51
|
Muscle IL1β Drives Ischemic Myalgia via ASIC3-Mediated Sensory Neuron Sensitization. J Neurosci 2017; 36:6857-71. [PMID: 27358445 DOI: 10.1523/jneurosci.4582-15.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/11/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Musculoskeletal pain is a significantly common clinical complaint. Although it is known that muscles are quite sensitive to alterations in blood flow/oxygenation and a number of muscle pain disorders are based in problems of peripheral perfusion, the mechanisms by which ischemic-like conditions generate myalgia remain unclear. We found, using a multidisciplinary experimental approach, that ischemia and reperfusion injury (I/R) in male Swiss Webster mice altered ongoing and evoked pain-related behaviors in addition to activity levels through enhanced muscle interleukin-1 beta (IL1β)/IL1 receptor signaling to group III/IV muscle afferents. Peripheral sensitization depended on acid-sensing ion channels (ASICs) because treatment of sensory afferents in vitro with IL1β-upregulated ASIC3 in single cells, and nerve-specific knock-down of ASIC3 recapitulated the results of inhibiting the enhanced IL1β/IL1r1 signaling after I/R, which was also found to regulate afferent sensitization and pain-related behaviors. This suggests that targeting muscle IL1β signaling may be a potential analgesic therapy for ischemic myalgia. SIGNIFICANCE STATEMENT Here, we have described a novel pathway whereby increased inflammation within the muscle tissue during ischemia/reperfusion injury sensitizes group III and IV muscle afferents via upregulation of acid-sensing ion channel 3 (ASIC3), leading not only to alterations in mechanical and chemical responsiveness in individual afferents, but also to pain-related behavioral changes. Furthermore, these I/R-induced changes can be prevented using an afferent-specific siRNA knock-down strategy targeting either ASIC3 or the upstream mediator of its expression, interleukin 1 receptor 1. Therefore, this knowledge may contribute to the development of alternative therapeutics for muscle pain and may be especially relevant to pain caused by issues of peripheral circulation, which is commonly observed in disorders such as complex regional pain syndrome, sickle cell anemia, or fibromyalgia.
Collapse
|
52
|
Targeting ASIC3 for Relieving Mice Fibromyalgia Pain: Roles of Electroacupuncture, Opioid, and Adenosine. Sci Rep 2017; 7:46663. [PMID: 28440280 PMCID: PMC5404229 DOI: 10.1038/srep46663] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/21/2017] [Indexed: 01/19/2023] Open
Abstract
Many scientists are seeking better therapies for treating fibromyalgia (FM) pain. We used a mouse model of FM to determine if ASIC3 and its relevant signaling pathway participated in FM pain. We demonstrated that FM-induced mechanical hyperalgesia was attenuated by electroacupuncture (EA). The decrease in fatigue-induced lower motor function in FM mice was also reversed by EA. These EA-based effects were abolished by the opioid receptor antagonist naloxone and the adenosine A1 receptor antagonist rolofylline. Administration of opioid receptor agonist endomorphin (EM) or adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) has similar results to EA. Similar results were also observed in ASIC3−/− or ASIC3 antagonist (APETx2) injected mice. Using western blotting, we determined that pPKA, pPI3K, and pERK were increased during a dual acidic injection priming period. Nociceptive receptors, such as ASIC3, Nav1.7, and Nav1.8, were upregulated in the dorsal root ganglion (DRG) and spinal cord (SC) of FM mice. Furthermore, pPKA, pPI3K, and pERK were increased in the central thalamus. These aforementioned mechanisms were completely abolished in ASIC3 knockout mice. Electrophysiological results also indicated that acid potentiated Nav currents through ASIC3 and ERK pathway. Our results highlight the crucial role of ASIC3-mediated mechanisms in the treatment of FM-induced mechanical hyperalgesia.
Collapse
|
53
|
Rash LD. Acid-Sensing Ion Channel Pharmacology, Past, Present, and Future …. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:35-66. [PMID: 28528673 DOI: 10.1016/bs.apha.2017.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
pH is one of the most strictly controlled parameters in mammalian physiology. An extracellular pH of ~7.4 is crucial for normal physiological processes, and perturbations to this have profound effects on cell function. Acidic microenvironments occur in many physiological and pathological conditions, including inflammation, bone remodeling, ischemia, trauma, and intense synaptic activity. Cells exposed to these conditions respond in different ways, from tumor cells that thrive to neurons that are either suppressed or hyperactivated, often fatally. Acid-sensing ion channels (ASICs) are primary pH sensors in mammals and are expressed widely in neuronal and nonneuronal cells. There are six main subtypes of ASICs in rodents that can form homo- or heteromeric channels resulting in many potential combinations. ASICs are present and activated under all of the conditions mentioned earlier, suggesting that they play an important role in how cells respond to acidosis. Compared to many other ion channel families, ASICs were relatively recently discovered-1997-and there is a substantial lack of potent, subtype-selective ligands that can be used to elucidate their structural and functional properties. In this chapter I cover the history of ASIC channel pharmacology, which began before the proteins were even identified, and describe the current arsenal of tools available, their limitations, and take a glance into the future to predict from where new tools are likely to emerge.
Collapse
Affiliation(s)
- Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
54
|
Reznikov LR, Meyerholz DK, Adam RJ, Abou Alaiwa M, Jaffer O, Michalski AS, Powers LS, Price MP, Stoltz DA, Welsh MJ. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice. PLoS One 2016; 11:e0166089. [PMID: 27820848 PMCID: PMC5098826 DOI: 10.1371/journal.pone.0166089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/22/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.
Collapse
Affiliation(s)
- Leah R. Reznikov
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Adam
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Omar Jaffer
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew S. Michalski
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Margaret P. Price
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
55
|
Abdelhamid RE, Sluka KA. ASICs Mediate Pain and Inflammation in Musculoskeletal Diseases. Physiology (Bethesda) 2016; 30:449-59. [PMID: 26525344 DOI: 10.1152/physiol.00030.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic musculoskeletal pain is debilitating and affects ∼ 20% of adults. Tissue acidosis is present in painful musculoskeletal diseases like rheumatoid arthritis. ASICs are located on skeletal muscle and joint nociceptors as well as on nonneuronal cells in the muscles and joints, where they mediate nociception. This review discusses the properties of different types of ASICs, factors affecting their pH sensitivity, and their role in musculoskeletal hyperalgesia and inflammation.
Collapse
Affiliation(s)
- Ramy E Abdelhamid
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa
| |
Collapse
|
56
|
Resident Macrophages in Muscle Contribute to Development of Hyperalgesia in a Mouse Model of Noninflammatory Muscle Pain. THE JOURNAL OF PAIN 2016; 17:1081-1094. [PMID: 27377621 DOI: 10.1016/j.jpain.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Macrophages play a role in innate immunity within the body, are located in muscle tissue, and can release inflammatory cytokines that sensitize local nociceptors. In this study we investigate the role of resident macrophages in the noninflammatory muscle pain model induced by 2 pH 4.0 preservative-free sterile saline (pH 4.0) injections 5 days apart in the gastrocnemius muscle. We showed that injecting 2 pH 4.0 injections into the gastrocnemius muscle increased the number of local muscle macrophages, and depleting muscle macrophages with clodronate liposomes before acid injections attenuated the hyperalgesia produced by this model. To further examine the contribution of local macrophages to this hyperalgesia, we injected mice intramuscularly with C34, a toll-like receptor 4 (TLR4) antagonist. When given before the first pH 4.0 injection, C34 attenuated the muscle and tactile hyperalgesia produced by the model. However, when given before the second injection C34 had no effect on the development of hyperalgesia. Then to test whether activation of local macrophages sensitizes nociceptors to normally non-nociceptive stimuli we replaced either the first or second acid injection with the immune cell activator lipopolysaccharide, or the inflammatory cytokine interleukin (IL)-6. Injecting LPS or IL-6 instead of the either the first or second pH 4.0 injection resulted in a dose-dependent increase in paw withdrawal responses and decrease in muscle withdrawal thresholds. The highest doses of LPS and IL-6 resulted in development of hyperalgesia bilaterally. The present study showed that resident macrophages in muscle are key to development of chronic muscle pain. PERSPECTIVE This article presents evidence for the role of macrophages in the development of chronic muscle pain using a mouse model. These data suggest that macrophages could be a potential therapeutic target to prevent transition of acute to chronic muscle pain particularly in tissue acidosis conditions.
