51
|
Feng Y, Lin X, Qian L, Hu N, Kuang C, Li X, Li Z, Huang L, Liu M. Morphological and physiological variations of Cyclocarya paliurus under different soil water capacities. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1663-1674. [PMID: 32801494 PMCID: PMC7415069 DOI: 10.1007/s12298-020-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Soil water capacity (SWC) is a very important factor for the artificial cultivation and production of seedling in Cyclocarya paliurus. To understand SWC requirement for seedling cultivation and to investigate morphological and physiological changes under different SWCs, a 100-day SWC treatment was conducted during artificial cultivation; four treatments were 10-20 wt% SWC (W1), 30-40 wt% SWC (W2), 50-60 wt% SWC (W3), and 70-80 wt% SWC (W4). The result showed that W3 was suitable for seedling cultivation. Compared with W3, growth biomass decreased and water content increased at W1, W2 and W4; K, Ca, and Mg content increased under W1, while Na content increased under W4; SOD, PPO, POD, and CAT activity in leaf significantly increased under W1 and W4, of which SOD activity was the highest, and MDA content reached its maximum under W1. W1 and W4 had negative effects on seedling growth, and seedlings adapt to unfavorable water condition by morphological and physiological responses. Our research would be useful for artificial cultivation and management of Cyclocarya species.
Collapse
Affiliation(s)
- Ying Feng
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Xiulian Lin
- Huizhou Engineering Vocational College, Huizhou, Guangdong China
| | - Lianwen Qian
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Nengjing Hu
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Chunfeng Kuang
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Xiaofeng Li
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Zheng Li
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Liangrui Huang
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Mingming Liu
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| |
Collapse
|
52
|
Kumar SS, Arya M, Mahadevappa P, Giridhar P. Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111937. [PMID: 32570057 DOI: 10.1016/j.jphotobiol.2020.111937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022]
Abstract
Basella rubra L. is an important green leafy vegetable vine and is known for its health benefits in traditional medicine. Light is a basic physical factor essential to the development and bioactive secondary metabolite production in in vitro callus cultures. The present study researched the impact of different photoperiods on biomass, bioactive compounds, and antioxidant activity in callus cultures of B. rubra. The in vitro seedling based cotyledonary leaf explants responded differently, when cultured on Murashige and Skoog (MS) medium with varying concentrations and combination of auxins and cytokinins. The best callus proliferation was found in MS medium with 0.1 mg.L-1 1-naphthaleneacetic acid (NAA) and 6 mg.L-1 6-benzylaminopurine (BAP), with greenish callus inception by about 2 weeks. The growth curve recorded for 6 weeks of culturing revealed that the photoperiod effect was found to be pivotal for acquiring biomass. At the fifth week, the continuous light supported maximum biomass (12.42 g) production followed by the 16:8 h photoperiod (9.02 g) and continuous darkness (4.28 g). The 80% ethanol extract of 1-week-old callus that grows under the 16:8 h photoperiod showed the highest total phenolic content (TPC) (74 mg.100 g-1 fresh weight, FW) when compared to all other extracts at different stages. The ferric reducing antioxidant power assay showed the highest (336.23 mg.100 g-1 FW) activity in methanol extractions of first-week callus cultures maintained in the continuous light condition. HPLC-UV identification and quantification of individual phenolics and flavonoids, such as gallic, trans-cinnamic, quercetin, protocatechuic and rutin, were highest in the callus cultures. The outcome of this study is significant to this plant, as B. rubra is familiar for its important health constituents with high-value bioactives and applications in the pharma and nutraceutical industries.
