51
|
Kozmai A, Porozhnyy M, Ruleva V, Gorobchenko A, Pismenskaya N, Nikonenko V. Is It Possible to Prepare a "Super" Anion-Exchange Membrane by a Polypyrrole-Based Modification? MEMBRANES 2023; 13:103. [PMID: 36676909 PMCID: PMC9865286 DOI: 10.3390/membranes13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In spite of wide variety of commercial ion-exchange membranes, their characteristics, in particular, electrical conductivity and counterion permselectivity, are unsatisfactory for some applications, such as electrolyte solution concentration. This study is aimed at obtaining an anion-exchange membrane (AEM) of high performance in concentrated solutions. An AEM is prepared with a polypyrrole (PPy)-based modification of a heterogeneous AEM with quaternary ammonium functional groups. Concentration dependences of the conductivity, diffusion permeability and Cl− transport number in NaCl solutions are measured and simulated using a new version of the microheterogeneous model. The model describes changes in membrane swelling with increasing concentration and the effect of these changes on the transport characteristics. It is assumed that PPy occupies macro- and mesopores of the host membrane where it replaces non-selective electroneutral solution. Increasing conductivity and selectivity are explained by the presence of positively charged PPy groups. It is found that the conductivity of a freshly prepared membrane reaches 20 mS/cm and the chloride transport number > 0.99 in 4 M NaCl. A choice of input parameters allows quantitative agreement between the experimental and simulation results. However, PPy has shown itself to be an unstable material. This article discusses what parameters a membrane can have to show such exceptional characteristics.
Collapse
|
52
|
Liu Y, Ma B, Lü Y, Wang C, Chen Y. A review of lithium extraction from natural resources. INTERNATIONAL JOURNAL OF MINERALS, METALLURGY AND MATERIALS 2023; 30:209-224. [PMCID: PMC9768727 DOI: 10.1007/s12613-022-2544-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 10/28/2023]
Abstract
Lithium is considered to be the most important energy metal of the 21st century. Because of the development trend of global electrification, the consumption of lithium has increased significantly over the last decade, and it is foreseeable that its demand will continue to increase for a long time. Limited by the total amount of lithium on the market, lithium extraction from natural resources is still the first choice for the rapid development of emerging industries. This paper reviews the recent technological developments in the extraction of lithium from natural resources. Existing methods are summarized by the main resources, such as spodumene, lepidolite, and brine. The advantages and disadvantages of each method are compared. Finally, reasonable suggestions are proposed for the development of lithium extraction from natural resources based on the understanding of existing methods. This review provides a reference for the research, development, optimization, and industrial application of future processes.
Collapse
Affiliation(s)
- Yubo Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Baozhong Ma
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
- Beijing Key Laboratory of Green Recovery and Extraction of Rare and Precious Metals, University of Science and Technology Beijing, Beijing, 100083 China
| | - Yingwei Lü
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Chengyan Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
- Beijing Key Laboratory of Green Recovery and Extraction of Rare and Precious Metals, University of Science and Technology Beijing, Beijing, 100083 China
| | - Yongqiang Chen
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
- Beijing Key Laboratory of Green Recovery and Extraction of Rare and Precious Metals, University of Science and Technology Beijing, Beijing, 100083 China
| |
Collapse
|
53
|
Shen K, He Q, Ru Q, Tang D, Oo TZ, Zaw M, Lwin NW, Aung SH, Tan SC, Chen F. Flexible LATP composite membrane for lithium extraction from seawater via an electrochemical route. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
54
|
Asymmetric polyamide nanofilm with coordinated charge and nanopore, tuned by azlactone-based monomer to facilitate ion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
55
|
Li1.5Al0.5Ge1.5(PO4)3 membrane electrodialysis for lithium enrichment. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
56