Collapse
|
57
|
Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents. J Neurosci 2016; 36:19-30. [PMID: 26740646 DOI: 10.1523/jneurosci.2856-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Numerous musculoskeletal pain disorders are based in dysfunction of peripheral perfusion and are often comorbid with altered cardiovascular responses to muscle contraction/exercise. We have recently found in mice that 24 h peripheral ischemia induced by a surgical occlusion of the brachial artery (BAO) induces increased paw-guarding behaviors, mechanical hypersensitivity, and decreased grip strength. These behavioral changes corresponded to increased heat sensitivity as well as an increase in the numbers of chemosensitive group III/IV muscle afferents as assessed by an ex vivo forepaw muscles/median and ulnar nerves/dorsal root ganglion (DRG)/spinal cord (SC) recording preparation. Behaviors also corresponded to specific upregulation of the ADP-responsive P2Y1 receptor in the DRGs. Since group III/IV muscle afferents have separately been associated with regulating muscle nociception and exercise pressor reflexes (EPRs), and P2Y1 has been linked to heat responsiveness and phenotypic switching in cutaneous afferents, we sought to determine whether upregulation of P2Y1 was responsible for the observed alterations in muscle afferent function, leading to modulation of muscle pain-related behaviors and EPRs after BAO. Using an afferent-specific siRNA knockdown strategy, we found that inhibition of P2Y1 during BAO not only prevented the increased mean blood pressure after forced exercise, but also significantly reduced alterations in pain-related behaviors. Selective P2Y1 knockdown also prevented the increased firing to heat stimuli and the BAO-induced phenotypic switch in chemosensitive muscle afferents, potentially through regulating membrane expression of acid sensing ion channel 3. These results suggest that enhanced P2Y1 in muscle afferents during ischemic-like conditions may dually regulate muscle nociception and cardiovascular reflexes. SIGNIFICANCE STATEMENT Our current results suggest that P2Y1 modulates heat responsiveness and chemosensation in muscle afferents to play a key role in the development of pain-related behaviors during ischemia. At the same time, under these pathological conditions, the changes in muscle sensory neurons appear to modulate an increase in mean systemic blood pressure after exercise. This is the first report of the potential peripheral mechanisms by which group III/IV muscle afferents can dually regulate muscle nociception and the exercise pressor reflex. These data provide evidence related to the potential underlying reasons for the comorbidity of muscle pain and altered sympathetic reflexes in disease states that are based in problems with peripheral perfusion and may indicate a potential target for therapeutic intervention.
Collapse
|
58
|
Quintans-Júnior LJ, Araújo AA, Brito RG, Santos PL, Quintans JS, Menezes PP, Serafini MR, Silva GF, Carvalho FM, Brogden NK, Sluka KA. β-caryophyllene, a dietary cannabinoid, complexed with β-cyclodextrin produced anti-hyperalgesic effect involving the inhibition of Fos expression in superficial dorsal horn. Life Sci 2016; 149:34-41. [DOI: 10.1016/j.lfs.2016.02.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
|
59
|
Leung A, Gregory NS, Allen LAH, Sluka KA. Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing interleukin-10 in mice. Pain 2016; 157:70-79. [PMID: 26230740 PMCID: PMC4685958 DOI: 10.1097/j.pain.0000000000000312] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regular physical activity in healthy individuals prevents development of chronic musculoskeletal pain; however, the mechanisms underlying this exercise-induced analgesia are not well understood. Interleukin-10 (IL-10), an antiinflammatory cytokine that can reduce nociceptor sensitization, increases during regular physical activity. Since macrophages play a major role in cytokine production and are present in muscle tissue, we propose that physical activity alters macrophage phenotype to increase IL-10 and prevent chronic pain. Physical activity was induced by allowing C57BL/6J mice free access to running wheels for 8 weeks and compared to sedentary mice with no running wheels. Using immunohistochemical staining of the gastrocnemius muscle to label regulatory (M2, secretes antiinflammatory cytokines) and classical (M1, secretes proinflammatory cytokines) macrophages, the percentage of M2-macrophages increased significantly in physically active mice (68.5% ± 4.6% of total) compared with sedentary mice (45.8% ± 7.1% of total). Repeated acid injections into the muscle enhanced mechanical sensitivity of the muscle and paw in sedentary animals, which does not occur in physically active mice; no sex differences occur in either sedentary or physically active mice. Blockade of IL-10 systemically or locally prevented the analgesia in physically active mice, ie, mice developed hyperalgesia. Conversely, sedentary mice pretreated systemically or locally with IL-10 had reduced hyperalgesia after repeated acid injections. Thus, these results suggest that regular physical activity increases the percentage of regulatory macrophages in muscle and that IL-10 is an essential mediator in the analgesia produced by regular physical activity.
Collapse
Affiliation(s)
- Audrey Leung
- University of Iowa Carver College of Medicine, Iowa City, IA, USA Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA Departments of Internal Medicine and Physical Therapy and Rehabilitation Science, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | |
Collapse
|
60
|
Guo Y, Chen J, Li J, Cheng L, Lin N. Unique roles played by Acid-sensing ion channel 2. Channels (Austin) 2015:0. [PMID: 26552578 DOI: 10.1080/19336950.2015.1106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The discovery of Acid-sensing ion channels (ASICs) provided us the theoretical basis to understand the pathological acidic environment. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level, and this characteristic make them spotlights in the regulation or response of pH change. As a regulatory system, keeping the intra- and extra-balance seems to be significant for ASICs, in which ASIC2 plays an important role. We surprisingly noticed that ASIC2 owns some distinctive properties, including its inter-system regulation, specific distribution and transporting patterns, influence on cell migration and the unique role in mechanosensitivity. Therefore, to conclude the functions and characterisitics of ASIC2 indeed assist the understanding of interaction among ASICs subunits and the regulation from extracellular environment to ASICs.
Collapse
Affiliation(s)
- Yingjun Guo
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| | - Jingying Chen
- b Dept. of Gynaecology and Obstetrics , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China. Zip code: 250012
| | - Jingkun Li
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| | - Lei Cheng
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| | - Nie Lin
- a Dept. of Orthopedic Surgery , Qilu Hospital, Shandong University . West Wenhua Road, No. 107, Ji'nan, Shandong Province , P.R. China . Zip code: 250012
| |
Collapse
|
61
|
Wu L, Oshima T, Shan J, Sei H, Tomita T, Ohda Y, Fukui H, Watari J, Miwa H. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2015; 309:G695-702. [PMID: 26294672 DOI: 10.1152/ajpgi.00162.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/10/2015] [Indexed: 01/31/2023]
Abstract
Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs.
Collapse
Affiliation(s)
- Liping Wu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Jing Shan
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hiroo Sei
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Yoshio Ohda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| |
Collapse
|
62
|
Gibbons DD, Kutschke WJ, Weiss RM, Benson CJ. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle. J Physiol 2015; 593:4575-87. [PMID: 26314284 DOI: 10.1113/jp270690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure.
Collapse
Affiliation(s)
- David D Gibbons
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Christopher J Benson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|
63
|
Gregory NS, Whitley PE, Sluka KA. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats. PLoS One 2015; 10:e0138576. [PMID: 26378796 PMCID: PMC4574767 DOI: 10.1371/journal.pone.0138576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022] Open
Abstract
Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.
