51
|
Royo F, Palomo L, Mleczko J, Gonzalez E, Alonso C, Martínez I, Pérez-Cormenzana M, Castro A, Falcon-Perez JM. Metabolically active extracellular vesicles released from hepatocytes under drug-induced liver-damaging conditions modify serum metabolome and might affect different pathophysiological processes. Eur J Pharm Sci 2017; 98:51-57. [DOI: 10.1016/j.ejps.2016.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 10/18/2016] [Indexed: 01/06/2023]
|
52
|
Casal E, Palomo L, Cabrera D, Falcon-Perez JM. A Novel Sensitive Method to Measure Catechol-O-Methyltransferase Activity Unravels the Presence of This Activity in Extracellular Vesicles Released by Rat Hepatocytes. Front Pharmacol 2016; 7:501. [PMID: 28066248 PMCID: PMC5179529 DOI: 10.3389/fphar.2016.00501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
There is a clear need for drug treatments to be selected according to the characteristics of an individual patient, in order to improve efficacy and reduce the number and severity of adverse drug reactions. One of the main enzymes to take into account in pharmacogenomics is catechol O-methyltransferase (COMT), which catalyzes the transfer of a methyl group from S-adenosylmethionine to catechols and catecholamines, like the neurotransmitters dopamine, epinephrine, and norepinephrine. Although, most of this enzyme is associated to intracellular vesicles, recently it has also been detected in extracellular vesicles secreted by hepatocytes and in serum circulating vesicles. COMT has implications in many neurological and psychiatric disorders like Parkinson's disease, chronic fatigue, pain response, schizophrenia, and bipolar disorders. Remarkably, genetic variations of COMT affect its activity and are associated to various human disorders from psychiatric diseases to estrogen-induced cancers. Consequently, the establishment of new methods to evaluate COMT activity is an important aspect to investigate the biology of this drug-metabolizing enzyme. Herein, we have developed a sensitive and selective method to determine COMT activity. We first optimized the activity in rat liver incubated with two different substrates; norepinephrine and dopamine. The enzymatically formed products (normetanephrine and 3-methoxytyramine, respectively) were extracted by solid-phase extraction using weak cation exchange cartridges, chromatographically separated, and detected and quantified using a mass spectrometer. The range of quantitation for both products was from 0.005 to 25 μg/mL. This methodology offers acceptable recovery for both enzymatic products (≥75%) and good accuracy and precision (≤15%). The lower limit of quantifications were 0.01 and 0.005 μM for 3-methoxytyramine and normetanephrine, respectively. Importantly, this sensitive assay was able to detect the presence of COMT activity in extracellular vesicles secreted by hepatocytes supporting a potential role of these vesicles in catecholamines and catecholestrogens metabolisms. In addition, the presence of COMT activity in extracellular vesicles opens new possibilities to develop tools to evaluate personalized drug response in a low invasive manner.
Collapse
Affiliation(s)
- Enriqueta Casal
- Metabolomics Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bizkaia, Spain
| | - Laura Palomo
- Exosomes Laboratory, Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bizkaia, Spain
| | - Diana Cabrera
- Metabolomics Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bizkaia, Spain
| | - Juan M Falcon-Perez
- Metabolomics Platform, CIC bioGUNE, CIBERehd, Bizkaia Technology ParkBizkaia, Spain; Exosomes Laboratory, Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology ParkBizkaia, Spain; Ikerbasque, Basque Foundation for ScienceBilbao, Spain
| |
Collapse
|
53
|
Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, LaRusso NF, Gores GJ, Malhi H. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016; 64:2219-2233. [PMID: 27628960 PMCID: PMC5115968 DOI: 10.1002/hep.28814] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-sized, membrane-bound vesicles released by cells into the extracellular milieu. EVs are now recognized to play a critical role in cell-to-cell communication. EVs contain important cargo in the form of proteins, lipids, and nucleic acids and serve as vectors for delivering this cargo from donor to acceptor or target cell. EVs are released under both physiologic and pathologic conditions, including liver diseases, and exert a wide range of effects on target cells. This review provides an overview on EV biogenesis, secretion, cargo, and target cell interactions in the context of select liver diseases. Specifically, the diverse roles of EVs in nonalcoholic steatohepatitis, alcoholic liver disease, viral hepatitis, cholangiopathies, and hepatobiliary malignancies are emphasized. Liver diseases often result in an increased release of EVs and/or in different cargo sorting into these EVs. Either of these alterations can drive disease pathogenesis. Given this fact, EVs represent a potential target for therapeutic intervention in liver disorders. Because altered EV composition may reflect the underlying disease condition, circulating EVs can be exploited for diagnostic and prognostic purposes as a liquid biopsy. Furthermore, ex vivo modified or synthesized EVs can be engineered as therapeutic nano-shuttles. Finally, we highlight areas that merit further investigation relevant to understanding how EVs regulate liver disease pathogenesis. (Hepatology 2016;64:2219-2233).
