51
|
Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV. Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Lett 2012; 326:8-16. [PMID: 22842096 DOI: 10.1016/j.canlet.2012.07.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022]
Abstract
Photodynamic Therapy (PDT) uses a photosensitizing drug in combination with visible light to kill cancer cells. PDT has an advantage over surgery or ionizing radiation because PDT can eliminate tumors without causing fibrosis or scarring. Disadvantages include the dual need for drug and light, and a generally lower efficacy for PDT vs. surgery. This minireview describes basic principles of PDT, photosensitizers available, and aspects of tumor biology that may provide further opportunities for treatment optimization. An emerging biomodulatory approach, using methotrexate or Vitamin D in combination with aminolevulinate-based PDT, is described. Finally, current clinical uses of PDT for solid malignancies are reviewed.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Dermatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
52
|
Dube A, Sharma S, Gupta P. Tumor regression induced by photodynamic treatment with chlorin p6 in hamster cheek pouch model of oral carcinogenesis: Dependence of mode of tumor cell death on the applied drug dose. Oral Oncol 2011; 47:467-71. [DOI: 10.1016/j.oraloncology.2011.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|
53
|
Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel) 2011; 3:2516-39. [PMID: 23914299 PMCID: PMC3729395 DOI: 10.3390/cancers3022516] [Citation(s) in RCA: 453] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; E-Mails: (A.Y.); (G.K.); (M.R.H.)
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Anastasia Yaroslavsky
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; E-Mails: (A.Y.); (G.K.); (M.R.H.)
- Boston University College of Engineering, Boston, MA 02114, USA
| | - Gitika B Kharkwal
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; E-Mails: (A.Y.); (G.K.); (M.R.H.)
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; E-Mails: (A.Y.); (G.K.); (M.R.H.)
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
54
|
Shahzidi S, Čunderlíková B, Więdłocha A, Zhen Y, Vasovič V, Nesland JM, Peng Q. Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells. Photochem Photobiol Sci 2011; 10:1773-82. [DOI: 10.1039/c1pp05169e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
55
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
56
|
Chiu SM, Xue LY, Lam M, Rodriguez ME, Zhang P, Kenney ME, Nieminen AL, Oleinick NL. A requirement for bid for induction of apoptosis by photodynamic therapy with a lysosome- but not a mitochondrion-targeted photosensitizer. Photochem Photobiol 2010; 86:1161-73. [PMID: 20553412 PMCID: PMC2974808 DOI: 10.1111/j.1751-1097.2010.00766.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) with lysosome-targeted photosensitizers induces the intrinsic pathway of apoptosis via the cleavage and activation of the BH3-only protein Bid by proteolytic enzymes released from photodisrupted lysosomes. To investigate the role of Bid in apoptosis induction and the role of damaged lysosomes on cell killing by lysosome-targeted PDT, we compared the responses of wild type and Bid-knock-out murine embryonic fibroblasts toward a mitochondrion/endoplasmic reticulum-binding photosensitizer, Pc 4, and a lysosome-targeted sensitizer, Pc 181. Whereas apoptosis and overall cell killing were induced equally well by Pc 4-PDT in both cell lines, Bid(-/-) cells were relatively resistant to induction of apoptosis and to overall killing following PDT with Pc 181, particularly at low PDT doses. Thus, Bid is critical for the induction of apoptosis caused by PDT with the lysosome-specific sensitizers, but dispensable for PDT targeted to other membranes.
Collapse
Affiliation(s)
- Song-Mao Chiu
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Kassab K. Evaluating the antitumor activity of combined photochemotherapy mediated by a meso-substituted tetracationic porphyrin and adriamycin. Acta Biochim Biophys Sin (Shanghai) 2009; 41:892-9. [PMID: 19902123 DOI: 10.1093/abbs/gmp084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The combined anticancer modality comprising porphyrins as photodynamic sensitizers and anticancer drugs has been an interesting subject for many researchers. In this study, the photochemotherapeutic effect mediated by simultaneous photoactivation of tetracationic meso-tetrakis(N-methyl-4-pyridyl) porphine tetratosylate (TMPyP) and adriamycin (ADM) were explored using human hepatocellular carcinoma cell line (HePG2). The efficiency of TMPyP acting in concert with ADM in the dark and in the presence of photoirradiation was evaluated, by studying cell viability, caspase-3 activity and ultrastructural changes in the cells after incubation with each of the two agents, separately, or simultaneously as a co-mixture. Under dark conditions, the simultaneous incubation of cells with TMPyP and ADM significantly enhanced cell death by 1.8 folds and 1.3 folds, compared with TMPyP or ADM treatment, respectively. After photoirradiation, the antiproliferative effect of the co-treatment with TMPyP and ADM increased further by 2 folds. Transmission electron microscopy and the measurements of caspase-3 levels in treated cells revealed that the co-treatment of cells with ADM and TMPyP followed by light irradiation directed the cell death towards necrosis and abrogated the apoptotic cell death pathway, which was exhibited in cells treated with ADM in absence and in presence of photoirradiation.
Collapse
Affiliation(s)
- Kawser Kassab
- Department of Laser Medical Applications, Cell Photosensitization Laboratory, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt.
| |
Collapse
|
58
|
Nawalany K, Rusin A, Kepczyński M, Mikhailov A, Kramer-Marek G, Snietura M, Połtowicz J, Krawczyk Z, Nowakowska M. Comparison of photodynamic efficacy of tetraarylporphyrin pegylated or encapsulated in liposomes: in vitro studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 97:8-17. [PMID: 19665390 DOI: 10.1016/j.jphotobiol.2009.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 04/10/2009] [Accepted: 07/02/2009] [Indexed: 11/24/2022]
Abstract
Two photosensitizing systems: (1) tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) encapsulated in sterically stabilized liposomes (SSL) and (2) p-THPP functionalized by covalent attachment of poly(ethylene glycol) (p-THPP-PEG(2000)) were studied in vitro. The dark and photo cytotoxicity of these systems were evaluated on two cell lines: HCT 116, a human colorectal carcinoma cell line, and DU 145, a prostate cancer cell line and compared with these determined for free p-THPP. It was demonstrated that both encapsulation in liposomes as well as attachment of PEG chain result in pronounced reduction of the dark cytotoxicity of the parent porphyrin. The liposomal formulation showed higher than p-THPP-PEG(2000) photocytotoxicity towards both cell lines used in the studies.
Collapse
Affiliation(s)
- Kinga Nawalany
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
While the concept of photodynamic therapy dates from 1900, and there have been periodic re-discoveries, the clinical era really began with the studies by Dougherty and associates in the early 1970s. This report relates my encounter with the field of PDT, along with experimental approaches to the elucidation of pertinent phototoxic mechanisms.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
60
|
Abstract
Photodynamic therapy (PDT) directed against the endoplasmic reticulum (ER) is also known to target antiapoptotic Bcl-2 family proteins. This effect is associated with the initiation of both apoptosis, a cell death pathway, and autophagy, an organelle recycling system that can lead to survival or cell death. In this study, we examined the ability of the Bcl-2 antagonist HA14-1 to promote the photodynamic efficacy of PDT directed at the ER. At concentrations that independently caused only a small loss of viability, HA14-1 markedly enhanced the proapoptotic and phototoxic effects of ER photodamage. These results provide additional evidence that the antiapoptotic properties of Bcl-2 constitute an important determinant of photokilling, and demonstrate that synergistic effects can result when PDT is coupled with pharmacologic suppression of Bcl-2 function.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|