in brain aging. We will also discuss the need to initiate long-term nutrition intervention studies in healthy subjects. Hence, we will highlight crucial aspects that require further study to determine effective physiological concentrations and explore the real impact of dietary phytochemicals in preserving brain health before the onset of symptoms leading to cognitive decline and inflammatory neurodegeneration.
Collapse
|
54
|
Tufarelli V, Laudadio V, Casalino E. An extra-virgin olive oil rich in polyphenolic compounds has antioxidant effects in meat-type broiler chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6197-6204. [PMID: 26606933 DOI: 10.1007/s11356-015-5852-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to extend the knowledge on the antioxidant effect of extra-virgin olive oil (EVOO) in the liver of broiler chickens not subjected to any form of insult. A total of 120 male broiler chickens (Hubbard strain) were divided into three groups and fed ad libitum with three isoenergetic diets from hatching until slaughter age (49 days) on a completely randomized design. The dietary treatments consisted of 2.5% added oil or fat from three sources as follows: diet containing sunflower oil (SFO); diet containing lard (LRD), and diet containing extra-virgin olive oil (EVOO). The activity of the main antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GS-Px) and glutathione S-transferase (GST), and lipid peroxidation as thiobarbituric acid-reactive substances (TBARS) content, was measured in the liver of chickens. The susceptibility to undergo lipid peroxidation was assessed by exposing liver homogenate to 30 °C or to an ascorbate/iron mixture as pro-oxidant system. Dietary oil or fat type improved significantly (P < 0.05) the body weight and gain as well as feed efficiency in birds fed EVOO compared to those fed with the other treatments. Supplementing EVOO in the diet significantly (P < 0.05) reduced lipid peroxidation by increasing antioxidant defense system. These findings, besides adding more results on the antioxidant effect of extra-virgin olive oil on liver of other experimental model other than rats and humans, could be significant for animal welfare, with consequent benefits for both producers and consumers.
Collapse
Affiliation(s)
- Vincenzo Tufarelli
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Science and Animal Production, University of Study of Bari 'Aldo Moro', Valenzano, 70010, Bari, Italy
| | - Vito Laudadio
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Science and Animal Production, University of Study of Bari 'Aldo Moro', Valenzano, 70010, Bari, Italy
| | - Elisabetta Casalino
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', Valenzano, 70010, Bari, Italy.
| |
Collapse
|
55
|
Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease. Pharmaceuticals (Basel) 2016; 9:ph9010009. [PMID: 26901205 PMCID: PMC4812373 DOI: 10.3390/ph9010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.
Collapse
Affiliation(s)
- Flavie Darcet
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Alain M Gardier
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Raphael Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris 75015, France.
| | - Denis J David
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| |
Collapse
|
56
|
Preexposure to Olive Oil Polyphenols Extract Increases Oxidative Load and Improves Liver Mass Restoration after Hepatectomy in Mice via Stress-Sensitive Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9191407. [PMID: 26925195 PMCID: PMC4746397 DOI: 10.1155/2016/9191407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022]
Abstract
Polyphenols can act as oxidants in some conditions, inducing redox-sensitive genes. We investigated the effect of preexposure to the olive oil polyphenols extract (PFE) on time-dependent changes in the hepatic oxidative state in a model of liver regeneration—a process in which oxidative stress associated with the metabolic overload accounts for the early events that contribute to the onset of liver self-repair. Liver regeneration was induced by one-third hepatectomy in mice. Prior to hepatectomy, mice were intraperitoneally given either PFE (50 mg/kg body weight) or saline for seven consecutive days, while respective controls received vehicle alone. Redox state-regulating enzymes and thiol proteins along with the mRNA levels of Nrf2 gene and its targets γ-glutamylcysteine synthetase and heme oxygenase-1 were determined at different time intervals after hepatectomy. The liver mass restoration was calculated to assess hepatic regeneration. The resulting data demonstrate the effectiveness of preexposure to PFE in stimulating liver regeneration in a model of a small tissue loss which may be ascribed to the transient increase in oxidant load during the first hours after hepatectomy and associated induction of stress response gene-profiles under the control of Nrf2.
Collapse
|
57
|
Chapple SJ, Puszyk WM, Mann GE. Keap1-Nrf2 regulated redox signaling in utero: Priming of disease susceptibility in offspring. Free Radic Biol Med 2015; 88:212-220. [PMID: 26279476 DOI: 10.1016/j.freeradbiomed.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
Intrauterine exposure to gestational diabetes, pre-eclampsia or intrauterine growth restriction alters the redox status of the developing fetus. Such pregnancy-related diseases in most cases do not have a readily identifiable genetic cause, and epigenetic 'priming' mechanisms in utero may predispose both mother and child to later-life onset of cardiovascular and metabolic diseases. The concept of 'fetal programing' or 'developmental priming' and its association with an increased risk of disease in childhood or adulthood has been reviewed extensively. This review focuses on adaptive changes in the in utero redox environment during normal pregnancy and the consequences of alterations in redox control associated with pregnancies characterized by oxidative stress. We evaluate the evidence that the Keap1-Nrf2 pathway is important for protecting the fetus against adverse conditions in utero and may itself be subject to epigenetic priming, potentially contributing to an increased risk of vascular disease and insulin resistance in later life.
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - William M Puszyk
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
58
|
Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice. Mol Neurobiol 2015; 53:3030-3045. [DOI: 10.1007/s12035-015-9182-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
|
59
|
Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, de la Torre R. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 2015; 20:4655-80. [PMID: 25781069 PMCID: PMC6272603 DOI: 10.3390/molecules20034655] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
Adherence to the Mediterranean Diet (MD) has been associated with a reduced incidence of neurodegenerative diseases and better cognitive performance. Virgin olive oil, the main source of lipids in the MD, is rich in minor phenolic components, particularly hydroxytyrosol (HT). HT potent antioxidant and anti-inflammatory actions have attracted researchers' attention and may contribute to neuroprotective effects credited to MD. In this review HT bioavailability and pharmacokinetics are presented prior to discussing health beneficial effects. In vitro and in vivo neuroprotective effects together with its multiple mechanisms of action are reviewed. Other microconstituents of olive oil are also considered due to their potential neuroprotective effects (oleocanthal, triterpenic acids). Finally, we discuss the potential role of HT as a therapeutic tool in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jose Rodríguez-Morató
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, Barcelona 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Santiago de Compostela 15706, Spain.
| | - Laura Xicota
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, Barcelona 08003, Spain.
- Cellular & Systems Neurobiology Research Group, Center of Genomic Regulation, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Montse Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Santiago de Compostela 15706, Spain.
- Cardiovascular Risk and Nutrition Research Group, Epidemiology Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.
| | - Mara Dierssen
- Cellular & Systems Neurobiology Research Group, Center of Genomic Regulation, Dr. Aiguader 88, Barcelona 08003, Spain.
- CIBER de Enfermedades Raras (CIBERER), Barcelona 08003, Spain.
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, Barcelona 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Santiago de Compostela 15706, Spain.
| |
Collapse
|