Collapse
Affiliation(s)
- Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Samar H. Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Vikas K. Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Leslie A. Morton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
54
|
Wang L, Skotland T, Berge V, Sandvig K, Llorente A. Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. Eur J Pharm Sci 2016; 98:80-85. [PMID: 27664330 DOI: 10.1016/j.ejps.2016.09.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 01/04/2023]
Abstract
Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumor-specific molecules can be found in exosomes isolated from biological fluids. We have previously analyzed the proteome of urinary exosomes by mass spectrometry, and identified proteins differentially expressed in prostate cancer patients compared to healthy males. Since mass spectrometry is so far not commonly used in clinical laboratories, we have here investigated whether antibody-based methods such as Western blot or ELISA can be used to validate the use of the identified proteins as prostate cancer biomarkers. Western blot experiments designed to detect flotillin 2, TMEM256, Rab3B and LAMTOR1 showed that the level of these proteins was higher in urinary exosomes from prostate cancer patients compared to healthy males. Furthermore, a receiver operating characteristic curve of flotillin 2 in samples from 16 controls and 16 patients showed an area under the curve of 0.91, and 88% sensitivity at a threshold set to give 94% specificity. In addition, ELISA-based detection of flotillin 2 and PARK7 showed that the combination of these proteins was able to distinguish prostate cancer patients and healthy controls with 68% sensitivity and 93% specificity. Several promising biomarkers identified by mass spectrometry could not be evaluated by Western blot or ELISA due to their low exosomal amount and/or lack of good antibodies. In conclusion, our results show that several urinary exosomal proteins identified as prostate cancer biomarkers by mass spectrometry have a high diagnostic value also when analyzed by immunology-based methods, thus bringing these biomarkers closer to a potential clinical use.
Collapse
Affiliation(s)
- Ling Wang
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Viktor Berge
- Department of Urology, Oslo University Hospital, 0586 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway; Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
| |
Collapse
|
55
|
Sato K, Meng F, Glaser S, Alpini G. Exosomes in liver pathology. J Hepatol 2016; 65:213-221. [PMID: 26988731 PMCID: PMC4912847 DOI: 10.1016/j.jhep.2016.03.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
Exosomes are small (∼100nm) membrane-bound extracellular vesicles released by various types of cells into biological fluids. They contain proteins, mRNAs and miRNAs as cargo. Different cell types can take up exosomes by endocytosis and the cargo contained within them can be transferred horizontally to these recipient cells. Exosomal proteins and miRNAs can be functional and regulate physiological cell events modifying the microenvironment in target cells, a key event of liver pathology. Exosome-mediated cell-cell communication can alter tumor growth, cell migration, antiviral infection and hepatocyte regeneration, indicating that exosomes have great potential for development as diagnostic or therapeutic tools. Analyses of circulating total or exosomal miRNAs have identified a large number of candidate miRNAs that are regulated in liver diseases, and the diagnostic testing using single or multiple miRNAs shows good sensitivity and specificity. Some candidate miRNAs have been identified to play an important role in various liver disorders. This review summarizes recent findings on the role of extracellular vesicles in liver diseases and their diagnostic and therapeutic potential, mainly focusing on exosomes but also includes microvesicles in liver pathology.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504,Academic Research Integration, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, USA; Department of Medicine, Texas A&M Health Science Center, College of Medicine, USA; Scott & White Digestive Disease Research Center, Scott & White, USA.