|
Improving Mg2+/Li+ separation performance of polyamide nanofiltration membrane by swelling-embedding-shrinking strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
57
|
Polyelectrolyte-based nanofiltration membranes with exceptional performance in Mg2+/Li+ separation in a wide range of solution conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
58
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
59
|
Application of Nanofiltration Membrane Based on Metal-Organic Frameworks (MOFs) in the Separation of Magnesium and Lithium from Salt Lakes. SEPARATIONS 2022. [DOI: 10.3390/separations9110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the increasing demand for lithium, the shortage of resources has become increasingly apparent. In order to conserve resources and to improve recovery, the extraction of lithium from salt lakes has become mandatory for sustainable development. Porous metal-organic framework (MOF) materials have attracted extensive attention due to their high/tunable porosity, pore function, multiple pore structures/compositions, and open metal sites. Moreover, MOFs combine the advantages of other porous materials and have a wide range of applications, which have received significant interest from the scientific community. Therefore, the selection of MOFs materials, the optimization of preparation methods, and the research of lithium separators are key directions to improve the total yield of lithium resources in salt lakes in China. This study aims to improve the comprehensive utilization of resources after lithium extraction and strengthen the engineering technology research of lithium extraction from salt lakes. This study can help to achieve the goal of efficient, integrated, and sustainable utilization of salt lake resources. An attempt has been made to summarize the types and preparation methods of MOFs materials, as well as the separation mechanism of MOFs nanofiltration membranes, with reference to its application in lithium extraction from salt lake brine. Finally, the future development of MOFs nanofiltration membranes for lithium extraction from salt lakes is also proposed.
Collapse
|
60
|
Polyamide nanofiltration membranes with rigid–flexible microstructures for high-efficiency Mg2+/Li+ separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
61
|
High-permeance Mg2+/Li+ separation nanofiltration membranes intensified by quadruple imidazolium salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
62
|
Golmohammadi M, Habibi M, Rezvantalab S, Mehdizadeh Chellehbari Y, Maleki R, Razmjou A. Mechanism Understanding of Li-ion Separation Using A Perovskite-Based Membrane. MEMBRANES 2022; 12:1042. [PMID: 36363596 PMCID: PMC9699554 DOI: 10.3390/membranes12111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Lithium ions play a crucial role in the energy storage industry. Finding suitable lithium-ion-conductive membranes is one of the important issues of energy storage studies. Hence, a perovskite-based membrane, Lithium Lanthanum Titanate (LLTO), was innovatively implemented in the presence and absence of solvents to precisely understand the mechanism of lithium ion separation. The ion-selective membrane's mechanism and the perovskite-based membrane's efficiency were investigated using Molecular Dynamic (MD) simulation. The results specified that the change in the ambient condition, pH, and temperature led to a shift in LLTO pore sizes. Based on the results, pH plays an undeniable role in facilitating lithium ion transmission through the membrane. It is noticeable that the hydrogen bond interaction between the ions and membrane led to an expanding pore size, from (1.07 Å) to (1.18-1.20 Å), successfully enriching lithium from seawater. However, this value in the absence of the solvent would have been 1.1 Å at 50 °C. It was found that increasing the temperature slightly impacted lithium extraction. The charge analysis exhibited that the trapping energies applied by the membrane to the first three ions (Li+, K+, and Na+) were more than the ions' hydration energies. Therefore, Li+, K+, and Na+ were fully dehydrated, whereas Mg2+ was partially dehydrated and could not pass through the membrane. Evaluating the membrane window diameter, and the combined effect of the three key parameters (barrier energy, hydration energy, and binding energy) illustrates that the required energy to transport Li ions through the membrane is higher than that for other monovalent cations.
