51
|
The Presence of Cholesteryl Ester Transfer Protein (CETP) in Endothelial Cells Generates Vascular Oxidative Stress and Endothelial Dysfunction. Biomolecules 2021; 11:biom11010069. [PMID: 33430172 PMCID: PMC7825632 DOI: 10.3390/biom11010069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction precedes atherosclerosis and is an independent predictor of cardiovascular events. Cholesterol levels and oxidative stress are key contributors to endothelial damage, whereas high levels of plasma high-density lipoproteins (HDL) could prevent it. Cholesteryl ester transfer protein (CETP) is one of the most potent endogenous negative regulators of HDL-cholesterol. However, whether and to what degree CETP expression impacts endothelial function, and the molecular mechanisms underlying the vascular effects of CETP on endothelial cells, have not been addressed. Acetylcholine-induced endothelium-dependent relaxation of aortic rings was impaired in human CETP-expressing transgenic mice, compared to their non-transgenic littermates. However, endothelial nitric oxide synthase (eNOS) activation was enhanced. The generation of superoxide and hydrogen peroxide was increased in aortas from CETP transgenic mice, while silencing CETP in cultured human aortic endothelial cells effectively decreased oxidative stress promoted by all major sources of ROS: mitochondria and NOX2. The endoplasmic reticulum stress markers, known as GADD153, PERK, and ARF6, and unfolded protein response effectors, were also diminished. Silencing CETP reduced endothelial tumor necrosis factor (TNF) α levels, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression, diminishing monocyte adhesion. These results support the notion that CETP expression negatively impacts endothelial cell function, revealing a new mechanism that might contribute to atherosclerosis.
Collapse
|
52
|
Meyer N, Brodowski L, Richter K, von Kaisenberg CS, Schröder-Heurich B, von Versen-Höynck F. Pravastatin Promotes Endothelial Colony-Forming Cell Function, Angiogenic Signaling and Protein Expression In Vitro. J Clin Med 2021; 10:E183. [PMID: 33419165 PMCID: PMC7825508 DOI: 10.3390/jcm10020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction is a primary feature of several cardiovascular diseases. Endothelial colony-forming cells (ECFCs) represent a highly proliferative subtype of endothelial progenitor cells (EPCs), which are involved in neovascularization and vascular repair. Statins are known to improve the outcome of cardiovascular diseases via pleiotropic effects. We hypothesized that treatment with the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor pravastatin increases ECFCs' functional capacities and regulates the expression of proteins which modulate endothelial health in a favourable manner. Umbilical cord blood derived ECFCs were incubated with different concentrations of pravastatin with or without mevalonate, a key intermediate in cholesterol synthesis. Functional capacities such as migration, proliferation and tube formation were addressed in corresponding in vitro assays. mRNA and protein levels or phosphorylation of protein kinase B (AKT), endothelial nitric oxide synthase (eNOS), heme oxygenase-1 (HO-1), vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and endoglin (Eng) were analyzed by real time PCR or immunoblot, respectively. Proliferation, migration and tube formation of ECFCs were enhanced after pravastatin treatment, and AKT- and eNOS-phosphorylation were augmented. Further, expression levels of HO-1, VEGF-A and PlGF were increased, whereas expression levels of sFlt-1 and Eng were decreased. Pravastatin induced effects were reversible by the addition of mevalonate. Pravastatin induces beneficial effects on ECFC function, angiogenic signaling and protein expression. These effects may contribute to understand the pleiotropic function of statins as well as to provide a promising option to improve ECFCs' condition in cell therapy in order to ameliorate endothelial dysfunction.