| |
Collapse
|
56
|
Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G, Turiák L, Buzas EI, Vékey K. Mass spectrometry of extracellular vesicles. MASS SPECTROMETRY REVIEWS 2016; 35:3-21. [PMID: 25705034 DOI: 10.1002/mas.21457] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The review briefly summaries main features of extracellular vesicles, a joint terminology for exosomes, microvesicles, and apoptotic vesicles. These vesicles are in the center of interest in biology and medical sciences, and form a very active field of research. Mass spectrometry (MS), with its specificity and sensitivity, has the potential to identify and characterize molecular composition of these vesicles; but as yet there are only a limited, but fast-growing, number of publications that use MS workflows in this field. MS is the major tool to assess protein composition of extracellular vesicles: qualitative and quantitative proteomics approaches are both reviewed. Beside proteins, lipid and metabolite composition of vesicles might also be best assessed by MS techniques; however there are few applications as yet in this respect. The role of alternative analytical approaches, like gel-based proteomics and antibody-based immunoassays, are also mentioned. The objective of the review is to give an overview of this fast-growing field to help orient MS-based research on extracellular vesicles.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Christopher Stanly
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| | - Lilla Turiák
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Edit I Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Károly Vékey
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
57
|
The Need for Biomarkers in Diagnosis and Prognosis of Drug-Induced Liver Disease: Does Metabolomics Have Any Role? BIOMED RESEARCH INTERNATIONAL 2015; 2015:386186. [PMID: 26824035 PMCID: PMC4707380 DOI: 10.1155/2015/386186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is a potentially fatal adverse event and the leading cause of acute liver failure in the US and in the majority of Europe. The liver can be affected directly, in a dose-dependent manner, or idiosyncratically, independently of the dose, and therefore unpredictably. Currently, DILI is a diagnosis of exclusion that physicians should suspect in patients with unexplained elevated liver enzymes. Therefore, new diagnostic and prognostic biomarkers are necessary to achieve an early and reliable diagnosis of DILI and thus improve the prognosis. Although several DILI biomarkers have been found through analytical and genetic tests and pharmacokinetic approaches, none of them have been able to display enough specificity and sensitivity, so new approaches are needed. In this sense, metabolomics is a strongly and promising emerging field that, from biofluids collected through minimally invasive procedures, can obtain early biomarkers of toxicity, which may constitute specific indicators of liver damage.
Collapse
|
58
|
Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med 2015; 13:261. [PMID: 26264599 PMCID: PMC4533956 DOI: 10.1186/s12967-015-0623-9] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022] Open
Abstract
Background It has been well documented that alcohol and its metabolites induce injury and inflammation in the liver. However, there is no potential biomarker to monitor the extent of liver injury in alcoholic hepatitis patients. MicroRNAs (miRNAs) are a class of non-coding RNAs that are involved in various physiologic and pathologic processes. In the circulation, a great proportion of miRNAs is associated with extracellular vesicles (EVs)/exosomes. Here, we hypothesized that the exosome-associated miRNAs can be used as potential biomarkers in alcoholic hepatitis (AH). Methods Exosomes were isolated from sera of alcohol-fed mice or pair-fed mice, and plasma of alcoholic hepatitis patients or healthy controls by ExoQuick. The exosomes were characterized by transmission electron microscopy and Western blot and enumerated with a Nanoparticle Tracking Analysis system. Firefly™ microRNA Assay was performed on miRNA extracted from mice sera. TaqMan microRNA assay was used to identify differentially expressed miRNAs in plasma of cohort of patients with AH versus controls followed by construction of receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of the candidates. Results The total number of circulating EVs was significantly increased in mice after alcohol feeding. Those EVs mainly consisted of exosomes, the smaller size vesicle subpopulation of EVs. By performing microarray screening on exosomes, we found nine inflammatory miRNAs which were deregulated in sera of chronic alcohol-fed mice compared to controls including upregulated miRNAs: miRNA-192, miRNA-122, miRNA-30a, miRNA-744, miRNA-1246, miRNA 30b and miRNA-130a. The ROC analyses indicated excellent diagnostic value of miRNA-192, miRNA-122, and miRNA-30a to identify alcohol-induced liver injury. We further validated findings from our animal model in human samples. Consistent with the animal model, total number of EVs, mostly exosomes, was significantly increased in human subjects with AH. Both miRNA-192 and miRNA-30a were significantly increased in the circulation of subjects with AH. miRNA-192 showed promising value for the diagnosis of AH. Conclusion Elevated level of EVs/exosomes and exosome-associated miRNA signature could serve as potential diagnostic markers for AH. In addition to the biomarker diagnostic capabilities, these findings may facilitate development of novel strategies for diagnostics, monitoring, and therapeutics of AH. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0623-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Banishree Saha