Collapse
Affiliation(s)
- Sandopu Sravan Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India
| | - Monisha Arya
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India
| | - Paramesha Mahadevappa
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India; Presently : Department of Studies and Research in Food Technology, Davangere University, Davangere, Karnataka 577007, India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
53
|
Liang J, Li W, Jia X, Zhang Y, Zhao J. Transcriptome sequencing and characterization of Astragalus membranaceus var. mongholicus root reveals key genes involved in flavonoids biosynthesis. Genes Genomics 2020; 42:901-914. [PMID: 32519170 DOI: 10.1007/s13258-020-00953-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao is a traditional medicinal herb of Leguminosae since it contains bioactive compounds such as flavonoids, which have significant pharmacological effects on immunity and antioxidant. However, the scanty genomic and transcriptome resources of Astragalus membranaceus have hindered further exploration of its biosynthesis and accumulation mechanism. OBJECTIVE This project aim to further improve our understanding of the relationship between transcriptional behavior and flavonoids content of A. mongholicus. METHODS The accumulation of flavonoids and related gene expression in five different developmental stages (A: vegetative, B: florescence, C: fruiting, D: fruit ripening and E: defoliating stages) of A. mongholicus root were studied by combining UV spectrophotometry and transcriptomic techniques. The de novo assembly, annotation and functional evaluation of the contigs were performed with bioinformatics tools. RESULTS After screening and assembling the raw data, there were a total of 158,123 unigenes with an average length of 644.89 bp were finally obtained, which has 8362 unigenes could be jointly annotated by NR, SwissProt, eggNOG, GO, KEGG and Pfam databases. KEGG enrichment analysis was performed on differentially expressed genes(DEGs)in the four groups (A vs. B, B vs. C, C vs. D, D vs. E). The results showed that many DEGs in each group were significantly enriched to flavonoids biosynthesis related pathways. Among them, a number of 86 were involved in the biosynthesis of isoflavonoid (12), flavonoid (5) and phenylpropanoid (69). Further analysis of these DEGs revealed that the expression levels of key genes such as PAL, 4CL, CCR, COMT, DFR, etc. were all down-regulated at the fruiting stage, and then raised at the fruit ripening stage. This expression pattern was similar to the accumulation trend of total flavonoids content. CONCLUSIONS In summary, this comprehensive transcriptome dataset allowed the identification of genes associated with flavonoids metabolic pathways. The results laid a foundation for the biosynthesis and regulation of flavonoids. It also provided a scientific basis for the most suitable harvest time and resource utilization of A. mongholicus.
Collapse
Affiliation(s)
- Jianping Liang
- Department of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Wenqian Li
- Department of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaoyun Jia
- Department of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ying Zhang
- Department of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianping Zhao
- Experiment mangement center, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| |
Collapse
|
54
|
Nitrogen Forms Alter Triterpenoid Accumulation and Related Gene Expression in Cyclocarya paliurus (Batalin) Iljinsk. Seedlings. FORESTS 2020. [DOI: 10.3390/f11060631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclocarya paliurus (Batalin) Iljinsk. is a multiple function tree species distributed in subtropical areas, and its leaves have been used in medicine and nutraceutical foods in China. However, little information on the effects of nitrogen (N) forms and ratios on growth and secondary metabolite accumulation is available for C. paliurus. The impact of five NO3−/NH4+ ratios on biomass production, triterpenoid accumulation and related gene expression in C. paliurus seedlings was evaluated at the middle N nutrition supply. Significant differences in seedling growth, triterpenoid accumulation and relative gene expression were observed among the different NO3−/NH4+ ratio treatments. The highest triterpenoid content was achieved in a sole NO3− or NH4+ nutrition, while the mixed N nutrition with equal ratio of NO3− to NH4+ produced the highest biomass production in the seedlings. However, the highest triterpenoid accumulation was achieved at the treatment with the ratio of NO3−/NH4+ = 2.33. Therefore, the mixed N nutrition of NO3− and NH4+ was beneficial to the triterpenoid accumulation per plant. The relative expression of seven genes that are involved in triterpenoid biosynthesis were all up-regulated under the sole NH4+ or NO3− nutrition conditions, and significantly positive correlations between triterpenoid content and relative gene expression of key enzymes were detected in the leaves. Our results indicated that NO3− is the N nutrition preferred by C. paliurus, but the mixture of NO3− and NH4+ at an appropriate ratio would improve the leaf triterpenoid yield per area.