Collapse
Affiliation(s)
- Nadia Meyer
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Lars Brodowski
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Katja Richter
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Constantin S. von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Bianca Schröder-Heurich
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| |
Collapse
|
53
|
Bunsawat K, Ratchford SM, Alpenglow JK, Park SH, Jarrett CL, Stehlik J, Smith AS, Richardson RS, Wray DW. Sacubitril-valsartan improves conduit vessel function and functional capacity and reduces inflammation in heart failure with reduced ejection fraction. J Appl Physiol (1985) 2021; 130:256-268. [PMID: 33211601 PMCID: PMC7944927 DOI: 10.1152/japplphysiol.00454.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The Prospective comparison of ARNI with angiotensin-converting enzyme inhibitor to Determine Impact on Global Mortality and morbidity in Heart Failure trial identified a marked reduction in the risk of death and hospitalization for heart failure in patients with heart failure with reduced ejection fraction (HFrEF) treated with sacubitril-valsartan (trade name Entresto), but the physiological processes underpinning these improvements are unclear. We tested the hypothesis that treatment with sacubitril-valsartan improves peripheral vascular function, functional capacity, and inflammation in patients with HFrEF. We prospectively studied patients with HFrEF (n = 11, 10 M/1 F, left ventricular ejection fraction = 27 ± 8%) on optimal, guideline-directed medical treatment who were subsequently prescribed sacubitril-valsartan (open-label, uncontrolled, and unblinded). Peripheral vascular function [brachial artery flow-mediated dilation (FMD, conduit vessel function) and reactive hyperemia (RH, microvascular function)], functional capacity [six-minute walk test (6MWT) distance], and the proinflammatory biomarkers tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18) were obtained at baseline and at 1, 2, and 3 mo of treatment. %FMD improved after 1 mo of treatment, and this favorable response persisted for months 2 and 3 (baseline: 3.25 ± 1.75%; 1 mo: 5.23 ± 2.36%; 2 mo: 5.81 ± 1.79%; 3 mo: 6.35 ± 2.77%), whereas RH remained unchanged. 6MWT distance increased at months 2 and 3 (baseline: 420 ± 92 m; 1 mo: 436 ± 98 m; 2 mo: 465 ± 115 m; 3 mo: 460 ± 110 m), and there was a sustained reduction in TNF-α (baseline: 2.38 ± 1.35 pg/mL; 1 mo: 2.06 ± 1.52 pg/mL; 2 mo: 1.95 ± 1.34 pg/mL; 3 mo: 1.92 ± 1.37 pg/mL) and a reduction in IL-18 at month 3 (baseline: 654 ± 150 pg/mL; 1 mo: 595 ± 140 pg/mL; 2 mo: 601 ± 176 pg/mL; 3 mo: 571 ± 127 pg/mL). This study provides new evidence for the potential of this new drug class to improve conduit vessel function, functional capacity, and inflammation in patients with HFrEF.NEW & NOTEWORTHY We observed an approximately twofold improvement in conduit vessel function (brachial artery FMD), increased functional capacity (6MWT distance), and a reduction in inflammation (TNF-α and IL-18) following 3 mo of sacubitril-valsartan therapy. These findings provide important new information concerning the physiological mechanisms by which this new drug class provokes favorable changes in HFrEF pathophysiology.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Stephen M Ratchford
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Josef Stehlik
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Adam S Smith
- Department of Pharmacy Services, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
54
|
Alexander Y, Osto E, Schmidt-Trucksäss A, Shechter M, Trifunovic D, Duncker DJ, Aboyans V, Bäck M, Badimon L, Cosentino F, De Carlo M, Dorobantu M, Harrison DG, Guzik TJ, Hoefer I, Morris PD, Norata GD, Suades R, Taddei S, Vilahur G, Waltenberger J, Weber C, Wilkinson F, Bochaton-Piallat ML, Evans PC. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res 2021; 117:29-42. [PMID: 32282914 PMCID: PMC7797212 DOI: 10.1093/cvr/cvaa085] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells (ECs) are sentinels of cardiovascular health. Their function is reduced by the presence of cardiovascular risk factors, and is regained once pathological stimuli are removed. In this European Society for Cardiology Position Paper, we describe endothelial dysfunction as a spectrum of phenotypic states and advocate further studies to determine the role of EC subtypes in cardiovascular disease. We conclude that there is no single ideal method for measurement of endothelial function. Techniques to measure coronary epicardial and micro-vascular function are well established but they are invasive, time-consuming, and expensive. Flow-mediated dilatation (FMD) of the brachial arteries provides a non-invasive alternative but is technically challenging and requires extensive training and standardization. We, therefore, propose that a consensus methodology for FMD is universally adopted to minimize technical variation between studies, and that reference FMD values are established for different populations of healthy individuals and patient groups. Newer techniques to measure endothelial function that are relatively easy to perform, such as finger plethysmography and the retinal flicker test, have the potential for increased clinical use provided a consensus is achieved on the measurement protocol used. We recommend further clinical studies to establish reference values for these techniques and to assess their ability to improve cardiovascular risk stratification. We advocate future studies to determine whether integration of endothelial function measurements with patient-specific epigenetic data and other biomarkers can enhance the stratification of patients for differential diagnosis, disease progression, and responses to therapy.