Collapse
Affiliation(s)
- Nicholas S. Gregory
- Neuroscience Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | | | - Kathleen A. Sluka
- Neuroscience Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
64
|
Amplified Mechanically Gated Currents in Distinct Subsets of Myelinated Sensory Neurons following In Vivo Inflammation of Skin and Muscle. J Neurosci 2015; 35:9456-62. [PMID: 26109668 DOI: 10.1523/jneurosci.0549-15.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary afferents are sensitized to mechanical stimuli following in vivo inflammation, but whether sensitization of mechanically gated ion channels contributes to this phenomenon is unknown. Here we identified two populations of murine A fiber-type sensory neurons that display markedly different responses to focal mechanical stimuli of the membrane based on their expression of calcitonin gene-related peptide (CGRP). Following inflammation of the hindpaw, myelinated, CGRP-positive neurons projecting to the paw skin displayed elevated mechanical currents in response to mechanical stimuli. Conversely, muscle inflammation markedly amplified mechanical currents in myelinated, CGRP-negative neurons projecting to muscle. These data show, for the first time, that mechanically gated currents are amplified following in vivo tissue inflammation, and also suggest that mechanical sensitization can occur in myelinated neurons after inflammation.
Collapse
|
65
|
Panneton WM, Gan Q, Ariel M. Injections of Algesic Solutions into Muscle Activate the Lateral Reticular Formation: A Nociceptive Relay of the Spinoreticulothalamic Tract. PLoS One 2015; 10:e0130939. [PMID: 26154308 PMCID: PMC4496070 DOI: 10.1371/journal.pone.0130939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300μl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The external lateral and superior lateral subnuclei of the parabrachial nuclear complex were consistently labeled in experimental data, but they also were labeled in many control cases. The internal lateral subnucleus of the parabrachial complex was labeled moderately. Few immunolabeled neurons were found in the medial reticular formation, however, but the rostroventromedial medulla was labeled consistently. These data are discussed in terms of an interoceptive, multisynaptic spinoreticulothalamic path, with its large receptive fields and role in the motivational-affective components of pain perceptions.
Collapse
Affiliation(s)
- W. Michael Panneton
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States of America
- * E-mail:
| | - Qi Gan
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States of America
| | - Michael Ariel
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States of America
| |
Collapse
|
66
|
Omerbašić D, Schuhmacher LN, Bernal Sierra YA, Smith ESJ, Lewin GR. ASICs and mammalian mechanoreceptor function. Neuropharmacology 2015; 94:80-6. [DOI: 10.1016/j.neuropharm.2014.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
|
67
|
Dommerholt J, Gerwin RD. A critical evaluation of Quintner et al: missing the point. J Bodyw Mov Ther 2015; 19:193-204. [PMID: 25892372 DOI: 10.1016/j.jbmt.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/03/2023]
Abstract
The objective of this article is to critically analyze a recent publication by Quinter, Bove and Cohen, published in Rheumatology, about myofascial pain syndrome and trigger points (Quintner et al., 2014). The authors concluded that the leading trigger point hypothesis is flawed in reasoning and in science. They claimed to have refuted the trigger point hypothesis. The current paper demonstrates that the Quintner et al. paper is a biased review of the literature replete with unsupported opinions and accusations. In summary, Quintner et al. have not presented any convincing evidence to believe that the Integrated TrP Hypothesis should be laid to rest.
Collapse
Affiliation(s)
- Jan Dommerholt
- Bethesda Physiocare, Bethesda, MD, USA; PhysioFitness, Rockville, MD, USA; Myopain Seminars, Bethesda, MD, USA.
| | - Robert D Gerwin
- Myopain Seminars, Bethesda, MD, USA; Johns Hopkins University, Baltimore, MD, USA; Pain & Rehabilitation Medicine, Bethesda, MD, USA.
| |
Collapse
|
68
|
Vick JS, Askwith CC. ASICs and neuropeptides. Neuropharmacology 2015; 94:36-41. [PMID: 25592215 DOI: 10.1016/j.neuropharm.2014.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022]
Abstract
The acid sensing ion channels (ASICs) are proton-gated cation channels expressed throughout the nervous system. ASICs are activated during acidic pH fluctuations, and recent work suggests that they are involved in excitatory synaptic transmission. ASICs can also induce neuronal degeneration and death during pathological extracellular acidosis caused by ischemia, autoimmune inflammation, and traumatic injury. Many endogenous neuromodulators target ASICs to affect their biophysical characteristics and contributions to neuronal activity. One of the most unconventional types of modulation occurs with the interaction of ASICs and neuropeptides. Collectively, FMRFamide-related peptides and dynorphins potentiate ASIC activity by decreasing the proton-sensitivity of steady state desensitization independent of G protein-coupled receptor activation. By decreasing the proton-sensitivity of steady state desensitization, the FMRFamide-related peptides and dynorphins permit ASICs to remain active at more acidic basal pH. Unlike the dynorphins, some FMRFamide-related peptides also potentiate ASIC activity by slowing inactivation and increasing the sustained current. Through mechanistic studies, the modulation of ASICs by FMRFamide-related peptides and dynorphins appears to be through distinct interactions with the extracellular domain of ASICs. Dynorphins are expressed throughout the nervous system and can increase neuronal death during prolonged extracellular acidosis, suggesting that the interaction between dynorphins and ASICs may have important consequences for the prevention of neurological injury. The overlap in expression of FMRFamide-related peptides with ASICs in the dorsal horn of the spinal cord suggests that their interaction may have important consequences for the treatment of pain during injury and inflammation. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Jonathan S Vick
- The Department of Neuroscience, The Ohio State University Wexner Medical Center, United States
| | - Candice C Askwith
- The Department of Neuroscience, The Ohio State University Wexner Medical Center, United States.
| |
Collapse
|
69
|
Gregory NS, Brito RG, Fusaro MCGO, Sluka KA. ASIC3 Is Required for Development of Fatigue-Induced Hyperalgesia. Mol Neurobiol 2015; 53:1020-1030. [PMID: 25577172 DOI: 10.1007/s12035-014-9055-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/08/2014] [Indexed: 12/23/2022]
Abstract
An acute bout of exercise can exacerbate pain, hindering participation in regular exercise and daily activities. The mechanisms underlying pain in response to acute exercise are poorly understood. We hypothesized that proton accumulation during muscle fatigue activates acid-sensing ion channel 3 (ASIC3) on muscle nociceptors to produce hyperalgesia. We investigated the role of ASIC3 using genetic and pharmacological approaches in a model of fatigue-enhanced hyperalgesia. This model uses two injections of pH 5.0 saline into muscle in combination with an electrically induced fatigue of the same muscle just prior to the second injection of acid to induce mechanical hyperalgesia. We show a significant decrease in muscle force and decrease in muscle pH after 6 min of electrical stimulation. Genetic deletion of ASIC3 using knockout mice and pharmacological blockade of ASIC3 with APETx2 in muscle prevents the fatigue-enhanced hyperalgesia. However, ASIC3(-/-) mice and APETx2 have no effect on the fatigue response. Genetic deletion of ASIC3 in primary afferents innervating muscle using an HSV-1 expressing microRNA (miRNA) to ASIC3 surprisingly had no effect on the development of the hyperalgesia. Muscle fatigue increased the number of macrophages in muscle, and removal of macrophages from muscle with clodronate liposomes prevented the development of fatigue-enhanced hyperalgesia. Thus, these data suggest that fatigue reduces pH in muscle that subsequently activates ASIC3 on macrophages to enhance hyperalgesia to muscle insult.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Neuroscience Graduate Program, Pain Research Program, Department of Physical Therapy and Rehabilitation Science, University of Iowa, 1-248 MEB, Iowa City, IA, 52242, USA
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, Aracaju, Brazil
| | | | - Kathleen A Sluka
- Neuroscience Graduate Program, Pain Research Program, Department of Physical Therapy and Rehabilitation Science, University of Iowa, 1-248 MEB, Iowa City, IA, 52242, USA.
| |
Collapse
|
70
|
Sluka KA, Gregory NS. The dichotomized role for acid sensing ion channels in musculoskeletal pain and inflammation. Neuropharmacology 2015; 94:58-63. [PMID: 25582293 DOI: 10.1016/j.neuropharm.2014.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 01/24/2023]
Abstract
Chronic muscle pain affects between 11 and 24% of the world's population with the majority of people experiencing musculoskeletal pain at some time in their life. Acid sensing ion channels (ASICs) are important sensors of modest decreases in extracellular pH that occur within the physiological range. These decreases in extracellular pH occur in response to inflammation, fatiguing exercise, and ischemia. Further, injection of acidic saline into muscle produces enhanced nociceptive behaviors in animals and pain in human subjects. Of the different types of ASICs, ASIC3 and ASIC1 have been implicated in transmission of nociceptive information from the musculoskeletal system. The current review will provide an overview of the evidence for ASIC3 and ASIC1 in musculoskeletal pain in both inflammatory and non-inflammatory models. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, IA 52242, USA.
