51
|
Affiliation(s)
- Piero Marchetti
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
52
|
Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, Marselli L, Suleiman M, Ratner LE, Marchetti P, Accili D. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. J Clin Endocrinol Metab 2016; 101:1044-54. [PMID: 26713822 PMCID: PMC4803182 DOI: 10.1210/jc.2015-2860] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Diabetes is associated with a deficit of insulin-producing β-cells. Animal studies show that β-cells become dedifferentiated in diabetes, reverting to a progenitor-like stage, and partly converting to other endocrine cell types. OBJECTIVE To determine whether similar processes occur in human type 2 diabetes, we surveyed pancreatic islets from 15 diabetic and 15 nondiabetic organ donors. DESIGN We scored dedifferentiation using markers of endocrine lineage, β-cell-specific transcription factors, and a newly identified endocrine progenitor cell marker, aldehyde dehydrogenase 1A3. RESULTS By these criteria, dedifferentiated cells accounted for 31.9% of β-cells in type 2 diabetics vs 8.7% in controls, and for 16.8% vs 6.5% of all endocrine cells (P < .001). The number of aldehyde dehydrogenase 1A3-positive/hormone-negative cells was 3-fold higher in diabetics compared with controls. Moreover, β-cell-specific transcription factors were ectopically found in glucagon- and somatostatin-producing cells of diabetic subjects. CONCLUSIONS The data support the view that pancreatic β-cells become dedifferentiated and convert to α- and δ-"like" cells in human type 2 diabetes. The findings should prompt a reassessment of goals in the prevention and treatment of β-cell dysfunction.
Collapse
Affiliation(s)
- Francesca Cinti
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Ryotaro Bouchi
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Ja Young Kim-Muller
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Yoshiaki Ohmura
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - P R Sandoval
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Matilde Masini
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Lorella Marselli
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Mara Suleiman
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Lloyd E Ratner
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Piero Marchetti
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| | - Domenico Accili
- Departments of Medicine (F.C., R.B., J.Y.K.-M., D.A.) and Surgery (Y.O., P.R.S., L.E.R.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Clinical and Experimental Medicine (F.C.), Università Politecnica delle Marche, Ancona, Italy; and Department of Clinical and Experimental Medicine (M.M., L.M., M.S., P.M.), Islet Cell Laboratory, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
53
|
Lyon J, Manning Fox JE, Spigelman AF, Kim R, Smith N, O'Gorman D, Kin T, Shapiro AMJ, Rajotte RV, MacDonald PE. Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore. Endocrinology 2016; 157:560-569. [PMID: 26653569 DOI: 10.1210/en.2015-1562] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and β-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.
Collapse
Affiliation(s)
- James Lyon
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Aliya F Spigelman
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Ryekjang Kim
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Nancy Smith
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Doug O'Gorman
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Tatsuya Kin
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - A M James Shapiro
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Raymond V Rajotte
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Patrick E MacDonald
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| |
Collapse
|
54
|
HECT E3 Ubiquitin Ligase Itch Functions as a Novel Negative Regulator of Gli-Similar 3 (Glis3) Transcriptional Activity. PLoS One 2015; 10:e0131303. [PMID: 26147758 PMCID: PMC4493090 DOI: 10.1371/journal.pone.0131303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3. These include the WW-domain-containing HECT E3 ubiquitin ligases, Itch, Smurf2, and Nedd4. The interaction between Glis3 and the HECT E3 ubiquitin ligases was verified by co-immunoprecipitation assays and mutation analysis. All three proteins interact through their WW-domains with a PPxY motif located in the Glis3 N-terminus. However, only Itch significantly contributed to Glis3 polyubiquitination and reduced Glis3 stability by enhancing its proteasomal degradation. Itch-mediated degradation of Glis3 required the PPxY motif-dependent interaction between Glis3 and the WW-domains of Itch as well as the presence of the Glis3 zinc finger domains. Transcription analyses demonstrated that Itch dramatically inhibited Glis3-mediated transactivation and endogenous Ins2 expression by increasing Glis3 protein turnover. Taken together, our study identifies Itch as a critical negative regulator of Glis3-mediated transcriptional activity. This regulation provides a novel mechanism to modulate Glis3-driven gene expression and suggests that it may play a role in a number of physiological processes controlled by Glis3, such as insulin transcription, as well as in Glis3-associated diseases.