Collapse
Affiliation(s)
- Yvonne Alexander
- Centre for Bioscience, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Elena Osto
- Institute of Clinical Chemistry, University and University Hospital Zurich, University Heart Center, Zurich, Switzerland
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Basel, Switzerland
| | - Michael Shechter
- Leviev Heart Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danijela Trifunovic
- Cardiology Department, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Victor Aboyans
- Department of Cardiology, Dupuytren University Hospital, Inserm U-1094, Limoges University, Limoges, France
| | - Magnus Bäck
- Department of Cardiology, Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
- INSERM U1116, Université de Lorraine, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre les Nancy, France
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Marco De Carlo
- Catheterization Laboratory, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria Dorobantu
- ‘CarolDavila’ University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Department of Medicine, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Imo Hoefer
- Laboratory of Clinical Chemistry and Hematology, University Medical Centre Utrecht, The Netherlands
| | - Paul D Morris
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre & INSIGNEO Institute, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rosa Suades
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
- SRH Central Hospital Suhl, Suhl, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillian-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fiona Wilkinson
- Centre for Bioscience, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | | | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre & INSIGNEO Institute, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for In Silico Medicine, Sheffield, UK
| |
Collapse
|
55
|
Kul Ş, Güvenç TS, Çalışkan M. Relationship between malnutrition and coronary microvascular dysfunction in patients with nonischemic dilated cardiomyopathy. Turk J Med Sci 2020; 50:1894-1902. [PMID: 32599970 PMCID: PMC7775716 DOI: 10.3906/sag-2003-239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background/ aim Malnutrition is common in patients with nonischemic dilated cardiomyopathy (DCM), especially in the end stages of the disease where heart failure symptoms predominate. Malnutrition has been associated with atherosclerosis in patients with chronic kidney disease, but it is unknown whether a similar relationship exists between malnutrition and coronary microvascular dysfunction (CMD). In the present study, we aimed to analyse whether indices of malnutrition were associated with coronary flow reserve (CFR) in patients with DCM. Materials and methods A total of 33 cases who were prospectively followed up with by institutional DCM registry were found eligible for inclusion. Coronary flow reserve was measured with transthoracic echocardiography from the left anterior descending artery. The study sample was divided into 2 groups using a CFR cut-off value of 2.0. Geriatric nutritional index (GNI), prognostic nutritional index (PNI), and C-reactive protein/albumin ratio (CAR) were calculated. Results A total of 17 out of 33 cases (51.5%) had a low (<2.0) CFR. Both GNI and PNI were similar between the 2 groups, but the inflammatory–nutritional parameter CAR was significantly higher in those with a low CFR (1.18 ± 0.64 vs. 0.54 ± 0.28, P < 0.001). CA remained an independent predictor of CFR on multivariate regression (β = 0.65, P < 0.001) after adjustment for demographic (age, sex, body mass index), nutritional (GNI, PNI, albumin), and inflammatory (C-reactive protein) parameters. For a cut-off value of 0.80, CAR had a sensitivity of 85.7% and specificity of 73.6% to predict a CFR <2.0 (AUC: 0.835, 95%CI: 0.693–0.976, P = 0.001). Conclusions Our findings indicate that not malnutrition per se but a combination of inflammation activation and malnutrition is predictive of CMD in patients with DCM.
Collapse
Affiliation(s)
- Şeref Kul
- Department of Cardiology, Medicine of Faculty, Medeniyet University Göztepe Research and Training Hospital, İstanbul, Turkey
| | - Tolga Sinan Güvenç
- Department of Cardiology, VM Medical Park Pendik Hospital, İstanbul, Turkey
| | - Mustafa Çalışkan
- Department of Cardiology, Medicine of Faculty, Medeniyet University Göztepe Research and Training Hospital, İstanbul, Turkey
| |
Collapse
|
56
|
Topf A, Mirna M, Ohnewein B, Jirak P, Kopp K, Fejzic D, Haslinger M, Motloch LJ, Hoppe UC, Berezin A, Lichtenauer M. The Diagnostic and Therapeutic Value of Multimarker Analysis in Heart Failure. An Approach to Biomarker-Targeted Therapy. Front Cardiovasc Med 2020; 7:579567. [PMID: 33344515 PMCID: PMC7746655 DOI: 10.3389/fcvm.2020.579567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Heart failure is a pathophysiological state, which is still associated with high morbidity and mortality despite established therapies. Diverse well-known biomarkers fail to assess the variety of individual pathophysiology in the context of heart failure. Methods: An analysis of prospective, multimarker-specific therapeutic approaches to heart failure based on studies in current literature was performed. A total of 159 screened publications in the field of biomarkers in heart failure were hand-selected and found to be eligible for this study by a team of experts. Results: Established biomarkers of the inflammatory axis, matrix remodeling, fibrosis and oxidative stress axis, as well as potential therapeutic interventions were investigated. Interaction with end organs, such as cardio-hepatic, cardio-renal and cardio-gastrointestinal interactions show the complexity of the syndrome and could be of further therapeutic value. MicroRNAs are involved in a wide variety of physiologic and pathophysiologic processes in heart failure and could be useful in diagnostic as well as therapeutic setting. Conclusion: Based on our analysis by a biomarker-driven approach in heart failure therapy, patients could be treated more specifically in long term with a consideration of different aspects of heart failure. New studies evaluating a multimarker - based therapeutic approach could lead in a decrease in the morbidity and mortality of heart failure patients.