Collapse
Affiliation(s)
- Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran 15916-34311, Iran
| | - Meysam Habibi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176-14411, Iran
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-419, Iran
| | | | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran 14197-33141, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth 6027, WA, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
63
|
Soyekwo F, Wen H, Liao D, Liu C. Fouling-resistant ionic graft-polyamide nanofiltration membrane with improved permeance for lithium separation from MgCl2/LiCl mixtures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Yuan B, Zhao S, Xu S, Wang N, Hu P, Chen K, Jiang J, Cui J, Zhang X, You M, Niu QJ. Aliphatic polyamide nanofilm with ordered nanostripe, synergistic pore size and charge density for the enhancement of cation sieving. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Li Y, Wang S, Wu W, Yu H, Che R, Kang G, Cao Y. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Fabrication of dialyzer membrane-based forward osmosis modules via vacuum-assisted interfacial polymerization for the preparation of dialysate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Novel Polymeric Membranes Preparation and Membrane Process. SEPARATIONS 2022. [DOI: 10.3390/separations9090253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polymer-based membranes have advanced or novel functions in the various membrane separation processes for liquid and gaseous mixtures, such as gas separation, pervaporation (PV), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), microfiltration (MF), and in other critical applications of membranes such as water purification, solvent concentration, and recovery [...]
Collapse
|
68
|
Zhang L, Li J, Liu R, Zhou Y, Zhang Y, Ji L, Li L. Recovery of lithium from salt lake brine with high Na/Li ratio using solvent extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
69
|
Dong M, Luo Q, Li J, Wu Z, Liu Z. Lithium adsorption properties of porous LiAl-layered double hydroxides synthesized using surfactants. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
70
|
Life Cycle Assessment of a Lithium-Ion Battery Pack Unit Made of Cylindrical Cells. BATTERIES-BASEL 2022. [DOI: 10.3390/batteries8080076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Saving energy is a fundamental topic considering the growing energy requirements with respect to energy availability. Many studies have been devoted to this question, and life cycle assessment (LCA) is increasingly acquiring importance in several fields as an effective way to evaluate the energy demand and the emissions associated with products’ life cycles. In this work, an LCA analysis of an existent lithium-ion battery pack (BP) unit is presented with the aim to increase awareness about its consumption and offering alternative production solutions that are less energy intensive. Exploiting the literature data about cradle-to-grave and cradle-to-gate investigations, and after establishing reasonable approximations, the main BP sub-elements were considered for this study, such as the plastic cells support, the Li-ion cells brick, the PCBs for a battery management system (BMS), the liquid-based battery thermal management system (BTMS) and the BP container. For each of these components, the impacts of the extraction, processing, assembly, and transportation of raw materials are estimated and the partial and total values of the energy demand (ED) and global warming potential (GWP) are determined. The final interpretation of the results allows one to understand the important role played by LCA evaluations and presents other possible ways of reducing the energy consumption and CO2 emissions.
Collapse
|
71
|
Soyekwo F, Wen H, Liao D, Liu C. Nanofiltration Membranes Modified with a Clustered Multiquaternary Ammonium-Based Ionic Liquid for Improved Magnesium/Lithium Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32420-32432. [PMID: 35793230 DOI: 10.1021/acsami.2c03650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium separation is of great significance to overcome the lithium supply shortage resulting from a heightened demand in the energy sector. The low selectivity of polymer nanofiltration membranes for lithium extraction from concentrated Mg/Li mixtures caused by miniaturized pore structures and weak and unstable positive surface charges limits their practical implementation. To address the surface charge strength and stability, a novel ionic liquid monomer, N1-(6-aminohexyl)-N1,N1,N6,N6,N6-pentamethylhexane-1,6-diaminium bromide (denoted as DABIL), is first synthesized and covalently anchored on a pristine polyamide thin-film composite (TFC) membrane via a secondary amidation reaction for improved selective lithium separation from Mg/Li mixtures. DABIL modification of the polyamide network contributes to increased surface hydrophilicity, an enlarged membrane pore structure, and reinforced Donnan exclusion effects. Molecular dynamics simulation confirmed that the difference of the interaction energies between water and the multication groups dominates the surface properties. The DABIL membrane exhibits sixfold enhancement of water permeability compared to the unmodified membrane and outperforms the recently reported state-of-the-art positively charged membranes. It presents an improved Li+/Mg2+ selectivity of 26.49, suggesting the membranes' potential for lithium recovery. Moreover, the membrane shows efficient antibacterial activity for mitigating biofilm formation. We establish that functionalization of TFC membranes with ionic liquids containing multication side chains could be a promising approach to achieve improved and sustainable permselectivity for the recovery of critical metal resources.
