51
|
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234:16987-16997. [PMID: 30825205 DOI: 10.1002/jcp.28420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Several classes of antidiabetic agents have been developed that achieve their hypoglycemic outcomes via various molecular mechanisms. Adipose tissue is a major metabolic and energy-storing tissue and plays an important role in many metabolic pathways, including insulin signaling and insulin sensitivity. Adipose tissue monitors and regulates whole body homeostasis via production and release of potent proteins, such as adipokine and adiponectin, into the circulation. Therefore, any agent that can modulate adipocyte metabolism can, in turn, affect metabolic and glucose homeostatic pathways. Antidiabetic drugs are not only recognized primarily as hypoglycemic agents but may also alter adipose tissue itself, as well as adipocyte-derived adipokine expression and secretion. In the current review, we present the major evidence concerning routinely used antidiabetic agents on adipocyte metabolism and adipokine expression.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, México, México
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
52
|
Yaribeygi H, Atkin SL, Sahebkar A. Wingless-type inducible signaling pathway protein-1 (WISP1) adipokine and glucose homeostasis. J Cell Physiol 2019; 234:16966-16970. [PMID: 30807659 DOI: 10.1002/jcp.28412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/14/2019] [Indexed: 01/11/2023]
Abstract
Whilst the growing global prevalence of diabetes mellitus is a major healthcare problem, the exact pathophysiology of insulin resistance leading to diabetes mellitus remains unclear. Studies have confirmed that increased adiposity is linked to lower insulin sensitivity through the expression and release of adipocyte-derived proteins such as adipokines. Wingless-type (Wnt) inducible signaling pathway protein-1 (WISP1) is a newly identified adipokine that has important roles in many molecular pathways and cellular events, with the suggestion that WISP1 adipokine is closely correlated to the progression of insulin resistance. Studies have shown that circulatory levels of WISP adipokine are higher in obese patients accompanied with increased insulin resistance. However, the exact role of WISP1 adipokine in the induction of insulin resistance is not completely understood. In this review, we detail the latest evidence showing that the WIPS1 adipokine impairs glucose homeostasis and induces diabetes mellitus.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
53
|
Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol 2019; 234:1300-1312. [PMID: 30146696 DOI: 10.1002/jcp.27164] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
The prevalence of diabetes is growing worldwide with an increasing morbidity and mortality associated with the development of diabetes complications. Free radical production is a normal biological process that is strictly controlled and has been shown to be important in normal cellular homeostasis, and in the bodies response to pathogens. However, there are several mechanisms leading to excessive free radical production that overcome the normal protective quenching mechanisms. Studies have shown that many of the diabetes complications result from excessive free radical generation and oxidative stress, and it has been shown that chronic hyperglycemia is a potent inducer for free radical production, generated through several pathways and triggering multiple molecular mechanisms. An understanding of these processes may help us to improving our preventive or therapeutic strategies. In this review, the major molecular pathways involved in free radical generation induced by hyperglycemia are described.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
54
|
Yaribeygi H, Atkin SL, Simental‐Mendía LE, Sahebkar A. Molecular mechanisms by which aerobic exercise induces insulin sensitivity. J Cell Physiol 2019; 234:12385-12392. [PMID: 30605232 DOI: 10.1002/jcp.28066] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
55
|
Brovkina O, Nikitin A, Khodyrev D, Shestakova E, Sklyanik I, Panevina A, Stafeev I, Menshikov M, Kobelyatskaya A, Yurasov A, Fedenko V, Yashkov Y, Shestakova M. Role of MicroRNAs in the Regulation of Subcutaneous White Adipose Tissue in Individuals With Obesity and Without Type 2 Diabetes. Front Endocrinol (Lausanne) 2019; 10:840. [PMID: 31866945 PMCID: PMC6906587 DOI: 10.3389/fendo.2019.00840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is a high-risk factor for such comorbidities as cardiovascular disease, several types of cancer, and type 2 diabetes; however not all individuals with obesity have such complications. Approximately 20% of individuals with obesity are metabolically healthy. This study focused on differences between obese individuals with and without type 2 diabetes (T2D+ and T2D-, respectively) on the transcriptome level. Subjects included were 35 T2D- patients with obesity and 35 T2D+ patients with obesity with the same body mass index (BMI). The study was based on the transcription analysis of mRNA and microRNAs (miRs) by RNAseq. In the first step, we performed RNAseq of miRs, in the second step, we analyzed only those mRNA, which appeared targets for significant miRs from the first step. All RNAseq results were validated by qPCR. There were seven miRs differently expressed with adjusted p-value <0.1, which were confirmed by qPCR. Five among them: miR-204-5p, miR125b-5p, miR-125a-5p, miR320a, miR-99b-were upregulated in T2D+ patients with obesity, while only two miRs, miR-23b-3p, and miR197-3p, were increased in T2D- patients with obesity. These seven miRs target two groups of genes: matrix metalloproteinases and TGFβ signal pathway genes. According to the results of transcriptome analysis, the main difference between T2D+ and T2D- patients with obesity was in adipogenesis and fibrosis regulation by matrix metalloproteinases and SMAD4-RUNX2 signal cascade. Based on the data about transcription profiles of both groups, we suggested that the process of fibrosis in T2D+ patients with obesity is more pronounced than in T2D- patients with obesity.