Collapse
|
55
|
Chen M, Hu C, Zhang R, Jiang F, Wang J, Peng D, Tang S, Sun X, Yan J, Wang S, Wang T, Bao Y, Jia W. A variant of PSMD6 is associated with the therapeutic efficacy of oral antidiabetic drugs in Chinese type 2 diabetes patients. Sci Rep 2015; 5:10701. [PMID: 26024304 PMCID: PMC4448652 DOI: 10.1038/srep10701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
The PSMD6 variant rs831571 has been identified as a susceptibility locus for type 2 diabetes mellitus (T2DM). This study aimed to investigate the association of this variant with therapeutic effects of oral antidiabetic drugs in Chinese T2DM patients. 209 newly diagnosed T2DM patients were randomly assigned to treatment with repaglinide or rosiglitazone for 48 weeks, and the therapeutic effects were compared. In the rosiglitazone cohort, rs831571 showed significant associations with fasting plasma glucose (FPG), 2-h glucose and decrement of glycated haemoglobin (HbA1c) levels after 24 weeks of treatment (P = 0.0368, 0.0468 and 0.0247, respectively). The C allele was significantly associated with a better attainment of FPG at 24 and 32 weeks (P = 0.0172 and 0.0257, respectively). Survival analyses showed CC homozygotes were more likely to attain a standard FPG level (P = 0.0654). In the repaglinide cohort, rs831571 was significantly associated with decreased HbA1c levels after 24 weeks of treatment, the homeostatic model assessment of insulin resistance and fasting insulin level after 48 weeks of treatment with repaglinide (P = 0.0096, 0235 and 0.0212, respectively). In conclusion, we observed that the PSMD6 variant rs831571 might be associated with the therapeutic effects of rosiglitazone and repaglinide in Chinese T2DM patients. However, these findings need to be confirmed in the future.
Collapse
Affiliation(s)
- Miao Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Cheng Hu
- 1] Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China [2] Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Jie Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Shanshan Tang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Xue Sun
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Jing Yan
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Shiyun Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Tao Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Yuqian Bao
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| |
Collapse
|
56
|
Costes S, Gurlo T, Rivera JF, Butler PC. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy 2015; 10:1004-14. [PMID: 24879150 DOI: 10.4161/auto.28478] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in β-cells and increased β-cell apoptosis attributable at least in part to intracellular toxic oligomers of IAPP (islet amyloid polypeptide). β-cells of individuals with T2DM are also characterized by accumulation of polyubiquitinated proteins and deficiency in the deubiquitinating enzyme UCHL1 (ubiquitin carboxyl-terminal esterase L1 [ubiquitin thiolesterase]), accounting for a dysfunctional ubiquitin/proteasome system. In the present study, we used mouse genetics to elucidate in vivo whether a partial deficit in UCHL1 enhances the vulnerability of β-cells to human-IAPP (hIAPP) toxicity, and thus accelerates diabetes onset. We further investigated whether a genetically induced deficit in UCHL1 function in β-cells exacerbates hIAPP-induced alteration of the autophagy pathway in vivo. We report that a deficit in UCHL1 accelerated the onset of diabetes in hIAPP transgenic mice, due to a decrease in β-cell mass caused by increased β-cell apoptosis. We report that UCHL1 dysfunction aggravated the hIAPP-induced defect in the autophagy/lysosomal pathway, illustrated by the marked accumulation of autophagosomes and cytoplasmic inclusions positive for SQSTM1/p62 and polyubiquitinated proteins with lysine 63-specific ubiquitin chains. Collectively, this study shows that defective UCHL1 function may be an early contributor to vulnerability of pancreatic β-cells for protein misfolding and proteotoxicity, hallmark defects in islets of T2DM. Also, given that deficiency in UCHL1 exacerbated the defective autophagy/lysosomal degradation characteristic of hIAPP proteotoxicity, we demonstrate a previously unrecognized role of UCHL1 in the function of the autophagy/lysosomal pathway in β-cells.
Collapse
Affiliation(s)
- Safia Costes
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| | - Tatyana Gurlo
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| | - Jacqueline F Rivera
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| |
Collapse
|
57
|
Caillaud C, Mechta M, Ainge H, Madsen AN, Ruell P, Mas E, Bisbal C, Mercier J, Twigg S, Mori TA, Simar D, Barrès R. Chronic erythropoietin treatment improves diet-induced glucose intolerance in rats. J Endocrinol 2015; 225:77-88. [PMID: 25767056 DOI: 10.1530/joe-15-0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 12/21/2022]
Abstract
Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle cell cultures with EPO failed to induce AKT phosphorylation and had no effect on glucose uptake or glycogen synthesis. We found that the EPO receptor gene was expressed in myotubes, but was undetectable in soleus. Together, our results indicate that EPO treatment improves glucose tolerance but does not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism.