| | - Nicholas S Gregory
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
71
|
Lin SH, Sun WH, Chen CC. Genetic exploration of the role of acid-sensing ion channels. Neuropharmacology 2015; 94:99-118. [PMID: 25582292 DOI: 10.1016/j.neuropharm.2014.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/27/2022]
Abstract
Advanced gene targeting technology and related tools in mice have been incorporated into studies of acid-sensing ion channels (ASICs). A single ASIC subtype can be knocked out specifically and screened thoroughly for expression in the nervous system at the cellular level. Mapping studies have further shed light on the initiation and identification of related behavioral phenotypes. Here we review studies involving genetically engineered mouse models used to investigate the physiological function of individual ASIC subtypes: ASIC1 (and ASIC1a), ASIC2, ASIC3 and ASIC4. We discuss the detailed expression studies and significant phenotypes revealed with gene knockout for most known Asic subtypes. Each strategy designed to manipulate mouse genetics has advantages and disadvantages. We discuss the limitations of these Asic-knockout models and propose future directions to solve the genetic issues. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Shing-Hong Lin
- Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Wei-Hsin Sun
- Department of Life Sciences, National Central University, Jhongli 32054, Taiwan.
| | - Chih-Cheng Chen
- Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
72
|
Ross JL, Queme LF, Shank AT, Hudgins RC, Jankowski MP. Sensitization of group III and IV muscle afferents in the mouse after ischemia and reperfusion injury. THE JOURNAL OF PAIN 2014; 15:1257-70. [PMID: 25245401 PMCID: PMC4302035 DOI: 10.1016/j.jpain.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/22/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Ischemic myalgia is a unique type of muscle pain in the patient population. The role that discrete muscle afferent subpopulations play in the generation of pain during ischemic events, however, has yet to be determined. Using 2 brachial artery occlusion models to compare prolonged ischemia or transient ischemia with reperfusion of the muscles, we found that both injuries caused behavioral decrements in grip strength, as well as increased spontaneous pain behaviors. Using our ex vivo forepaw muscles, median and ulnar nerves, dorsal root ganglion, and spinal cord recording preparation, we found after both prolonged and transient ischemia that there was a significant increase in the number of afferents that responded to both noxious and non-noxious chemical (lactate, adenosine triphosphate, varying pH) stimulation of the muscles compared to uninjured controls. However, we found an increase in firing to heat stimuli specifically in muscle afferents during prolonged ischemia, but a distinct increase in afferent firing to non-noxious chemicals and decreased mechanical thresholds after transient ischemia. The unique changes in afferent function observed also corresponded with distinct patterns of gene expression in the dorsal root ganglia. Thus, the development of ischemic myalgia may be generated by unique afferent-based mechanisms during prolonged and transient ischemia. PERSPECTIVE This study analyzed the response properties of thinly myelinated group III and unmyelinated group IV muscle afferents during prolonged and transient ischemia in addition to pain behaviors and alterations in DRG gene expression in the mouse. Results suggest that mechanisms of pain generation during prolonged ischemia may be different from ischemia/reperfusion.
Collapse
Affiliation(s)
- Jessica L. Ross
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Luis F. Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Aaron T. Shank
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Renita C. Hudgins
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati, Cincinnati OH 45229
| |
Collapse
|
73
|
Radu BM, Dumitrescu DI, Marin A, Banciu DD, Iancu AD, Selescu T, Radu M. Advanced type 1 diabetes is associated with ASIC alterations in mouse lower thoracic dorsal root ganglia neurons. Cell Biochem Biophys 2014; 68:9-23. [PMID: 23723009 DOI: 10.1007/s12013-013-9678-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acid-sensing ion channels (ASICs) from dorsal root ganglia (DRG) neurons are proton sensors during ischemia and inflammation. Little is known about their role in type 1 diabetes (T1D). Our study was focused on ASICs alterations determined by advanced T1D status. Primary neuronal cultures were obtained from lower (T9-T12) thoracic DRG neurons from Balb/c and TCR-HA(+/-)/Ins-HA(+/-) diabetic male mice (16 weeks of age). Patch-clamp recordings indicate a change in the number of small DRG neurons presenting different ASIC-type currents. Multiple molecular sites of ASICs are distinctly affected in T1D, probably due to particular steric constraints for glycans accessibility to the active site: (i) ASIC1 current inactivates faster, while ASIC2 is slower; (ii) PcTx1 partly reverts diabetes effects against ASIC1- and ASIC2-inactivations; (iii) APETx2 maintains unaltered potency against ASIC3 current amplitude, but slows ASIC3 inactivation. Immunofluorescence indicates opposite regulation of different ASIC transcripts while qRT-PCR shows that ASIC mRNA ranking (ASIC2 > ASIC1 > ASIC3) remains unaltered. In conclusion, our study has identified biochemical and biophysical ASIC changes in lower thoracic DRG neurons due to advanced T1D. As hypoalgesia is present in advanced T1D, ASICs alterations might be the cause or the consequence of diabetic insensate neuropathy.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Section of Anatomy and Histology, Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
74
|
Sun X, Jin J, Zhang JG, Qi L, Braun FK, Zhang XD, Xu F. Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs. Acta Biochim Biophys Sin (Shanghai) 2014; 46:774-81. [PMID: 25079679 DOI: 10.1093/abbs/gmu067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Non-steroid anti-inflammatory drugs (NSAIDs) are generally used in the treatment of inflammation and pain through cyclooxygenase (COX) inhibition. Mounting evidence has indicated additional COX-independent targets for NSAIDs including acid-sensing ion channels (ASICs) 1a and 3. However, detailed function and mechanism of ASICs still remain largely elusive. In this study, the impact of NSAIDs on ASICs in nucleus pulposus cells of the human intervertebral disk was investigated. Nucleus pulposus cells were isolated and cultured from protruded disk tissues of 40 patients. It was shown that ASIC1a and ASIC3 were expressed and functional in these cells by analyzing proton-gated currents after ASIC inhibition. We further investigated the neuroprotective capacity of ibuprofen (a COX inhibitor), psalmotoxin-1 (PcTX1, a tarantula toxin specific for homomeric ASIC1a), and amiloride (a classic inhibitor of the epithelial sodium channel ENaC/DEG family to which ASICs belong). PcTX1-containing venom has been shown to be comparable with amiloride in its neuroprotective features in rodent models of ischemia. Taken together, our data showed that amiloride, PcTX1, and ibuprofen decreased ASIC protein expression and thereby exerted protective effects from ASIC inhibition-mediated cell damage.
Collapse
Affiliation(s)
- Xue Sun
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Jin
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ji-Gang Zhang
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Cancer Center, Houston 77030, USA
| | - Frank Karl Braun
- Department of Lymphoma & Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston 77054, USA
| | - Xing-Ding Zhang
- Department of Lymphoma & Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston 77054, USA Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Feng Xu
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
75
|
Sugimura N, Ikeuchi M, Izumi M, Kawano T, Aso K, Kato T, Ushida T, Yokoyama M, Tani T. Repeated intra-articular injections of acidic saline produce long-lasting joint pain and widespread hyperalgesia. Eur J Pain 2014; 19:629-38. [PMID: 25158678 DOI: 10.1002/ejp.584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Synovial fluid in inflamed joint shows a drop in pH, which activates proton-gated ion channels in nociceptors. No studies have ever tried to develop and characterize acid-induced joint pain. METHODS Rats were injected intra-articularly with pH 4.0 acidic saline twice, 5 days apart. Pain-related behaviour tests including weight-bearing asymmetry, paw withdrawal threshold and knee compression threshold were conducted. To clarify the roles of proton-gated ion channels, rats were injected intra-articularly with selective antagonists for ASIC1a, ASIC3 and TRPV1 on day 5 (before the second injection) or on day 14. Underlying peripheral and central pain mechanisms were evaluated using joint histology, interleukin-1β concentrations in the synovium, single-fibre recording of the knee afferent and expression of phosphorylated cyclic adenosine monophosphate-responsive element-binding protein (p-CREB) in the spinal dorsal horn. RESULTS Repeated injections of acidic saline induced weight-bearing asymmetry, decrease in paw withdrawal threshold and knee compression threshold bilaterally, which lasted until day 28. Early administration of ASIC3 antagonist reduced the bilateral and long-lasting hyperalgesia. Neither articular degeneration nor synovial inflammation was observed. C-fibre of the knee afferent was activated by acidic saline, which was attenuated by pre-injection of ASIC3 antagonist. p-CREB expression was transiently up-regulated bilaterally on day 6, but not on day 14. CONCLUSION We developed and characterized a model of acid-induced long-lasting bilateral joint pain. Peripheral ASIC3 and spinal p-CREB played important roles for the development of hyperalgesia. This animal model gives insights into the mechanisms of joint pain, which is helpful in developing better pain treatments.