Collapse
Affiliation(s)
- Faizal Soyekwo
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Hui Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Dan Liao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| |
Collapse
|
72
|
Fabrication of High-Performance Nanofiltration Membrane Using Polydopamine and Carbon Nitride as the Interlayer. SEPARATIONS 2022. [DOI: 10.3390/separations9070180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
In order to recover lithium from brine with a high Mg2+/Li+ ratio, a positively charged nanofiltration (NF) membrane was prepared by depositing polydopamine (PDA)-coated graphitic carbon nitride (g-C3N4) as the interlayer (PDA-g-C3N4) and the interfacial polymerization (IP) of polyethyleneimine (PEI) and trimesoyl chloride (TMC) was carried out. Under optimal conditions, the water contact angle of the composite membrane is only 55.5° and the isoelectric point (IEP) is 6.01. The final positively charged NF membrane (M5) exhibits high permeance (10.19 L·m−2·h−1·bar−1) and high rejection of Mg2+ (98.20%) but low rejection of Li+ (13.33%). The separation factor (SF) is up to 48.08, and the Mg2+/Li+ ratio of the permeate is 0.036 in the simulated brine. In conclusion, the M5 membrane shows a good separation performance for salt lake brine (SF = 12.79 and Mg2+/Li+ ratio of the permeate = 1.43) and good fouling resistance. Therefore, the positively charged M5 membrane with PDA-g-C3N4 as the interlayer has the potential to be used for the recovery of lithium from brine.
Collapse
|
73
|
Dual-electric layer nanofiltration membranes based on polyphenol/PEI interlayer for highly efficient Mg2+/Li+ separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Liao D, Xu Z, Wei M, Wang Y. Interference mechanism of cations on transport of lithium and magnesium inside COF nanofiltration membranes. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2094372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Decai Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Zhaoqin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| |
Collapse
|
75
|
Tong X, Liu S, Zhao Y, Huang L, Crittenden J, Chen Y. MXene Composite Membranes with Enhanced Ion Transport and Regulated Ion Selectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8964-8974. [PMID: 35647940 DOI: 10.1021/acs.est.2c01765] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) material-based membranes are promising candidates for various separation applications. However, the further enhancement of membrane ion conductance is difficult, and the regulation of membrane ion selectivity remains a challenge. Here, we demonstrate the facile fabrication of MXene composite membranes by incorporating spacing agents that contain SO3H groups into the MXene interlayers. The synthesized membrane shows enhanced ion conductance and ion selectivity. Subsequently, the membranes are utilized for salinity gradient power (SGP) generation and lithium-ion (Li+) recovery. The membrane containing poly(sodium 4-styrenesulfonate) (PSS) as the spacing agent shows a much higher power density for SGP generation as compared to the pristine MXene membrane. Using artificial seawater and river water, the power density reaches 1.57 W/m2 with a testing area of 0.24 mm2. Also, the same membrane shows Li+/Na+ and Li+/K+ selectivities of 2.5 and 3.2, respectively. The incorporation of PSS increases both the size and charge density of the nanochannels inside the membrane, which is beneficial for ion conduction. In addition, the density functional theory (DFT) calculation shows that the binding energy between Li+ and the SO3H group is lower than other alkali ion metals, and this might be one major reason why the membrane possesses high Li+ selectivity. This study demonstrates that incorporating spacing agents into the 2D material matrix is a viable strategy to enhance the performance of the 2D material-based membranes. The results from this study can inspire new membrane designs for emerging applications including energy harvesting and monovalent ion recovery.