Collapse
Affiliation(s)
- Corinne Caillaud
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Mie Mechta
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Heidi Ainge
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Andreas N Madsen
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, N
| | - Patricia Ruell
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Emilie Mas
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Catherine Bisbal
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Jacques Mercier
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, N
| | - Stephen Twigg
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Trevor A Mori
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - David Simar
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Romain Barrès
- Exercise Health and Performance Faculty of Health Sciences, and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia Faculty of Health and Medical Sciences The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark Department of Neuroscience and Pharmacology Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark School of Medicine and Pharmacology Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia UMR CNRS 9214 U1046 INSERM Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France Physiology Department CHU Arnaud de Villeneuve, Montpellier, France Department of Endocrinology Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia Inflammation and Infection Research School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
58
|
Watada H, Fujitani Y. Minireview: Autophagy in pancreatic β-cells and its implication in diabetes. Mol Endocrinol 2015; 29:338-48. [PMID: 25633274 DOI: 10.1210/me.2014-1367] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a conserved system for the degradation of cytoplasmic proteins and organelles. During insulin resistance, in which insulin secretion is enhanced and β-cell mass is increased owing to changes in the expression and function of various proteins in pancreatic β-cells, autophagic activity appears to also be enhanced to adapt to the dynamic changes occurring in β-cells. Indeed, defective autophagy in β-cells recapitulates several features that are observed in islets during the development of type 2 diabetes mellitus. In addition, the dyregulation of autophagic activity appears to occur in the β-cells of type 2 diabetic model mice and type 2 diabetes mellitus patients. These lines of evidence suggest that autophagic failure may be implicated in the pathophysiology of type 2 diabetes mellitus. In this review, we summarized the recent findings regarding how autophagy in β-cells is regulated and how dysfunction of the autophagic machinery may lead to the dysfunction of β-cells.
Collapse
Affiliation(s)
- Hirotaka Watada
- Department of Metabolism and Endocrinology (H.W., Y.F.), Centers for Molecular Diabetology (H.W., Y.F.) and Therapeutic Innovations in Diabetes (H.W.), and Japan Science and Technology Agency (JST)-CREST Program (Y.F.), Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | |
Collapse
|
59
|
Ciregia F, Giusti L, Ronci M, Bugliani M, Piga I, Pieroni L, Rossi C, Marchetti P, Urbani A, Lucacchini A. Glucagon-like peptide 1 protects INS-1E mitochondria against palmitate-mediated beta-cell dysfunction: a proteomic study. MOLECULAR BIOSYSTEMS 2015; 11:1696-707. [DOI: 10.1039/c5mb00022j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteomic analysis of the protein expression profiles of enriched mitochondrial preparations of rat INS-1E β cells treated with palmitate in the presence and in the absence of GLP-1.
Collapse
Affiliation(s)
- Federica Ciregia
- Department of Pharmacy
- University of Pisa
- Pisa
- Italy
- Santa Lucia IRCCS Foundation
| | - Laura Giusti
- Department of Pharmacy
- University of Pisa
- Pisa
- Italy
| | - Maurizio Ronci
- Santa Lucia IRCCS Foundation
- Rome
- Italy
- Department of Medical
- Oral and Biotechnological Sciences
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine
- SOD Endocrinology and metabolism of organ and cell transplants-University of Pisa
- Pisa
- Italy
| | | | | | - Claudia Rossi
- Department of Medical
- Oral and Biotechnological Sciences
- University G. d’Annunzio of Chieti-Pescara
- Chieti
- Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine
- SOD Endocrinology and metabolism of organ and cell transplants-University of Pisa
- Pisa
- Italy
| | - Andrea Urbani
- Santa Lucia IRCCS Foundation
- Rome
- Italy
- Department of Experimental Medicine and Surgery
- University of Rome “Tor Vergata”
| | | |
Collapse
|
60
|
Fu X, Song B, Tian GW, Li JL. The effects of the water-extraction of Astragali Radix and Lycopi herba on the Pathway of TGF-smads-UPP in a rat model of Diabetic Nephropathy. Pharmacogn Mag 2014; 10:491-6. [PMID: 25422551 PMCID: PMC4239728 DOI: 10.4103/0973-1296.141773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/04/2013] [Accepted: 09/26/2014] [Indexed: 12/14/2022] Open