Collapse
Affiliation(s)
- N Sugimura
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
da Silva MD, Bobinski F, Sato KL, Kolker SJ, Sluka KA, Santos ARS. IL-10 cytokine released from M2 macrophages is crucial for analgesic and anti-inflammatory effects of acupuncture in a model of inflammatory muscle pain. Mol Neurobiol 2014; 51:19-31. [PMID: 24961568 DOI: 10.1007/s12035-014-8790-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Abstract
Muscle pain is a common medical problem that is difficult to treat. One nonpharmacological treatment used is acupuncture, a procedure in which fine needles are inserted into body points with the intent of relieving pain and other symptoms. Here we investigated the effects of manual acupuncture (MA) on modulating macrophage phenotype and interleukin-10 (IL-10) concentrations in animals with muscle inflammation. Carrageenan, injected in the gastrocnemius muscle of mice, induces an inflammatory response characterized by mechanical hyperalgesia and edema. The inflammation is initially a neutrophilic infiltration that converts to a macrophage-dominated inflammation by 48 h. MA of the Sanyinjiao or Spleen 6 (SP6) acupoint reduces nociceptive behaviors, heat, and mechanical hyperalgesia and enhanced escape/avoidance and the accompanying edema. SP6 MA increased muscle IL-10 levels and was ineffective in reducing pain behaviors and edema in IL-10 knockout (IL-10(-/-)) mice. Repeated daily treatments with SP6 MA induced a phenotypic switch of muscle macrophages with reduced M1 macrophages (pro-inflammatory cells) and an increase of M2 macrophages (anti-inflammatory cells and important IL-10 source). These findings provide new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentrations in muscle to reduce pain and inflammation.
Collapse
Affiliation(s)
- Morgana D da Silva
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | | | | | | | | | | |
Collapse
|
77
|
Martínez-Rojas VA, Barragán-Iglesias P, Rocha-González HI, Murbartián J, Granados-Soto V. Role of TRPV1 and ASIC3 in formalin-induced secondary allodynia and hyperalgesia. Pharmacol Rep 2014; 66:964-71. [PMID: 25443722 DOI: 10.1016/j.pharep.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND In the present study we determined the role of transient receptor potential V1 channel (TRPV1) and acid-sensing ion channel 3 (ASIC3) in chronic nociception. METHODS 1% formalin was used to produce long-lasting secondary allodynia and hyperalgesia in rats. Western blot was used to determine TRPV1 and ASIC3 expression in dorsal root ganglia. RESULTS Peripheral ipsilateral, but not contralateral, pre-treatment (-10min) with the TRPV1 receptor antagonists capsazepine (0.03-0.3μM/paw) and A-784168 (0.01-1μM/paw) prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in the ipsilateral and contralateral paws. Likewise, peripheral ipsilateral, but not contralateral, pre-treatment with the non-selective and selective ASIC3 blocker benzamil (0.1-10μM/paw) and APETx2 (0.02-2μM/paw), respectively, prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Peripheral ipsilateral post-treatment (day 6 after formalin injection) with capsazepine (0.03-0.3μM/paw) and A-784168 (0.01-1μM/paw) reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. In addition, peripheral ipsilateral post-treatment with benzamil (0.1-10μM/paw) and APETx2 (0.02-2μM/paw), respectively, reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. TRPV1 and ASIC3 proteins were expressed in dorsal root ganglion in normal conditions, and 1% formalin injection increased expression of both proteins in this location at 1 and 6 days compared to naive rats. CONCLUSIONS Data suggest that TRPV1 and ASIC3 participate in the development and maintenance of long-lasting secondary allodynia and hyperalgesia induced by formalin in rats. The use of TRPV1 and ASIC3 antagonists by peripheral administration could prove useful to treat chronic pain.
Collapse
Affiliation(s)
- Vladimir A Martínez-Rojas
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico
| | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Janet Murbartián
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico.
| |
Collapse
|
78
|
Abstract
The discovery of new drug targets represents a real opportunity for developing fresh strategies against pain. Ion channels are interesting targets because they are directly involved in the detection and the transmission of noxious stimuli by sensory fibres of the peripheral nervous system and by neurons of the spinal cord. Acid-Sensing Ion Channels (ASICs) have emerged as important players in the pain pathway. They are neuronal, voltage-independent depolarizing sodium channels activated by extracellular protons. The ASIC family comprises several subunits that need to associate into homo- or hetero-trimers to form a functional channel. The ASIC1 and ASIC3 isoforms are particularly important in sensory neurons, whereas ASIC1a, alone or in association with ASIC2, is essential in the central nervous system. The potent analgesic effects associated with their inhibition in animals (which can be comparable to those of morphine) and data suggesting a role in human pain illustrate the therapeutic potential of these channels.
Collapse
Affiliation(s)
- Eric Lingueglia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France - Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France - LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| |
Collapse
|
79
|
Gong W, Kolker SJ, Usachev Y, Walder RY, Boyle DL, Firestein GS, Sluka KA. Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium. Arthritis Res Ther 2014; 16:R121. [PMID: 24923411 PMCID: PMC4095605 DOI: 10.1186/ar4577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS). Methods Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay. Results Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS. Conclusions Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.
Collapse
|
80
|
Jankowski MP, Ross JL, Weber JD, Lee FB, Shank AT, Hudgins RC. Age-dependent sensitization of cutaneous nociceptors during developmental inflammation. Mol Pain 2014; 10:34. [PMID: 24906209 PMCID: PMC4059454 DOI: 10.1186/1744-8069-10-34] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/22/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND It is well-documented that neonates can experience pain after injury. However, the contribution of individual populations of sensory neurons to neonatal pain is not clearly understood. Here we characterized the functional response properties and neurochemical phenotypes of single primary afferents after injection of carrageenan into the hairy hindpaw skin using a neonatal ex vivo recording preparation. RESULTS During normal development, we found that individual afferent response properties are generally unaltered. However, at the time period in which some sensory neurons switch their neurotrophic factor responsiveness, we observe a functional switch in slowly conducting, broad spiking fibers ("C"-fiber nociceptors) from mechanically sensitive and thermally insensitive (CM) to polymodal (CPM). Cutaneous inflammation induced prior to this switch (postnatal day 7) specifically altered mechanical and heat responsiveness, and heat thresholds in fast conducting, broad spiking ("A"-fiber) afferents. Furthermore, hairy skin inflammation at P7 transiently delayed the functional shift from CM to CPM. Conversely, induction of cutaneous inflammation after the functional switch (at P14) caused an increase in mechanical and thermal responsiveness exclusively in the CM and CPM neurons. Immunocytochemical analysis showed that inflammation at either time point induced TRPV1 expression in normally non-TRPV1 expressing CPMs. Realtime PCR and western blotting analyses revealed that specific receptors/channels involved in sensory transduction were differentially altered in the DRGs depending on whether inflammation was induced prior to or after the functional changes in afferent prevalence. CONCLUSION These data suggest that the mechanisms of neonatal pain development may be generated by different afferent subtypes and receptors/channels in an age-related manner.