Collapse
|
55
|
Flavonoid Compounds and Photosynthesis in Passiflora Plant Leaves under Varying Light Intensities. PLANTS 2020; 9:plants9050633. [PMID: 32429275 PMCID: PMC7285318 DOI: 10.3390/plants9050633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/26/2022]
Abstract
Functional constituents in the leaves of Passiflora plants contain antidepressant and antianxiety effects which are beneficial to human health and fitness. The objective of this study was to investigate leaf growth, physiological parameters, and secondary metabolite contents of Tainung No. 1 variety (P. edulis × P. edulis f. flavicarpa.) and P. suberosa in response to three light intensity conditions, including 100% light intensity (LI-100), 50% light intensity (LI-50), and 15% light intensity (LI-15) for 2 months. The leaf number, length, width, area, dry weight (DW), minimal fluorescence (Fo), maximal fluorescence (Fm), maximum photochemical efficiency of photosystem II, and soil-plant analysis development (SPAD) values of all tested plants increased with a decreasing light intensity, except for the leaf number and DW of P. suberosa plants. Low values of the net photosynthetic rate, transpiration rate, and stomatal conductance of Tainung No. 1 leaves in the LI-15 treatment showed the acclimation capacity of these plants. These observations together with high values of leaf growth traits of Fo, Fm, SPAD, and the intercellular-to-atmospheric CO2 concentration ratio indicate their physiological plasticity, which is of fundamental importance when cultivating plants in environments with different light availabilities. Wide variations occurred in total phenol (TP), total flavonoid (TF), orientin (OR), and isovitexin (IV) contents of the two Passiflora varieties, and P. suberosa contained higher TP and TF contents than did Tainung No. 1 in each light treatment but IV content of P. suberosa was lower than that of Tainung No. 1 in the LI-15 treatment. Moreover, increases in TF, OR, and IV contents of Tainung No. 1 and P. suberosa were clear in the LI-50 and LI-100 treatments, respectively, compared to LI-15 treatment. Leaf growth, physiological parameters, and secondary metabolite accumulations in Passiflora species can be optimized for commercial production via lighting control technologies, and this approach may also be applicable to leafy vegetables to produce a stable industrial supply of high leaf yields and metabolite contents.
Collapse
|
56
|
Wang Y, Gao S, He X, Li Y, Zhang Y, Chen W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ 2020; 8:e8354. [PMID: 31976179 PMCID: PMC6964689 DOI: 10.7717/peerj.8354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023] Open
Abstract
Total phenols, flavonoids, minerals and amino acids content were investigated in leaves of four fern species grown under four shading treatments with different sunlight transmittance in 35% full sunlight (FS), 13% FS, 8% FS and 4% FS. The leaves of four fern species contain high levels of total phenols and flavonoids, abundant minerals and amino acids, and these all were strongly affected by transmittance. Total phenols and flavonoids content were significantly positively correlated with transmittance, while minerals and total amino acids content were significantly negatively correlated with transmittance, a finding that supports research into how higher light intensity can stimulate the synthesis of phenols and flavonoids, and proper shading can stimulate the accumulation of minerals and amino acids. Matteuccia struthiopteris (L.) Todaro (MS) had the highest total phenols content, Athyrium multidentatum (Doll.) Ching (AM) showed the highest total amino acids, total essential amino acids content, Osmunda cinnamomea (L) var. asiatica Fernald (OCA) exhibited the highest total non-essential amino acids and flavonoids content. Pteridium aquilinum (L.) Kuhn var. latiusculum (Desy.) Underw. ex Heller (PAL) exhibited the highest minerals content. This research can provide a scientific basis for the cultivation and management of those four fern species.