Abstract
Background: Astragali Radix and Lycopi Herba were widely used in clinical practice for treating the diabetic nephropathy (DN), but their therapeutic mechanisms were not clear. Objective: To observe the effects of the water-extraction of Astragali Radix and Lycopi Herba on the signaling pathway of TGF-Smads-UPP in streptozotocin (STZ)-induced DN. Materials and Methods: Sprague-Dawley (SD) rats were randomly divided into the normal control (NC) group and the model group. The NC group was fed with a standard diet and the other five diabetic groups received a high-fat diet. After 4 weeks, five diabetic groups were treated with STZ (30mg/kg i.p.). The NC group rats were treated with citrate buffer. Tail random blood glucose (RBG) was measured 72h later using a strip-operated blood glucose sensor and monitored every 2 weeks until drug intervention. Rats with RBG levels less than 16.7mmol/L were excluded from the diabetic groups. At the end of 4 weeks after STZ injection, 24h microalbuminuria was collected and detected. The microalbuminuria was measured by radioimmunoassay (RIA). The blood glucose was tested using a blood glucose meter. The kidney was dissected from each SD rat. Proteins and mRNA of TGF-β1, Smads and Smurf were tested by western-blot and real-time PCR analysis, and 26S proteasome activity was measured by an ELISA kit. Results: The water-extraction of Astragali Radix and Lycopi Herba significantly lowered fasting glucose and urine albumin in diabetic rats through inhibition of TGF-β1 mRNA and protein expression in the STZ-induced diabetic rats, and regulation of the Smad3, Smad7, Smurf1, Smurf2 mRNA and protein expression, as well as elevated 26S proteasome activity to play control effect in DN. Conclusion: 0.9 g/ml water-extraction of Astragali Radix and Lycopi Herba group has significant therapeutic effects on the STZ-induced diabetic rats, and this regulation depends on TGF-Smads-UPP signaling pathway.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, China
| | - Bing Song
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, China
| | - Guo-Wei Tian
- Department of Traditional Chinese Medicine, Affiliated hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Jing-Lin Li
- Department of Traditional Chinese Medicine, Affiliated hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| |
Collapse
|
61
|
Jaisson S, Gillery P. Impaired proteostasis: role in the pathogenesis of diabetes mellitus. Diabetologia 2014; 57:1517-27. [PMID: 24816368 DOI: 10.1007/s00125-014-3257-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
In living organisms, proteins are regularly exposed to 'molecular ageing', which corresponds to a set of non-enzymatic modifications that progressively cause irreversible damage to proteins. This phenomenon is greatly amplified under pathological conditions, such as diabetes mellitus. For their survival and optimal functioning, cells have to maintain protein homeostasis, also called 'proteostasis'. This process acts to maintain a high proportion of functional and undamaged proteins. Different mechanisms are involved in proteostasis, among them degradation systems (the main intracellular proteolytic systems being proteasome and lysosomes), folding systems (including molecular chaperones), and enzymatic mechanisms of protein repair. There is growing evidence that the disruption of proteostasis may constitute a determining event in pathophysiology. The aim of this review is to demonstrate how such a dysregulation may be involved in the pathogenesis of diabetes mellitus and in the onset of its long-term complications.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Laboratory of Medical Biochemistry and Molecular Biology, University of Reims Champagne Ardenne, Reims, France,
| | | |
Collapse
|
62
|
Biden TJ, Boslem E, Chu KY, Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol Metab 2014; 25:389-98. [PMID: 24656915 DOI: 10.1016/j.tem.2014.02.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/12/2014] [Accepted: 02/19/2014] [Indexed: 02/06/2023]
Abstract
Failure of the unfolded protein response (UPR) to maintain optimal folding of pro-insulin in the endoplasmic reticulum (ER) leads to unresolved ER stress and β cell death. This contributes not only to some rare forms of diabetes, but also to type 2 diabetes mellitus (T2DM). Many key findings, elaborated over the past decade, are based on the lipotoxicity model, entailing chronic exposure of β cells to elevated levels of fatty acids (FAs). Here, we update recent progress on how FAs initiate ER stress, particularly via disruption of protein trafficking, and how this leads to apoptosis. We also highlight differences in how β cells are impacted by the classic UPR, versus the more selective UPR that arises as part of a broader response to lipotoxicity.