Collapse
Affiliation(s)
- Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Finocchietti S, Graven-Nielsen T, Arendt-Nielsen L. Bone hyperalgesia after mechanical impact stimulation: a human experimental pain model. Somatosens Mot Res 2014; 31:178-85. [PMID: 24850154 DOI: 10.3109/08990220.2014.911171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hyperalgesia in different musculoskeletal structures including bones is a major clinical problem. An experimental bone hyperalgesia model was developed in the present study. Hyperalgesia was induced by three different weights impacted on the shinbone in 16 healthy male and female subjects. The mechanical impact pain threshold (IPT) was measured as the height from which three weights (165, 330, and 660 g) should be dropped to elicit pain at the shinbone. Temporal summation of pain to repeated impact stimuli was assessed. All these stimuli caused bone hyperalgesia. The pressure pain threshold (PPT) was assessed by a computerized pressure algometer using two different probes (1.0 and 0.5 cm(2)). All parameters were recorded before (0), 24, 72, and 96 h after the initial stimulations. The IPTs were lowest 24 h after hyperalgesia induction for all three weights and the effect lasted up to 72 h (p < 0.05). The PPT obtained with the 1.0 cm(2) probe was significantly lower than the PPT obtained with the 0.5 cm(2) probe, regardless of the time. Females developed more pronounced hyperalgesia reflected in reduced IPTs and PPTs (p < 0.05). Temporal summation was significantly (p < 0.05) facilitated after induction of hyperalgesia with the strongest facilitation in males. The developed bone pain and hyperalgesia model may provide the basis for studying this fundamental mechanism of bone-related hyperalgesia and be used for profiling compounds developed for this target.
Collapse
Affiliation(s)
- Sara Finocchietti
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University , Aalborg , Denmark
| | | | | |
Collapse
|
82
|
Xiang HB, Liu C, Liu TT, Xiong J. Central circuits regulating the sympathetic outflow to lumbar muscles in spinally transected mice by retrograde transsynaptic transport. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2987-2997. [PMID: 25031717 PMCID: PMC4097212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Despite considerable interest in the mechanisms that control the hyperalgesia associated with muscle inflammation, the CNS descending pathways that coordinate autonomic circuits regulating lumbar muscles are not adequately understood. Here we used both pseudorabies virus (PRV)-614 retrograde transsynaptic tracing and spinally transected method in 33 C57BL/6J mice to map the polysynaptic pathways between lumbar muscle and CNS. Tissues were processed for dual-label immunocytochemical detection between PRV-614 and tryptophan hydroxylase (TPH) or tyrosine hydroxylase (TH)-expressing neurons in CNS. In intact mice, PRV-614 was transported to the intermediolateral column (IML) and ventral horn (VH) of spinal cord, with subsequent transport to many brain regions, including the medullary raphe nuclei, rostral ventrolateral medulla (RVLM), A5 cell group regions (A5), locus coeruleus (LC), the medullary and pontine reticular formation nucleus (MRN and PRN), paraventricular nucleus of the hypothalamus (PVN), and other central sites. However, PRV-614 in spinally transected mice produced retrograde infection of IML, with subsequent transport to main brain regions that have been shown to contribute to regulating sympathetic circuits, including RVLM, Lateral paragigantocellular reticular nucleus (LPGi), A5, LC, and PVN, whereas PRV-614 labeling in VH and MRN was eliminated in almost every case. In above five brain regions, dual-labeling immunocytochemistry showed coexpression of PRV-614/TPH and PRV-614/TH immunoreactive (IR) neurons involved in these regulatory circuits. Our results reveal a hierarchical organization of central autonomic circuits controlling the lumbar muscles, thus providing neuroanatomical substrates for the central catecholaminergic and serotonergic system to regulate the lumbar muscles.
Collapse
Affiliation(s)
- Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, PR China
| |
Collapse
|
83
|
Gregory NS, Sluka KA. Anatomical and physiological factors contributing to chronic muscle pain. Curr Top Behav Neurosci 2014; 20:327-48. [PMID: 24633937 PMCID: PMC4294469 DOI: 10.1007/7854_2014_294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic muscle pain remains a significant source of suffering and disability despite the adoption of pharmacologic and physical therapies. Muscle pain is mediated by free nerve endings distributed through the muscle along arteries. These nerves project to the superficial dorsal horn and are transmitted primarily through the spinothalamic tract to several cortical and subcortical structures, some of which are more active during the processing of muscle pain than other painful conditions. Mechanical forces, ischemia, and inflammation are the primary stimuli for muscle pain, which is reflected in the array of peripheral receptors contributing to muscle pain-ASIC, P2X, and TRP channels. Sensitization of peripheral receptors and of central pain processing structures are both critical for the development and maintenance of chronic muscle pain. Further, variations in peripheral receptors and central structures contribute to the significantly greater prevalence of chronic muscle pain in females.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Neuroscience Graduate Program, University of Iowa, 3144 Med Labs, Iowa City, IA, 52246, USA,
| | | |
Collapse
|
84
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
85
|
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 2014; 115:189-209. [PMID: 24467911 DOI: 10.1016/j.pneurobio.2013.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na(+)/H(+) exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H(+)-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca(2+), Na(+), and Zn(2+), and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention.
Collapse
|
86
|
Kweon HJ, Suh BC. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 2014; 46:295-304. [PMID: 23790972 PMCID: PMC4133903 DOI: 10.5483/bmbrep.2013.46.6.121] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn2+, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel’s large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated. [BMB Reports 2013; 46(6): 295-304]
Collapse
Affiliation(s)
- Hae-Jin Kweon
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | | |
Collapse
|
87
|
Noël J, Salinas M, Baron A, Diochot S, Deval E, Lingueglia E. Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 2014; 3:331-46. [DOI: 10.1586/ecp.10.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
88
|
Kwon SG, Roh DH, Yoon SY, Moon JY, Choi SR, Choi HS, Kang SY, Han HJ, Beitz AJ, Oh SB, Lee JH. Acid evoked thermal hyperalgesia involves peripheral P2Y1 receptor mediated TRPV1 phosphorylation in a rodent model of thrombus induced ischemic pain. Mol Pain 2014; 10:2. [PMID: 24401144 PMCID: PMC3895685 DOI: 10.1186/1744-8069-10-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/30/2013] [Indexed: 01/04/2023] Open
Abstract
Background We previously developed a thrombus-induced ischemic pain (TIIP) animal model, which was characterized by chronic bilateral mechanical allodynia without thermal hyperalgesia (TH). On the other hand we had shown that intraplantar injection of acidic saline facilitated ATP-induced pain, which did result in the induction of TH in normal rats. Because acidic pH and increased ATP are closely associated with ischemic conditions, this study is designed to: (1) examine whether acidic saline injection into the hind paw causes the development of TH in TIIP, but not control, animals; and (2) determine which peripheral mechanisms are involved in the development of this TH. Results Repeated intraplantar injection of pH 4.0 saline, but not pH 5.5 and 7.0 saline, for 3 days following TIIP surgery resulted in the development of TH. After pH 4.0 saline injections, protein levels of hypoxia inducible factor-1α (HIF-1α) and carbonic anhydrase II (CA II) were elevated in the plantar muscle indicating that acidic stimulation intensified ischemic insults with decreased tissue acidity. At the same time point, there were no changes in the expression of TRPV1 in hind paw skin, whereas a significant increase in TRPV1 phosphorylation (pTRPV1) was shown in acidic saline (pH 4.0) injected TIIP (AS-TIIP) animals. Moreover, intraplantar injection of chelerythrine (a PKC inhibitor) and AMG9810 (a TRPV1 antagonist) effectively alleviated the established TH. In order to investigate which proton- or ATP-sensing receptors contributed to the development of TH, amiloride (an ASICs blocker), AMG9810, TNP-ATP (a P2Xs antagonist) or MRS2179 (a P2Y1 antagonist) were pre-injected before the pH 4.0 saline. Only MRS2179 significantly prevented the induction of TH, and the increased pTRPV1 ratio was also blocked in MRS2179 injected animals. Conclusion Collectively these data show that maintenance of an acidic environment in the ischemic hind paw of TIIP rats results in the phosphorylation of TRPV1 receptors via a PKC-dependent pathway, which leads to the development of TH mimicking what occurs in chronic ischemic patients with severe acidosis. More importantly, peripheral P2Y1 receptors play a pivotal role in this process, suggesting a novel peripheral mechanism underlying the development of TH in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
89
|
Price MP, Gong H, Parsons MG, Kundert JR, Reznikov LR, Bernardinelli L, Chaloner K, Buchanan GF, Wemmie JA, Richerson GB, Cassell MD, Welsh MJ. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. GENES BRAIN AND BEHAVIOR 2013; 13:179-94. [PMID: 24256442 DOI: 10.1111/gbb.12108] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/25/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022]
Abstract
Acid-sensing ion channels (ASICs) generate H(+) -gated Na(+) currents that contribute to neuronal function and animal behavior. Like ASIC1, ASIC2 subunits are expressed in the brain and multimerize with ASIC1 to influence acid-evoked currents and facilitate ASIC1 localization to dendritic spines. To better understand how ASIC2 contributes to brain function, we localized the protein and tested the behavioral consequences of ASIC2 gene disruption. For comparison, we also localized ASIC1 and studied ASIC1(-/-) mice. ASIC2 was prominently expressed in areas of high synaptic density, and with a few exceptions, ASIC1 and ASIC2 localization exhibited substantial overlap. Loss of ASIC1 or ASIC2 decreased freezing behavior in contextual and auditory cue fear conditioning assays, in response to predator odor and in response to CO2 inhalation. In addition, loss of ASIC1 or ASIC2 increased activity in a forced swim assay. These data suggest that ASIC2, like ASIC1, plays a key role in determining the defensive response to aversive stimuli. They also raise the question of whether gene variations in both ASIC1 and ASIC2 might affect fear and panic in humans.