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
59
|
Kumar A, Baycin-Hizal D, Shiloach J, Bowen MA, Betenbaugh MJ. Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics Clin Appl 2015; 9:33-47. [PMID: 25523641 DOI: 10.1002/prca.201400097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Owing to recent advances in proteomics analytical methods and bioinformatics capabilities there is a growing trend toward using these capabilities for the development of drugs to treat human disease, including target and drug evaluation, understanding mechanisms of drug action, and biomarker discovery. Currently, the genetic sequences of many major organisms are available, which have helped greatly in characterizing proteomes in model animal systems and humans. Through proteomics, global profiles of different disease states can be characterized (e.g. changes in types and relative levels as well as changes in PTMs such as glycosylation or phosphorylation). Although intracellular proteomics can provide a broad overview of physiology of cells and tissues, it has been difficult to quantify the low abundance proteins which can be important for understanding the diseased states and treatment progression. For this reason, there is increasing interest in coupling comparative proteomics methods with subcellular fractionation and enrichment techniques for membranes, nucleus, phosphoproteome, glycoproteome as well as low abundance serum proteins. In this review, we will provide examples of where the utilization of different proteomics-coupled enrichment techniques has aided target and biomarker discovery, understanding the drug targeting mechanism, and mAb discovery. Taken together, these improvements will help to provide a better understanding of the pathophysiology of various diseases including cancer, autoimmunity, inflammation, cardiovascular disease, and neurological conditions, and in the design and development of better medicines for treating these afflictions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD, USA; Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
60
|
Distler U, Kuharev J, Tenzer S. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics. Expert Rev Proteomics 2014; 11:675-84. [DOI: 10.1586/14789450.2014.971114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
61
|
Fertig ET, Gherghiceanu M, Popescu LM. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med 2014; 18:1938-43. [PMID: 25257228 PMCID: PMC4244009 DOI: 10.1111/jcmm.12436] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022] Open
Abstract
Telocytes have been reported to play an important role in long-distance heterocellular communication in normal and diseased heart, both through direct contact (atypical junctions), as well as by releasing extracellular vesicles (EVs) which may act as paracrine mediators. Exosomes and ectosomes are the two main types of EVs, as classified by size and the mechanism of biogenesis. Using electron microscopy (EM) and electron tomography (ET) we have found that telocytes in culture release at least three types of EVs: exosomes (released from endosomes; 45 ± 8 nm), ectosomes (which bud directly from the plasma membrane; 128 ± 28 nm) and multivesicular cargos (MVC; 1 ± 0.4 μm), the latter containing tightly packaged endomembrane-bound vesicles (145 ± 35 nm). Electron tomography revealed that endomembrane vesicles are released into the extracellular space as a cargo enclosed by plasma membranes (estimated area of up to 3 μm(2)). This new type of EV, also released by telocytes in tissue, likely represents an essential component in the paracrine secretion of telocytes and may consequently be directly involved in heart physiology and regeneration.
Collapse
Affiliation(s)
- Emanuel T Fertig
- Electron Microscopy Laboratory, 'Victor Babeș National Institute of Pathology, Bucharest, Romania
| | | | | |
Collapse
|
62
|
Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:45-54. [PMID: 24957510 DOI: 10.1089/ten.teb.2014.0300] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs)-comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others-have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Tek N Lamichhane
- 1 Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | | | | | | | | | | |
Collapse
|
63
|
Oberemkoм AV. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.06.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|