Collapse
Affiliation(s)
- Albert Topf
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Moritz Mirna
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Ohnewein
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Peter Jirak
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Kristen Kopp
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Dzeneta Fejzic
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Haslinger
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Lukas J. Motloch
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Uta C. Hoppe
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Alexander Berezin
- Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| |
Collapse
|
57
|
McSweeney KR, Gadanec LK, Qaradakhi T, Gammune TM, Kubatka P, Caprnda M, Fedotova J, Radonak J, Kruzliak P, Zulli A. Imipridone enhances vascular relaxation via FOXO1 pathway. Clin Exp Pharmacol Physiol 2020; 47:1816-1823. [PMID: 32652671 DOI: 10.1111/1440-1681.13377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 01/30/2023]
Abstract
Cardiovascular complications are a side effect of cancer therapy, potentially through reduced blood vessel function. ONC201 (TIC10) is currently used in phase 2 clinical trials to treat high-grade gliomas. TIC10 is a phosphatidylinositol 3-kinase (PI3K)/AKT/extracellular signal-regulated kinase (ERK) inhibitor that induces apoptosis via upregulation of TNF-related apoptosis-inducing ligand, which via stimulation of FOXO and death receptor could increase eNOS upregulation. This has the potential to improve vascular function through increased NO bioavailability. Our aim was to investigate the role of TIC10 on vascular function to determine if it would affect the risk of CVD. Excised abdominal aorta from White New Zealand male rabbits were cut into rings. Vessels were incubated with TIC10 and AS1842856 (FOXO1 inhibitor) followed by cumulative doses of acetylcholine (Ach) to assess vessel function. Vessels were then processed for immunohistochemistry. Incubation of blood vessels with TIC10 resulted in enhanced vasodilatory capacity. Combination treatment with the FOXO1 inhibitor and TIC10 resulted in reduced vascular function compared to control. Immunohistochemical analysis indicated a 3-fold increase in death receptor 5 (DR5) expression in the TIC10-treated blood vessels but the addition of the FOXO1 inhibitor downregulated DR5 expression. The expression of DR4 receptor was not significantly increased in the presence of TIC10; however, addition of the FOXO1 inhibitor downregulated expression. TIC10 has the capacity to improve the function of healthy vessels when stimulated with the vasodilator Ach. This highlights its therapeutic potential not only in cancer treatment without cardiovascular side effects, but also as a possible drug to treat established CVD.