Collapse
Affiliation(s)
- Xin Tong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Su Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
76
|
Sun N, Dou P, Zhai W, He H, Nghiem LD, Vatanpour V, Zhang Y, Liu C, He T. Polyethylene separator supported thin-film composite forward osmosis membranes for concentrating lithium enriched brine. WATER RESEARCH 2022; 216:118297. [PMID: 35325825 DOI: 10.1016/j.watres.2022.118297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To extract lithium from salt lake brine involves a process of separation and concentration. After separating lithium from brine, the lithium ion concentration is generally a few hundred mg/L which is far below the required 20-30 g/L (as Li+) before precipitation as lithium carbonate. The concentration step of a lithium enriched brine is crucial but highly energy-intensive. Spontaneous forward osmosis (FO) technology offers the possibility for concentrating lithium ions with low energy. Because the concentrating process involves both feed and draw solution with very high salinity, it is highly desirable to have a high performance FO membrane with a low structural parameter as well as a high rejection to ions. In this work, thin polyethylene separator supported FO (PE-FO) membranes were prepared and post-treated stepwise with benzyl alcohol (BA) and hydraulic compaction. The effect of the post-treatment on the FO performance was systematically analyzed. Excellent FO performance was achieved: the water flux and reverse salt flux selectivity were 66.3 LMH and 5.25 L/g, respectively, when the active layer is oriented towards the 0.5 M NaCl draw solution with deionized water as the feed. To the best of our knowledge, this FO flux is the highest ever reported in the open literature under similar test conditions. Applied in concentrating lithium enriched brine, the membrane showed superior water flux using saturated MgCl2 as draw solution. A new FO model was established to simulate the water flux during the concentration process with good agreement with the experimental results. The promising results using PE-FO membrane for lithium enrichment opens a new frontier for the potential application of FO membranes.
Collapse
Affiliation(s)
- Nan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengjia Dou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Wentao Zhai
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Yuebiao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
77
|
Ji L, Zhang L, Shi D, Peng X, Li J, zhang Y, Xu T, Li L. Mechanism and process for the extraction of lithium from the high magnesium brine with N,N-bis(2-ethylhexyl)-2-methoxyacetamide in kerosene and FeCl3. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
78
|
Jiang C, Chen B, Xu Z, Li X, Wang Y, Ge L, Xu T. Ion‐‘distillation’ for isolating lithium from lake brine. AIChE J 2022. [DOI: 10.1002/aic.17710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenxiao Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui PR China
| | - Binglun Chen
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui PR China
| | - Ziang Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing PR China
| | - Xingya Li
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui PR China
| | - Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui PR China
| | - Liang Ge
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui PR China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui PR China
| |
Collapse
|
79
|
Siekierka A, Bryjak M, Razmjou A, Kujawski W, Nikoloski AN, Dumée LF. Electro-Driven Materials and Processes for Lithium Recovery-A Review. MEMBRANES 2022; 12:343. [PMID: 35323818 PMCID: PMC8949554 DOI: 10.3390/membranes12030343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023]
Abstract
The mass production of lithium-ion batteries and lithium-rich e-products that are required for electric vehicles, energy storage devices, and cloud-connected electronics is driving an unprecedented demand for lithium resources. Current lithium production technologies, in which extraction and purification are typically achieved by hydrometallurgical routes, possess strong environmental impact but are also energy-intensive and require extensive operational capabilities. The emergence of selective membrane materials and associated electro-processes offers an avenue to reduce these energy and cost penalties and create more sustainable lithium production approaches. In this review, lithium recovery technologies are discussed considering the origin of the lithium, which can be primary sources such as minerals and brines or e-waste sources generated from recycling of batteries and other e-products. The relevance of electro-membrane processes for selective lithium recovery is discussed as well as the potential and shortfalls of current electro-membrane methods.