Collapse
Affiliation(s)
- Yanlin Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Shanshan Gao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Xingyuan He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Forest Ecology and Management, Chinese Academy of Sciences, Shenyang, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Yan Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Yue Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Wei Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Forest Ecology and Management, Chinese Academy of Sciences, Shenyang, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
57
|
Comprehensive Transcriptome Analysis Revealed the Effects of the Light Quality, Light Intensity, and Photoperiod on Phlorizin Accumulation in Lithocarpus polystachyus Rehd. FORESTS 2019. [DOI: 10.3390/f10110995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lithocarpus polystachyus Rehd. is an important medicinal plant species grown in southern China, with phlorizin as its main active substance. The effects of light conditions on phlorizin biosynthesis in L. polystachyus remain unclear. Thus, we analyzed the transcriptomes of L. polystachyus plants cultivated under diverse light qualities, light intensities, and photoperiods. The light treatments resulted in 5977–8027 differentially expressed genes (DEGs), which were functionally annotated based on the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Genes encoding transcription factors from 89 families were differentially expressed after the light treatments, implying these transcription factors are photoresponsive. Phenylalanine ammonia lyase (PAL) and 4-coumarate-CoA ligase (4CL) are the key enzymes for the accumulation of phlorizin. The transcription levels of PAL2, PAL, 4CL1 (DN121614), 4CLL7, and 4CL1 (DN102161) were positively correlated with phlorizin accumulation, suggesting that these genes are important for phlorizin biosynthesis. An ultra-high-performance liquid chromatography method was used to quantify the phlorizin content. Phlorizin accumulated in response to the green light treatment and following appropriate decreases in the light intensity or appropriate increases in the duration of the light exposure. The green light, 2000 lx, and 3000 lx treatments increased the PAL activity of L. polystachyus, but the regulatory effects of the light intensity treatments on PAL activity were relatively weak. This study represents the first comprehensive analysis of the light-induced transcriptome of L. polystachyus. The study results may form the basis of future studies aimed at elucidating the molecular mechanism underlying phlorizin biosynthesis in L. polystachyus. Moreover, this study may be relevant for clarifying the regulatory effects of light on the abundance of bioactive components in medicinal plants.
Collapse
|
58
|
Chen X, Mao X, Huang P, Fang S. Morphological Characterization of Flower Buds Development and Related Gene Expression Profiling at Bud Break Stage in Heterodichogamous Cyclocarya paliurus (Batal.) lljinskaja. Genes (Basel) 2019; 10:genes10100818. [PMID: 31627470 PMCID: PMC6827045 DOI: 10.3390/genes10100818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja, a unique species growing in southern China, is a multi-function tree species with medicinal, healthcare, material, and ornamental values. So far, sexual reproduction is the main method for extensive cultivation of C. paliurus plantations, but this is limited by low seed plumpness resulted from the character of heterodichogamy. Phenological observations have revealed the asynchronism of flower development in this species. However, its molecular mechanism remains largely unknown. To reveal molecular mechanism of heterodichogamy in C. paliurus, transcriptome of female (F) and male (M) buds from two mating types (protandry, PA; protogyny, PG) at bud break stage were sequenced using Illumina Hiseq 4000 platform. The expression patterns of both 32 genes related to flowering and 58 differentially expressed transcription factors (DETFs) selected from 6 families were divided four groups (PG-F, PG-M, PA-F, and PA-M) into two categories: first flowers (PG-F and PA-M) and later flowers (PA-F and PG-M). The results indicated that genes related to plant hormones (IAA, ABA, and GA) synthesis and response, glucose metabolism, and transcription factors (especially in MIKC family) played significant roles in regulating asynchronism of male and female flowers in the same mating type. The expression of DETFs showed two patterns. One contained DETFs up-regulated in first flowers in comparison to later flowers, and the other was the reverse. Nine genes related to flowering were selected for qRT-PCR to confirm the accuracy of RNA-seq, and generally, the RPKM values of these genes were consistent with the result of qRT-PCR. The results of this work could improve our understanding in asynchronism of floral development within one mating type in C. paliurus at transcriptional level, as well as lay a foundation for further study in heterodichogamous plants.