Collapse
Affiliation(s)
- Kristen R McSweeney
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Laura K Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | | | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine and University Hospital, Bratislava, Slovakia
| | - Julia Fedotova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Academy of Sciences, St. Petersburg, Russian Federation
| | - Jozef Radonak
- 1st Department of Surgery, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovak Republic
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
58
|
Shafieesabet A, Scherbakov N, Ebner N, Sandek A, Lokau S, von Haehling S, Anker SD, Lainscak M, Laufs U, Doehner W. Acute effects of oral triglyceride load on dynamic changes in peripheral endothelial function in heart failure patients with reduced ejection fraction and healthy controls. Nutr Metab Cardiovasc Dis 2020; 30:1961-1966. [PMID: 32682746 DOI: 10.1016/j.numecd.2020.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
BACHGROUND Postprandial hyperlipaemia impairs endothelial function, possibly via oxidative-stress-mediated mechanisms. The aim of this study was to evaluate the acute effects of an oral triglyceride load (OTGL) on peripheral endothelial function in heart failure patients with reduced ejection fraction (HFrEF) compared to healthy controls. DESIGN Prospective cross-sectional. METHODS We enrolled 47 patients with HFrEF and 20 healthy controls. Peripheral endothelial function was assessed with EndoPAT2000 technology using a reactive hyperaemia index (RHI) and pulse wave amplitude (PWA) at baseline (after 8-h overnight fasting) as well as 1, 2, 3 and 4-h post-OTGL consumption (250-ml cream drink). Pulse wave amplitude index (PWAI) was calculated as a ratio of PWA at each time point to the baseline PWA. RESULTS RHI at baseline was lower in HFrEF patients compared to controls (1.7 ± 0.3 and 2.3 ± 0.6, respectively; P = 0.001). The OTGL accounted for a physiologic increase in PWA in healthy controls (p = 0.01), but this change was not observed in HFrEF patients. After 4 h, vasodilator response was significantly increased in healthy controls but not patients with HFrEF (2.3 ± 1.3 vs. 1.3 ± 0.8 respectively, P < 0.05). CONCLUSIONS The main finding of this study was the impaired postprandial dynamic changes in peripheral endothelial function in patients with HFrEF compared to healthy controls. A high-fat load that caused acute hypertriglyceridaemia significantly increased resting blood flow and peak flow at reactive hyperaemia in healthy subjects. By contrast, patients with HFrEF exhibited impaired dynamic changes in peripheral endothelial function after oral triglyceride load.
Collapse
Affiliation(s)
- Azadeh Shafieesabet
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Germany; Department of Cardiology (Virchow Klinikum), Charité Universitätsmedizin Berlin, German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Germany; Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin (CSB), Germany.
| | - Nadja Scherbakov
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Germany; Department of Cardiology (Virchow Klinikum), Charité Universitätsmedizin Berlin, German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Germany; Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin (CSB), Germany
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Germany
| | - Anja Sandek
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Germany
| | - Stefanie Lokau
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Germany; Department of Cardiology (Virchow Klinikum), Charité Universitätsmedizin Berlin, German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Germany
| | - Stefan D Anker
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Germany; Department of Cardiology (Virchow Klinikum), Charité Universitätsmedizin Berlin, German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Germany
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany
| | - Wolfram Doehner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Germany; Department of Cardiology (Virchow Klinikum), Charité Universitätsmedizin Berlin, German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Germany; Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin (CSB), Germany.
| |
Collapse
|
59
|
McGowan EM, Haddadi N, Nassif NT, Lin Y. Targeting the SphK-S1P-SIPR Pathway as a Potential Therapeutic Approach for COVID-19. Int J Mol Sci 2020; 21:ijms21197189. [PMID: 33003377 PMCID: PMC7583882 DOI: 10.3390/ijms21197189] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The world is currently experiencing the worst health pandemic since the Spanish flu in 1918-the COVID-19 pandemic-caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the world's third wake-up call this century. In 2003 and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle East Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections. At present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications, septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath of hyperinflammatory complications, also referred to as the "cytokine storm syndrome", endotheliitus and blood clotting, all with the potential to cause multiorgan dysfunction. The sphingolipid rheostat plays integral roles in viral replication, activation/modulation of the immune response, and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) and its cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular protection against endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P receptor pathway may provide significant beneficial effects towards counteracting the life-threatening, acute, and chronic complications associated with SARS-CoV-2 infection. This review provides a comprehensive overview of SARS-CoV-2 infection and disease, prospective vaccines, and current treatments. We then discuss the evidence supporting the targeting of SphK/S1P and S1P receptors in the repertoire of COVID-19 therapies to control viral replication and alleviate the known and emerging acute and chronic symptoms of COVID-19. Three clinical trials using FDA-approved sphingolipid-based drugs being repurposed and evaluated to help in alleviating COVID-19 symptoms are discussed.