Collapse
Affiliation(s)
- Anna Siekierka
- Department of Process Engineering and Technology of Polymeric and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Marek Bryjak
- Department of Process Engineering and Technology of Polymeric and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia;
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Aleksandar N. Nikoloski
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia;
| | - Ludovic F. Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Centre for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Research Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
80
|
Kozmai A, Pismenskaya N, Nikonenko V. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. Int J Mol Sci 2022; 23:ijms23042238. [PMID: 35216352 PMCID: PMC8877549 DOI: 10.3390/ijms23042238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market.
Collapse
|
81
|
Xu S, He R, Dong C, Sun N, Zhao S, He H, Yu H, Zhang YB, He T. Acid stable layer-by-layer nanofiltration membranes for phosphoric acid purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
82
|
Cong S, Yuan Y, Wang J, Wang Z, Kapteijn F, Liu X. Highly Water-Permeable Metal-Organic Framework MOF-303 Membranes for Desalination. J Am Chem Soc 2021; 143:20055-20058. [PMID: 34812608 DOI: 10.1021/jacs.1c10192] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New membrane materials with excellent water permeability and high ion rejection are needed. Metal-organic frameworks (MOFs) are promising candidates by virtue of their diversity in chemistry and topology. In this work, continuous aluminum MOF-303 membranes were prepared on α-Al2O3 substrates via an in situ hydrothermal synthesis method. The membranes exhibit satisfying rejection of divalent ions (e.g., 93.5% for MgCl2 and 96.0% for Na2SO4) on the basis of a size-sieving and electrostatic-repulsion mechanism and unprecedented permeability (3.0 L·m-2·h-1·bar-1·μm). The water permeability outperforms typical zirconium MOF, zeolite, and commercial polymeric reverse osmosis and nanofiltration membranes. Additionally, the membrane material exhibits good stability and low production costs. These merits recommend MOF-303 as a next-generation membrane material for water softening.
Collapse
Affiliation(s)
- Shenzhen Cong
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Ye Yuan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Freek Kapteijn
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Xinlei Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
83
|
|
84
|
Zheng X, Li A, Hua J, Zhang Y, Li Z. Crown Ether Grafted Graphene Oxide/Chitosan/Polyvinyl Alcohol Nanofiber Membrane for Highly Selective Adsorption and Separation of Lithium Ion. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2668. [PMID: 34685108 PMCID: PMC8541394 DOI: 10.3390/nano11102668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/04/2022]
Abstract
Nanofiber membranes were successfully prepared with crown ether (CE) functionalized graphene oxide (GO), chitosan (CS), and polyvinyl alcohol (PVA) by low-temperature thermally induced liquid-liquid phase separation. The physical and chemical properties and adsorption performance of nanofiber membrane were studied through SEM, FT-IR, XRD, and static adsorption experiments. The results show that the specific surface area of the nanofiber membrane is as high as 101.5 m2∙g-1. The results of static adsorption experiments show that the maximum adsorption capacity of the nanofiber membrane can reach 168.50 mg∙g-1 when the pH is 7.0. In the selective adsorption experiment, the nanofiber membrane showed high selectivity for Li+ in salt lake brine. After five cycles, the material still retains 88.31% of the adsorption capacity. Therefore, it is proved that the material has good regeneration ability.
Collapse
Affiliation(s)
- Xudong Zheng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (A.L.); (J.H.); (Y.Z.)
- Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou 213164, China
| | - Ang Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (A.L.); (J.H.); (Y.Z.)
| | - Jie Hua
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (A.L.); (J.H.); (Y.Z.)
| | - Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (A.L.); (J.H.); (Y.Z.)
- Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou 213164, China
| | - Zhongyu Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (A.L.); (J.H.); (Y.Z.)
- Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou 213164, China
| |
Collapse
|