Collapse
Affiliation(s)
- O. Brovkina
- Endocrinology Research Centre, Moscow, Russia
- Federal Research and Clinical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
- *Correspondence: O. Brovkina
| | - A. Nikitin
- Pulmonology Research Institute, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - D. Khodyrev
- Federal Research and Clinical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | | - I. Sklyanik
- Endocrinology Research Centre, Moscow, Russia
| | - A. Panevina
- Endocrinology Research Centre, Moscow, Russia
| | - Iurii Stafeev
- Endocrinology Research Centre, Moscow, Russia
- National Medical Research Centre for Cardiology, Moscow, Russia
| | - M. Menshikov
- National Medical Research Centre for Cardiology, Moscow, Russia
| | - A. Kobelyatskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. Yurasov
- Central Clinical Hospital and Polyclinic, Moscow, Russia
| | - V. Fedenko
- Institute of Plastic Surgery and Cosmetology, Moscow, Russia
| | - Yu Yashkov
- Center of Endosurgery and Lithotripsy, Moscow, Russia
| | | |
Collapse
|
56
|
Yaribeygi H, Zare V, Butler AE, Barreto GE, Sahebkar A. Antidiabetic potential of saffron and its active constituents. J Cell Physiol 2018; 234:8610-8617. [PMID: 30515777 DOI: 10.1002/jcp.27843] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
The prevalence of diabetes mellitus is growing rapidly worldwide. This metabolic disorder affects many physiological pathways and is a key underlying cause of a multitude of debilitating complications. There is, therefore, a critical need for effective diabetes management. Although many synthetic therapeutic glucose-lowering agents have been developed to control glucose homeostasis, they may have unfavorable side effects or limited efficacy. Herbal-based hypoglycemic agents present an adjunct treatment option to mitigate insulin resistance, improve glycemic control and reduce the required dose of standard antidiabetic medications. Saffron (Crocus sativus L.), whilst widely used as a food additive, is a natural product with insulin-sensitizing and hypoglycemic effects. Saffron contains several bioactive β carotenes, which exert their pharmacological effects in various tissues without any obvious side effects. In this study, we discuss how saffron and its major components exert their hypoglycemic effects by induction of insulin sensitivity, improving insulin signaling and preventing β-cell failure, all mechanisms combining to achieve better glycemic control.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Zare
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
57
|
Yaribeygi H, Atkin SL, Katsiki N, Sahebkar A. Narrative review of the effects of antidiabetic drugs on albuminuria. J Cell Physiol 2018; 234:5786-5797. [PMID: 30367464 DOI: 10.1002/jcp.27503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is the most prevalent metabolic disorder worldwide. Glycemic control is the main focus of antidiabetic therapy. However, there are data suggesting that some antidiabetic drugs may have intrinsic beneficial renal effects and protect against the development and progression of albuminuria, thus minimizing the risk of diabetic nephropathy. These pharmacological agents can suppress upstream molecular pathways involved in the pathophysiology of diabetes-induced renal dysfunction such as oxidative stress, inflammatory responses, and apoptosis. In this narrative review, the pathophysiology of albuminuria in patients with diabetic nephropathy is discussed. Furthermore, the renoprotective effects of antidiabetic drugs, focusing on albuminuria, are reviewed.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|