Collapse
Affiliation(s)
- Eileen M McGowan
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
- Correspondence: ; Tel.: +61-405814048
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Yiguang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| |
Collapse
|
60
|
Safonova JI, Kozhevnikova MV, Danilogorskaya YA, Zheleznykh EA, Zektser VY, Shchendrygina AA, Ilgisonis IS, P EV, Khabarova NV, Belenkov YN. [Positive Effects of Perindopril on Microvascular Vessels in Patients With Chronic Heart Failure]. KARDIOLOGIIA 2020; 60:65-70. [PMID: 33155960 DOI: 10.18087/cardio.2020.8.n1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Aim To evaluate the effect of 12-month perindopril treatment on structure and function of microvasculature (MV) in patients with chronic heart failure with preserved (HFpEF) and intermediate (HFiEF) left ventricular ejection fraction.Material and methods 30 patients with HFpEF and HFiEF were evaluated. Perindopril at a maximum tolerated dose was administered to all patients for 12 months. Changes in MV structure and function were assessed with photoplethysmography and capillaroscopy prior to the treatment onset and at 12 months, i.e., after completion of the perindopril treatment.Results The 12-month perindopril treatment was associated with improvement of the endothelial function evident as increases in the occlusion index (OI) and the phase shift (PS). OI increased from 1.45 [1.3; 1.6] to 1.8 [1.6; 2.2] (p=0.00004). PS increased from 7.1 ms [4.8; 10.2] to 9.2 ms [6.7; 13.2] (p=0.0003). Stiffness of muscular large blood vessels was decreased. Arterial stiffness index (aSI) decreased from 8.8 [6.6; 11.0] to 7.45 [6.5; 9.4] m /s (р=0.01). The perindopril treatment was associated with increased density of the capillary network at rest (р=0.008) and in tests with venous occlusion (р=0.003) and reactive hyperemia (р=0.0003).Conclusion The study showed an improvement of endothelial function associated with the 12-month perindopril therapy in patients with HFpEF and HFiEF.
Collapse
Affiliation(s)
- J I Safonova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - M V Kozhevnikova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - Yu A Danilogorskaya
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - E A Zheleznykh
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - V Y Zektser
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - A A Shchendrygina
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - I S Ilgisonis
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - E V P
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - N V Khabarova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| | - Yu N Belenkov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow
| |
Collapse
|
61
|
Pisarenko O, Studneva I. Modulating the Bioactivity of Nitric Oxide as a Therapeutic Strategy in Cardiac Surgery. J Surg Res 2020; 257:178-188. [PMID: 32835951 DOI: 10.1016/j.jss.2020.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/29/2022]
Abstract
Cardiac surgery, including cardioplegic arrest and extracorporeal circulation, causes endothelial dysfunction, which can lead to no-reflow phenomenon and reduction of myocardial pump function. Nitric oxide (NO) deficiency is involved in this pathologic process, thereby providing a fundamental basis for the use of NO replacement therapy. Presently used drugs and additives to cardioplegic and heart preservation solutions are not able to reliably protect endothelial cells and cardiomyocytes from ischemia-reperfusion injury. This review discusses promising NO-releasing compounds of various chemical classes for cardioplegia and reperfusion, which effectively maintain NO homeostasis under experimental conditions, and presents the mechanisms of their action on the cardiovascular system. Incomplete preclinical studies and a lack of toxicity assessment, however, hinder translation of these drug candidates into the clinic. Perspectives for modulation of endothelial function using NO-mediated mechanisms are discussed. They are based on the cardioprotective potential of targeting vascular gap junctions and endothelial ion channels, intracoronary administration of progenitor cells, and endothelial-specific microRNAs. Some of these strategies may provide important therapeutic benefits for human cardiovascular interventions.
Collapse
Affiliation(s)
- Oleg Pisarenko
- National Medical Research Center for Cardiology, Institute of Experimental Cardiology, Moscow, Russian Federation.