Collapse
Affiliation(s)
- M P Price
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Effect of deep tissue incision on pH responses of afferent fibers and dorsal root ganglia innervating muscle. Anesthesiology 2013; 119:1186-97. [PMID: 23732174 DOI: 10.1097/aln.0b013e31829bd791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Understanding the mechanisms underlying deep tissue pain in the postoperative period is critical to improve therapies. Using the in vitro plantar flexor digitorum brevis muscle-nerve preparation and patch clamp recordings from cultured dorsal root ganglia neurons innervating incised and unincised muscle, the authors investigated responses to various pH changes. METHODS Incision including the plantar flexor digitorum brevis muscle or sham operation was made in the rat hind paw. On postoperative day 1, in vitro single-fiber recording was undertaken. On the basis of previous studies, the authors recorded from at least 40 fibers per group. Also DiI-labeled dorsal root ganglia innervating muscle from rats undergoing incision and a sham operation were cultured and tested for acid responses, using whole cell patch clamp recordings. RESULTS The prevalence of responsive group IV afferents to lactic acid pH 6.5 in the incision group (15 of 67; 22.3%) was greater than that in the control group (2 of 35; 5.7%; P=0.022). In dorsal root ganglia neurons innervating muscle, incision increased mean current amplitudes of acid-evoked currents; the acid-sensing ion channel blocker, amiloride 300 μM, inhibited more than 75% of the acid-evoked current, whereas, the transient receptor vanilloid receptor 1 blocker (AMG9810 1 μM) did not cause significant inhibition. CONCLUSION The authors' experiments demonstrated that incision increases the responses of flexor digitorum brevis muscle afferent fibers to weak acid solutions, and increased acid-evoked currents in dorsal root ganglia innervating muscle. The authors' data suggest that up-regulation of acid-sensing ion channels might underlie this increased chemosensitivity caused by surgery.
Collapse
|
91
|
Matricon J, Muller E, Accarie A, Meleine M, Etienne M, Voilley N, Busserolles J, Eschalier A, Lazdunski M, Bourdu S, Gelot A, Ardid D. Peripheral contribution of NGF and ASIC1a to colonic hypersensitivity in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2013; 25:e740-54. [PMID: 23902154 DOI: 10.1111/nmo.12199] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder associated with idiopathic colonic hypersensitivity (CHS). However, recent studies suggest that low-grade inflammation could underlie CHS in IBS. The pro-inflammatory mediator nerve growth factor (NGF) plays a key role in the sensitization of peripheral pain pathways and several studies have reported its contribution to visceral pain development. NGF modulates the expression of Acid-Sensing Ion Channels (ASICs), which are proton sensors involved in sensory neurons sensitization. This study examined the peripheral contribution of NGF and ASICs to IBS-like CHS induced by butyrate enemas in the rat colon. METHODS Colorectal distension and immunohistochemical staining of sensory neurons were used to evaluate NGF and ASICs contribution to the development of butyrate-induced CHS. KEY RESULTS Systemic injection of anti-NGF antibodies or the ASICs inhibitor amiloride prevented the development of butyrate-induced CHS. A significant increase in NGF and ASIC1a protein expression levels was observed in sensory neurons of rats displaying butyrate-induced CHS. This increase was specific of small- and medium-diameter L1 + S1 sensory neurons, where ASIC1a was co-expressed with NGF or trkA in CGRP-immunoreactive somas. ASIC1a was also overexpressed in retrogradely labeled colon sensory neurons. Interestingly, anti-NGF antibody administration prevented ASIC1a overexpression in sensory neurons of butyrate-treated rats. CONCLUSIONS & INFERENCES Our data suggest that peripheral NGF and ASIC1a concomitantly contribute to the development of butyrate-induced CHS NGF-ASIC1a interplay may have a pivotal role in the sensitization of colonic sensory neurons and as such, could be considered as a potential new therapeutic target for IBS treatment.
Collapse
Affiliation(s)
- J Matricon
- NEURO-DOL, Pharmacologie Fondamentale et Clinique de la Douleur, Faculté de Médecine, INSERM/UdA, UMR 1107, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.
Collapse
|
93
|
Jeong S, Lee SH, Kim YO, Yoon MH. Antinociceptive effects of amiloride and benzamil in neuropathic pain model rats. J Korean Med Sci 2013; 28:1238-43. [PMID: 23960454 PMCID: PMC3744715 DOI: 10.3346/jkms.2013.28.8.1238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 05/22/2013] [Indexed: 12/04/2022] Open
Abstract
Amiloride and benzamil showed antinocicepitve effects in several pain models through the inhibition of acid sensing ion channels (ASICs). However, their role in neuropathic pain has not been investigated. In this study, we investigated the effect of the intrathecal amiloride and benzamil in neuropathic pain model, and also examined the role of ASICs on modulation of neuropathic pain. Neuropathic pain was induced by L4-5 spinal nerve ligation in male Sprague-Dawley rats weighing 100-120 g, and intrathecal catheterization was performed for drug administration. The effects of amiloride and benzamil were measured by the paw-withdrawal threshold to a mechanical stimulus using the up and down method. The expression of ASICs in the spinal cord dorsal horn was also analyzed by RT-PCR. Intrathecal amiloride and benzamil significantly increased the paw withdrawal threshold in spinal nerve-ligated rats (87%±12% and 76%±14%, P=0.007 and 0.012 vs vehicle, respectively). Spinal nerve ligation increased the expression of ASIC3 in the spinal cord dorsal horn (P=0.01), and this increase was inhibited by both amiloride and benzamil (P<0.001 in both). In conclusion, intrathecal amiloride and benzamil display antinociceptive effects in the rat spinal nerve ligation model suggesting they may present an alternative pharmacological tool in the management of neuropathic pain at the spinal level.