Collapse
Affiliation(s)
- Xiaoling Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xia Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Shengzuo Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
59
|
Andi SA, Gholami M, Ford CM, Maskani F. The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111625. [PMID: 31610430 DOI: 10.1016/j.jphotobiol.2019.111625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 11/28/2022]
Abstract
The cultivated grapevine V. vinifera is a rich source of stilbene compounds such as resveratrol, which are widely believed to provide dietary protection against the development of cardiovascular disease and some forms of cancer. Elicitation is a well-known strategy to increase commercial production of natural products in plant cell suspension culture systems. Callus tissues obtained from berry slices of V. vinifera cv. Shahani grown on an optimized medium were used to develop cell suspension cultures used to study the effects of elicitation on stilbene synthesis. The effect of two light regimes (135.1 μmol. s-1 m-2 radiation, and dark), the concentration of phenylalanine (Phe; 0, 0.1, 0.5 and 1 mM) and of methyl jasmonate elicitor (MeJA; 0 and 25 μM), alone or in combination, were tested. The results showed that cultures grown in darkness resulted in significantly higher levels of the accumulation of total stilbenes (resveratrol + piceid) compared with the high light condition. The combined treatments of dark +1 mM Phe and dark +25 μM MeJA induced the synthesis of high levels of total phenolics, total flavonoids and total stilbenes. Finally, the combined elicitation of dark +1 mM Phe + 25 μM MeJA gave the highest synergistic coefficient (1.24) and proved to be the most effective treatment for the production of total phenolics, total flavonoids, and total stilbenes with mean contents of 384.80 mg GA/g DW, 527.62 mg catechin/g DW and 188.34 μg/g DW, respectively. The results of our study suggest that the combinations of dark together with MeJA and/or Phe can be used as an efficient method for the future scale-up of V. vinifera cell cultures for the production of high value stilbene compounds in a bioreactor system.
Collapse
Affiliation(s)
- Seyed Ali Andi
- Faculty of Medicinal Plants, Amol University of Special Modern Technologies, Amol, Iran.
| | - Mansour Gholami
- Faculty of Agriculture, Department of Horticultural Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Christopher M Ford
- Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5005, Australia
| | - Fereshteh Maskani
- Faculty of Agriculture, Department of Horticultural Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
60
|
Effects of Phosphate-Solubilizing Bacteria and N2-fixing Bacteria on Nutrient Uptake, Plant Growth, and Bioactive Compound Accumulation in Cyclocarya paliurus (Batal.) Iljinskaja. FORESTS 2019. [DOI: 10.3390/f10090772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Research Highlights: We firstly interpreted nutritional mechanisms involved in growth regulation and phytochemical accumulation in Cyclocarya paliurus (Batal.) Iljinskaja under three inoculant types, and selected bacterial inoculations for multiple purposes of C. paliurus plantation. Co-inoculation with phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) performed better in growth promotion and nutrient uptake than single bacterial inoculation. Background and Objectives: C. paliurus is a well-known medicinal plant as it accumulates bioactive compounds (BC) such as flavonoids, triterpenoids, and polysaccharides, in its leaves. However, the effects of plant growth-promoting rhizobacteria (PGPR) on the growth and BC yields in C. paliurus are not known. To fill this gap, the effects of different inoculants should be examined. Materials and Methods: A pot experiment was conducted and two-year-old C. paliurus seedlings were inoculated with three inoculant types (PSB, NFB, PSB + NFB). After four rounds of inoculation, the growth characteristics and concentrations of flavonoids, triterpenoids, and polysaccharides, as well as the nutrients in soil and leaves, were measured. Results: The inoculations resulted in the elevation of soil available nutrients, with improvements in plant growth, BC yield, and N and P uptake in leaves. However, the changes in BC yields were mainly a result of elevated leaf biomass rather than BC concentrations, and leaf biomass was regulated by C:N:P stoichiometry. Co-inoculation with PSB and NFB was applicable for leaf production, while inocula related to NFB resulted in higher BC yields than PSB and control. Conclusions: Our results implied that bacterial inoculants improved plant growth and BC yield by altering the nutrients in soil and leaves, while three inoculant types showed a different pattern in which co-inoculation with four strains presented a greater performance than single bacterial addition.