| | - Irina Studneva
- National Medical Research Center for Cardiology, Institute of Experimental Cardiology, Moscow, Russian Federation
| |
Collapse
|
62
|
Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2020; 35:1025-1044. [PMID: 32748033 PMCID: PMC8452583 DOI: 10.1007/s10557-020-07019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological remodelling of the myocardium, including inflammation, fibrosis and hypertrophy, in response to acute or chronic injury is central in the development and progression of heart failure (HF). While both resident and infiltrating cardiac cells are implicated in these pathophysiological processes, recent evidence has suggested that endothelial cells (ECs) may be the principal cell type responsible for orchestrating pathological changes in the failing heart. Epigenetic modification of nucleic acids, including DNA, and more recently RNA, by methylation is essential for physiological development due to their critical regulation of cellular gene expression. As accumulating evidence has highlighted altered patterns of DNA and RNA methylation in HF at both the global and individual gene levels, much effort has been directed towards defining the precise role of such cell-specific epigenetic changes in the context of HF. Considering the increasingly apparent crucial role that ECs play in cardiac homeostasis and disease, this article will specifically focus on nucleic acid methylation (both DNA and RNA) in the failing heart, emphasising the key influence of these epigenetic mechanisms in governing EC function. This review summarises current understanding of DNA and RNA methylation alterations in HF, along with their specific role in regulating EC function in response to stress (e.g. hyperglycaemia, hypoxia). Improved appreciation of this important research area will aid in further implicating dysfunctional ECs in HF pathogenesis, whilst informing development of EC-targeted strategies and advancing potential translation of epigenetic-based therapies for specific targeting of pathological cardiac remodelling in HF.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Denis O'Dwyer
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
63
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
64
|
Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus - A comprehensive review. J Diabetes Complications 2020; 34:107613. [PMID: 32505477 DOI: 10.1016/j.jdiacomp.2020.107613] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/27/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
Diabetes is a chronic disease, characterized by hyperglycemia, which refers to the elevated levels of glucose in the blood, due to the inability of the body to produce or use insulin effectively. Chronic hyperglycemia levels lead to macrovascular and microvascular complications. The macrovascular complications consist of peripheral artery disease (PAD), cardiovascular diseases (CVD) and cerebrovascular diseases, while the microvascular complications comprise of diabetic microangiopathy, diabetic nephropathy, diabetic retinopathy and diabetic neuropathy. Vascular endothelial dysfunction plays a crucial role in mediating both macrovascular and microvascular complications under hyperglycemic conditions. In diabetic microvasculature, the intracellular hyperglycemia causes damage to the vascular endothelium through - (i) activation of four biochemical pathways, namely the Polyol pathway, protein kinase C (PKC) pathway, advanced glycation end products (AGE) pathway and hexosamine pathway, all of which commutes glucose and its intermediates leading to overproduction of reactive oxygen species, (ii) dysregulation of growth factors and cytokines, (iii) epigenetic changes which concern the changes in DNA as a response to intracellular changes, and (iv) abnormalities in non-coding RNAs, specifically microRNAs. This review will focus on gaining an understanding of the molecular complexities underlying the vascular complications in diabetes mellitus, to increase our understanding towards the development of new mechanistic therapeutic strategies to prevent or treat diabetes-induced vascular complications.
Collapse
Affiliation(s)
- Shalini Paul
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
65
|
Bessa J, Albino-Teixeira A, Reina-Couto M, Sousa T. Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clin Chim Acta 2020; 509:310-335. [PMID: 32710940 DOI: 10.1016/j.cca.2020.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is localized at the interface between the blood and surrounding tissues, playing a pivotal role in the maintenance of tissue-fluid homeostasis and in the regulation of host defense, inflammation, vascular tone and remodeling, angiogenesis and haemostasis. The dysfunctional endothelium was shown to be implicated in the pathophysiology of several endothelial-dependent disorders, such as arterial hypertension, coronary artery disease, heart failure and chronic kidney disease, in which it is an early predictor of cardiovascular events. Endocan is a soluble dermatan sulphate proteoglycan mainly secreted by the activated endothelium. It is upregulated by several proinflammatory cytokines and proangiogenic factors and may itself contribute to the inflammatory status. In addition of being a surrogate marker of inflammation and endothelial dysfunction, it seems to be involved in the regulation of several proliferative and neovascularization processes. Therefore, its utility as a biomarker in a wide spectrum of diseases has been increasingly explored. Here, we review the current evidence concerning the role of endocan in several human cardiovascular and renal diseases, where it seems to be a promising biomarker for risk stratification, prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- João Bessa
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Univ. Porto, Porto, Portugal
| | - Marta Reina-Couto
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Univ. Porto, Porto, Portugal; Departamento de Medicina Intensiva, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Univ. Porto, Porto, Portugal.