Collapse
Affiliation(s)
- Trevor J Biden
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | - Ebru Boslem
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kwan Yi Chu
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nancy Sue
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
63
|
Nolan CJ, Delghingaro-Augusto V. RNA sequencing of all transcripts and how islet β-cells fail. Diabetes 2014; 63:1823-5. [PMID: 24853891 DOI: 10.2337/db14-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Christopher J Nolan
- Department of Endocrinology, The Canberra Hospital, Garran, ACT, AustraliaThe Australian National University Medical School, Acton, ACT, Australia
| | | |
Collapse
|
64
|
Broca C, Varin E, Armanet M, Tourrel-Cuzin C, Bosco D, Dalle S, Wojtusciszyn A. Proteasome dysfunction mediates high glucose-induced apoptosis in rodent beta cells and human islets. PLoS One 2014; 9:e92066. [PMID: 24642635 PMCID: PMC3958412 DOI: 10.1371/journal.pone.0092066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/17/2014] [Indexed: 01/23/2023] Open
Abstract
The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes.
Collapse
Affiliation(s)
- Christophe Broca
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Elodie Varin
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Mathieu Armanet
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Cécile Tourrel-Cuzin
- B2PE Laboratory (Biology & Pathology of Endocrine Pancreas), BFA Unit, Univ. Paris-Diderot, CNRS EAC4413, Paris, France
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Stéphane Dalle
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
| | - Anne Wojtusciszyn
- CNRS UMR 5203, INSERM U661, and Montpellier 1 & 2 University, Institute of Functional Genomics, Montpellier, France
- Laboratory for Diabetes Cell Therapy, Institute for Research in Biotherapy, University Hospital St-Eloi, Montpellier, France
- Department of Endocrinology-Diabetes-Nutrition, University Hospital Lapeyronie, Montpellier, France
| |
Collapse
|
65
|
The ubiquitin-proteasome system regulates the stability and activity of the glucose sensor glucokinase in pancreatic β-cells. Biochem J 2014; 456:173-84. [PMID: 24028089 DOI: 10.1042/bj20130262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system is important to maintain pancreatic β-cell function. Inhibition of the proteasome significantly reduced glucose-induced insulin secretion. Key regulators of the stimulus/secretion cascade seem to be affected by protein misfolding if the proteasome is down-regulated as recently reported in humans with Type 2 diabetes. It remains unknown, however, whether the glucose sensor enzyme glucokinase is involved in this process. A direct interaction between glucokinase and ubiquitin could be shown in vivo by FRET, suggesting regulation of glucokinase by the proteasome. After proteasome inhibition glucokinase activity was significantly reduced in MIN6 cells, whereas the protein content was increased, indicating protein misfolding. Enhancing the availability of chaperones by cyclohexamide could induce refolding and restored glucokinase activity. Glucokinase aggregation due to proteasome blocking with MG132, bortezomib, epoxomicin or lactacystin could be detected in MIN6 cells, primary β-cells and hepatocytes using fluorescence-based assays. Glucokinase aggresome formation proceeded microtubule-assisted and was avoided by cyclohexamide. Thus the results of the present study provide support for glucokinase misfolding and aggregation in case of a diminished capacity of the ubiquitin-proteasome system in pancreatic β-cells. In the Type 2 diabetic situation this could contribute to reduced glucose-induced insulin secretion.
Collapse
|
66
|
Zhu S, Yao F, Li WH, Wan JN, Zhang YM, Tang Z, Khan S, Wang CH, Sun SR. PKCδ-dependent Activation of the Ubiquitin Proteasome System is Responsible for High Glucose-induced Human Breast Cancer MCF-7 Cell Proliferation, Migration and Invasion. Asian Pac J Cancer Prev 2013; 14:5687-92. [DOI: 10.7314/apjcp.2013.14.10.5687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
67
|
Marselli L, Bugliani M, Suleiman M, Olimpico F, Masini M, Petrini M, Boggi U, Filipponi F, Syed F, Marchetti P. β-Cell inflammation in human type 2 diabetes and the role of autophagy. Diabetes Obes Metab 2013; 15 Suppl 3:130-6. [PMID: 24003929 DOI: 10.1111/dom.12152] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
β-Cell failure is crucial for the onset and progression of human type 2 diabetes, and a few studies have suggested that inflammation may play a role. Immune cell infiltration has been reported in subpopulations of islets in some cases of human type 2 diabetes, and altered gene expression of a few cytokines and chemokines has been observed in isolated islets and laser captured β-cells from diabetic subjects. Recent observations on the links between inflammation, apoptosis and autophagy are putting the focus on the possibility that modulating the autophagic processes could protect the β-cells from cytotoxicity induced by inflammatory mediators.
Collapse
Affiliation(s)
- L Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|