Collapse
Affiliation(s)
- Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Korea
| | | | | | | |
Collapse
|
94
|
Sluka KA, Rasmussen LA, Edgar MM, O'Donnell JM, Walder RY, Kolker SJ, Boyle DL, Firestein GS. Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. ACTA ACUST UNITED AC 2013; 65:1194-202. [PMID: 23335302 DOI: 10.1002/art.37862] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Through its location on nociceptors, acid-sensing ion channel 3 (ASIC-3) is activated by decreases in pH and plays a significant role in musculoskeletal pain. We recently showed that decreases in pH activate ASIC-3 located on fibroblast-like synoviocytes (FLS), which are key cells in the inflammatory process. The purpose of this study was to test whether ASIC-3-deficient mice with arthritis have altered inflammation and pain relative to controls. METHODS Collagen antibody-induced arthritis (CAIA) was generated by injection of an anti-type II collagen antibody cocktail. Inflammation and pain parameters in ASIC-3(-/-) and ASIC-3(+/+) mice were assessed. Disease severity was assessed by determining clinical arthritis scores, measuring joint diameters, analyzing joint histology, and assessing synovial gene expression by quantitative polymerase chain reaction analysis. Cell death was assessed with a Live/Dead assay of FLS in response to decreases in pH. Pain behaviors in the mice were measured by examining withdrawal thresholds in the joints and paws and by measuring their physical activity levels. RESULTS Surprisingly, ASIC-3(-/-) mice with CAIA demonstrated significantly increased joint inflammation, joint destruction, and expression of interleukin-6 (IL-6), matrix metalloproteinase 3 (MMP-3), and MMP-13 in joint tissue as compared to ASIC-3(+/+) mice. ASIC-3(+/+) FLS showed enhanced cell death when exposed to pH 6.0 in the presence of IL-1β, which was abolished in ASIC-3(-/-) FLS. Despite enhanced disease severity, ASIC-3(-/-) mice did not develop mechanical hypersensitivity of the paw and showed greater levels of physical activity. CONCLUSION Our findings are consistent with the hypothesis that ASIC-3 plays a protective role in the inflammatory arthritides by limiting inflammation through enhanced synoviocyte cell death, which reduces disease severity, and through the production of pain, which reduces joint use.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa Carver College of Medicine, Iowa City 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na (+) channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on.
Collapse
Affiliation(s)
- Guo Yingjun
- Department of Basic Medicine; Qilu Hospital; Shandong University; Ji'nan, Shandong Province, PR China
| | | |
Collapse
|
96
|
|
97
|
Dang K, Bielefeldt K, Gebhart GF. Cyclophosphamide-induced cystitis reduces ASIC channel but enhances TRPV1 receptor function in rat bladder sensory neurons. J Neurophysiol 2013; 110:408-17. [PMID: 23636721 DOI: 10.1152/jn.00945.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using patch-clamp techniques, we studied the plasticity of acid-sensing ion channels (ASIC) and transient receptor potential V1 (TRPV1) channel function in dorsal root ganglia (DRG) neurons retrogradely labeled from the bladder. Saline (control) or cyclophosphamide (CYP) was given intraperitoneally on days 1, 3, and 5. On day 6, lumbosacral (LS, L6-S2) or thoracolumbar (TL, T13-L2) DRG were removed and dissociated. Bladders and bladder DRG neurons from CYP-treated rats showed signs of inflammation (greater myeloperoxidase activity; lower intramuscular wall pH) and increased size (whole cell capacitance), respectively, compared with controls. Most bladder neurons (>90%) responded to protons and capsaicin. Protons produced multiphasic currents with distinct kinetics, whereas capsaicin always triggered a sustained response. The TRPV1 receptor antagonist A-425619 abolished capsaicin-triggered currents and raised the threshold of heat-activated currents. Prolonged exposure to an acidic environment (pH range: 7.2 to 6.6) inhibited proton-evoked currents, potentiated the capsaicin-evoked current, and reduced the threshold of heat-activated currents in LS and TL bladder neurons. CYP treatment reduced density but not kinetics of all current components triggered by pH 5. In contrast, CYP-treatment was associated with an increased current density in response to capsaicin in LS and TL bladder neurons. Correspondingly, heat triggered current at a significantly lower temperature in bladder neurons from CYP-treated rats compared with controls. These results reveal that cystitis differentially affects TRPV1- and ASIC-mediated currents in both bladder sensory pathways. Acidification of the bladder wall during inflammation may contribute to changes in nociceptive transmission mediated through the TRPV1 receptor, suggesting a role for TRPV1 in hypersensitivity associated with cystitis.
Collapse
Affiliation(s)
- Khoa Dang
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
98
|
Baron A, Diochot S, Salinas M, Deval E, Noël J, Lingueglia E. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 2013; 75:187-204. [PMID: 23624383 DOI: 10.1016/j.toxicon.2013.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent proton-gated cation channels that are largely expressed in the nervous system as well as in some non-neuronal tissues. In rodents, six different isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) can associate into homo- or hetero-trimers to form a functional channel. Specific polypeptide toxins targeting ASIC channels have been isolated from the venoms of spider (PcTx1), sea anemone (APETx2) and snakes (MitTx and mambalgins). They exhibit different and sometimes partially overlapping pharmacological profiles and are usually blockers of ASIC channels, except for MitTx, which is a potent activator. This review focuses on the use of these toxins to explore the structure-function relationships, the physiological and the pathophysiological roles of ASIC channels, illustrating at the same time the therapeutic potential of some of these natural compounds.
Collapse
Affiliation(s)
- Anne Baron
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France; Université de Nice-Sophia Antipolis, 06560 Valbonne, France; LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
99
|
Sluka KA, O'Donnell JM, Danielson J, Rasmussen LA. Regular physical activity prevents development of chronic pain and activation of central neurons. J Appl Physiol (1985) 2013; 114:725-33. [PMID: 23271699 PMCID: PMC3615604 DOI: 10.1152/japplphysiol.01317.2012] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 02/08/2023] Open
Abstract
Chronic musculoskeletal pain is a significant health problem and is associated with increases in pain during acute physical activity. Regular physical activity is protective against many chronic diseases; however, it is unknown if it plays a role in development of chronic pain. The current study induced physical activity by placing running wheels in home cages of mice for 5 days or 8 wk and compared these to sedentary mice without running wheels in their home cages. Chronic muscle pain was induced by repeated intramuscular injection of pH 4.0 saline, exercise-enhanced pain was induced by combining a 2-h fatiguing exercise task with a low-dose muscle inflammation (0.03% carrageenan), and acute muscle inflammation was induced by 3% carrageenan. We tested the responses of the paw (response frequency) and muscle (withdrawal threshold) to nociceptive stimuli. Because the rostral ventromedial medulla (RVM) is involved in exercise-induced analgesia and chronic muscle pain, we tested for changes in phosphorylation of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor in the RVM. We demonstrate that regular physical activity prevents the development of chronic muscle pain and exercise-induced muscle pain by reducing phosphorylation of the NR1 subunit of the NMDA receptor in the central nervous system. However, regular physical activity has no effect on development of acute pain. Thus physical inactivity is a risk factor for development of chronic pain and may set the nervous system to respond in an exaggerated way to low-intensity muscle insults.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
100
|
Sluka KA. Peripheral and central mechanisms of chronic musculoskeletal pain. Pain Manag 2013; 3:103-107. [PMID: 24504260 DOI: 10.2217/pmt.12.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dr Sluka is a professor in the Department of Physical Therapy and Rehabilitation Science at the University of Iowa (IA, USA). She is also a member of the Pain Research Program and the Neuroscience Graduate Program. She received a physical therapy degree from Georgia State University (GA, USA) and practiced physical therapy pain management in Houston (TX, USA) before obtaining a PhD in Anatomy from the University of Texas Medical Branch in Galveston (TX, USA). After a postdoctoral fellowship with Dr William D Willis, she joined the faculty at the University of Iowa. Dr Sluka’s research focuses on the neurobiology of musculoskeletal pain, as well as the mechanisms and effectiveness of nonpharmacological pain treatments commonly used by physical therapists. She has published over 140 peer-reviewed manuscripts, numerous book chapters and a textbook on Pain Mechanisms and Management for the Physical Therapist. She has received numerous awards including the Marian Williams Award for Research in Physical Therapy and is a Catherine Worthingham Fellow from the American Physical Therapy Association and the Frederick WL Kerr Basic Science Research Award from the American Pain Society. She is actively involved in the International Association for the Study of Pain, the American Pain Society and the American Physical Therapy Association, serving on committees, task forces and society boards.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Department of Physical Therapy & Rehabilitation Science, 1-248 MEB, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|