Collapse
|
61
|
Yellow light promotes the growth and accumulation of bioactive flavonoids in Epimedium pseudowushanense. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111550. [DOI: 10.1016/j.jphotobiol.2019.111550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
62
|
Alrifai O, Hao X, Marcone MF, Tsao R. Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6075-6090. [PMID: 31021630 DOI: 10.1021/acs.jafc.9b00819] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light-emitting diode (LED) lights have recently been applied in controlled environment agriculture toward growing vegetables of various assortments, including microgreens. Spectral qualities of LED light on photosynthesis in microgreens are currently being studied for their ease of spectral optimization and high photosynthetic efficiency. This review aims to summarize the most recent discoveries and advances in specific phytochemical biosyntheses modulated by LED and other conventional lighting, to identify research gaps, and to provide future perspectives in this emerging multidisciplinary field of research and development. Specific emphasis was made on the effect of light spectral qualities on the biosynthesis of phenolics, carotenoids, and glucosinolates, as these phytochemicals are known for their antioxidant, anti-inflammatory effects, and many health benefits. Future perspectives on enhancing biosynthesis of these bioactives using the rapidly progressing LED light technology are further discussed.
Collapse
Affiliation(s)
- Oday Alrifai
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Xiuming Hao
- Harrow Research & Development Center , Agriculture and Agri-Food Canada , 2585 County Road 20 , Harrow , Ontario N0R 1G0 , Canada
| | - Massimo F Marcone
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
63
|
Eichhorn Bilodeau S, Wu BS, Rufyikiri AS, MacPherson S, Lefsrud M. An Update on Plant Photobiology and Implications for Cannabis Production. FRONTIERS IN PLANT SCIENCE 2019; 10:296. [PMID: 31001288 PMCID: PMC6455078 DOI: 10.3389/fpls.2019.00296] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/25/2019] [Indexed: 05/18/2023]
Abstract
This review presents recent developments in plant photobiology and lighting systems for horticultural crops, as well as potential applications for cannabis (Cannabis sativa and C. indica) plant production. The legal and commercial production of the cannabis plant is a relatively new, rapidly growing, and highly profitable industry in Europe and North America. However, more knowledge transfer from plant studies and horticultural communities to commercial cannabis plant growers is needed. Plant photosynthesis and photomorphogenesis are influenced by light wavelength, intensity, and photoperiod via plant photoreceptors that sense light and control plant growth. Further, light properties play a critical role in plant vegetative growth and reproductive (flowering) developmental stages, as well as in biomass, secondary metabolite synthesis, and accumulation. Advantages and disadvantages of widespread greenhouse lighting systems that use high pressure sodium lamps or light emitting diode (LED) lighting are known. Some artificial plant lighting practices will require improvements for cannabis production. By manipulating LED light spectra and stimulating specific plant photoreceptors, it may be possible to minimize operation costs while maximizing cannabis biomass and cannabinoid yield, including tetrahydrocannabinol (or Δ9-tetrahydrocannabinol) and cannabidiol for medicinal and recreational purposes. The basics of plant photobiology (photosynthesis and photomorphogenesis) and electrical lighting systems are discussed, with an emphasis on how the light spectrum and lighting strategies could influence cannabis production and secondary compound accumulation.
Collapse
Affiliation(s)
| | | | | | | | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
64
|
Leaf Nitrogen and Phosphorus Stoichiometry of Cyclocarya paliurus across China. FORESTS 2018. [DOI: 10.3390/f9120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leaf stoichiometry (nitrogen (N), phosphorus (P) and N:P ratio) is not only important for studying nutrient composition in forests, but also reflects plant biochemical adaptation to geographic and climate conditions. However, patterns of leaf stoichiometry and controlling factors are still unclear for most species. In this study, we determined leaf N and P stoichiometry and their relationship with soil properties, geographic and climate variables for Cyclocarya paliurus based on a nation-wide dataset from 30 natural populations in China. The mean values of N and P concentrations and N:P ratios were 9.57 mg g−1, 0.91 mg g−1 and 10.51, respectively, indicating that both leaf N and P concentrations in C. paliurus forests were lower than those of China and the global flora, and almost all populations were limited in N concentration. We found significant differences in leaf N and P concentrations and N:P ratios among the sampled C. paliurus populations. However, there were no significant correlations between soil properties (including organic C, total N and P concentrations) and leaf stoichiometry. The pattern of variation in leaf N concentration across the populations was positively correlated with latitude (24.46° N–32.42° N), but negatively correlated with mean annual temperature (MAT); meanwhile, leaf N concentration and N:P ratios were negatively correlated with mean temperature in January (MTmin) and mean annual frost-free period (MAF). Together, these results suggested that temperature-physiological stoichiometry with a latitudinal trend hold true at both global and regional levels. In addition, the relationships between leaf stoichiometry and climate variables provided information on how leaf stoichiometry of this species may respond to climate change.