| |
Collapse
|
66
|
Tourki B, Kain V, Shaikh SR, Leroy X, Serhan CN, Halade GV. Deficit of resolution receptor magnifies inflammatory leukocyte directed cardiorenal and endothelial dysfunction with signs of cardiomyopathy of obesity. FASEB J 2020; 34:10560-10573. [PMID: 32543720 DOI: 10.1096/fj.202000495rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Chronic unresolved inflammation is the primary determinant of cardiovascular disease. Precise mechanisms that define the genesis of unresolved inflammation in heart failure with preserved ejection fraction (HFpEF) are of interest due to the obesity epidemic. To examine the obesity phenotype and its direct/indirect consequences, multiple approaches were employed using the lipoxin receptor (abbreviated as ALX) dysfunction mouse model. Indirect calorimetry analyses revealed that the deletion of ALX dysregulated energy metabolism driving toward age-related obesity. Heart function data suggest that obesity-prone ALX deficient mice had impaired myocardium strain. Comprehensive measurement of chemokines, extracellular matrix, and arrhythmogenic arrays confirmed the dysregulation of multiple ion channels gene expression with amplified inflammatory chemokines and cytokines response at the age of 4 months compared with WT counterparts. Quantitative analyses of leukocytes demonstrated an increase of proinflammatory Ly6Chi CCR2+ macrophages in the spleen and heart at a steady-state resulting in an inflamed splenocardiac axis. Signs of subtle inflammation were marked with cardiorenal, endothelial defects with decreased CD31 and eNOS and an increased iNOS and COX2 expression. Thus, ALX receptor deficiency serves as an experimental model that defines multiple cellular and molecular mechanisms in HFpEF that could be a target for the development of HFpEF therapy in cardiovascular medicine.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, USA
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
67
|
Velagic A, Qin C, Woodman OL, Horowitz JD, Ritchie RH, Kemp-Harper BK. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front Pharmacol 2020; 11:727. [PMID: 32508651 PMCID: PMC7248192 DOI: 10.3389/fphar.2020.00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is associated with an increased mortality risk due to cardiovascular complications. Hyperglycemia-induced oxidative stress underlies these complications, leading to an impairment in endogenous nitric oxide (NO•) generation, together with reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance, compromises the ability of traditional NO•-based therapeutics to improve hemodynamic status during diabetes-associated cardiovascular emergencies, such as acute myocardial infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme [ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in the face of diminished NO• signaling. This review explores the major mechanisms by which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic potential of HNO donors to circumvent this to treat cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anida Velagic
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Owen L. Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - John D. Horowitz
- Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
68
|
Abstract
Guided by organ-specific signals in both development and disease response, the heterogeneous endothelial cell population is a dynamic member of the vasculature. Functioning as the gatekeeper to fluid, inflammatory cells, oxygen, and nutrients, endothelial cell communication with its local environment is critical. Impairment of endothelial cell-cell communication not only disrupts this signaling process, but also contributes to pathologic disease progression. Expanding our understanding of those processes that mediate endothelial cell-cell communication is an important step in the approach to treatment of disease processes.
Collapse
Affiliation(s)
- Daniel D Lee
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| | - Margaret A Schwarz
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
69
|
Coexistence of obstructive sleep apnea and telomerase activity, concentration of selected adipose tissue hormones and vascular endothelial function in patients with arterial hypertension. Respir Med 2019; 153:20-25. [PMID: 31136928 DOI: 10.1016/j.rmed.2019.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/12/2019] [Accepted: 05/16/2019] [Indexed: 01/21/2023]
Abstract
AIM The aim of the present study was to determine the effect of obstructive sleep apnea (OSA) with hypertension on telomerase activity, visfatin and adipsine concentration in the blood and vascular endothelial function assessed by ultrasound measured flow-mediated dilatation of the brachial artery (FMD). MATERIAL AND METHODS The study involved a group of 106 people (average age: 54.79 years). The determination of telomerase activity and blood visfatin and adipsine concentrations, brachial artery ultrasound examination with endothelium-dependent dilatation evaluation (FMD) and polysomnography were carried out. RESULTS Patients with hypertension without OSA were characterized by significantly greater FMD in comparison to patients with arterial hypertension and OSA (8.13 ± 5.12 %vs. 6.82 ± 5.36%; p < 0.05). Negative linear relationship between apnea-hypopnea index (AHI) and FMD (r = -0.22, p < 0.05) has been demonstrated. Negative linear relationship between adipsine concentration in the blood and length of REM (Rapid Eye Movement) sleep (r = -0.21, p < 0.05) was found. Positive linear relationship between the concentration of visfatin in the blood and the length of REM sleep (r = 0.22, p < 0.05) was also observed. Higher body mass index, higher total cholesterol, triglyceride and glucose levels have been shown to be independent predictors of higher AHI values, while greater telomerase activity, greater FMD and use of angiotensin converting enzyme inhibitors are independent predicators for lower AHI values. CONCLUSION Higher values of AHI index in polysomnography in hypertensive patients can be related to lower telomerase activity in the blood and impaired function of vascular endothelial function assessed using ultrasound.
Collapse
|