Collapse
|
65
|
Liu Y, Wang T, Fang S, Zhou M, Qin J. Responses of Morphology, Gas Exchange, Photochemical Activity of Photosystem II, and Antioxidant Balance in Cyclocarya paliurus to Light Spectra. FRONTIERS IN PLANT SCIENCE 2018; 9:1704. [PMID: 30519253 PMCID: PMC6258815 DOI: 10.3389/fpls.2018.01704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/01/2018] [Indexed: 05/28/2023]
Abstract
Light quality is a critical factor regulating photosynthetic capacity which directly affects the final yield of plants. Cyclocarya paliurus is a multiple function tree species and its leaves are widely used as tea production and ingredient in functional foods in China. However, the effects of varying light quality on photosynthetic process and the photoprotective mechanisms remains unexplored in-depth. In this study, the biomass accumulation, morphology changes, photosynthetic capacity, stomata ultrastructure, pigments content, PSII activity, reactive oxygen species production, antioxidant enzymes, and phenolic content of C. paliurus plants under different light-emitting diodes (LED) light treatments were investigated to test a hypothesis that the difference in photosynthetic efficiency of C. paliurus plants under differential light quality is related to the degree of photoinhibition and the activation of photoprotection. We found that C. paliurus plants performed better under the treatments of WL (white light, 445 and 560 nm) and BL (blue light, 456 nm) than the treatment of GL (green light, 514 nm) and RL (red light, 653 nm). The better performances were characterized by higher values of photosynthetic capacity, total biomass, pigments content, specific leaf mass per area, seeding height increment, leaf thickness and palisade length. In contrast, plants under the treatments of GL and RL suffered significant photoinhibition but effectively developed photoprotective mechanisms. Results of this study provide not only some insights of the response mechanisms of plant photosynthesis to light quality but also a scientific basis for improving the cultivation of C. paliurus plantations.
Collapse
Affiliation(s)
- Yang Liu
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mingming Zhou
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jian Qin
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
66
|
Liu Y, Cao Y, Fang S, Wang T, Yin Z, Shang X, Yang W, Fu X. Antidiabetic Effect of Cyclocarya paliurus Leaves Depends on the Contents of Antihyperglycemic Flavonoids and Antihyperlipidemic Triterpenoids. Molecules 2018; 23:molecules23051042. [PMID: 29710841 PMCID: PMC6100042 DOI: 10.3390/molecules23051042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 01/25/2023] Open
Abstract
Cyclocarya paliurus has been used commonly to treat diabetes in China. However, the effective components and the effect of plant origin remain unclear. In this study, C. paliurus leaves with different chemical compositions were selected from five geographical locations, and their effects on streptozotocin (STZ)-induced diabetic mice were evaluated with both ethanol and aqueous extracts. Glucose levels, lipid levels, and biomarkers of liver and kidney function were measured. The principal components of both C. paliurus ethanol and aqueous extracts from different geographical locations differed quantitatively and qualitatively. Results showed that C. paliurus extracts with better antihyperglycemic effects were characterized by higher contents of total flavonoids, especially quercetin-3-O-glucuronide and kaempferol-3-O-glucuronide. Furthermore, significantly negative correlations were found between triterpenoids contents and lipid levels. These results revealed the potential antihyperglycemic capacity of C. paliurus flavonoids and the antihyperlipidemic effect of C. paliurus triterpenoids. Thus, we suggest that the composition of C. paliurus compounds might help to design therapeutic alternatives for the treatment of diabetes mellitus. However, geographic origins and the extraction solvents can also affect the effectiveness of the treatment as these factors influence the chemical compositions and thereby the biological activities.
Collapse
Affiliation(s)
- Yang Liu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanni Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, 3041- 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 10009, China.
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxia Yang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiangxiang Fu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|