51
|
Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 2006; 50:81-99. [PMID: 16691418 PMCID: PMC2583075 DOI: 10.1007/s00294-006-0078-x] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/15/2006] [Accepted: 04/19/2006] [Indexed: 12/11/2022]
Abstract
Double-stranded RNA has been shown to induce gene silencing in diverse eukaryotes and by a variety of pathways. We have examined the taxonomic distribution and the phylogenetic relationship of key components of the RNA interference (RNAi) machinery in members of five eukaryotic supergroups. On the basis of the parsimony principle, our analyses suggest that a relatively complex RNAi machinery was already present in the last common ancestor of eukaryotes and consisted, at a minimum, of one Argonaute-like polypeptide, one Piwi-like protein, one Dicer, and one RNA-dependent RNA polymerase. As proposed before, the ancestral (but non-essential) role of these components may have been in defense responses against genomic parasites such as transposable elements and viruses. From a mechanistic perspective, the RNAi machinery in the eukaryotic ancestor may have been capable of both small-RNA-guided transcript degradation as well as transcriptional repression, most likely through histone modifications. Both roles appear to be widespread among living eukaryotes and this diversification of function could account for the evolutionary conservation of duplicated Argonaute-Piwi proteins. In contrast, additional RNAi-mediated pathways such as RNA-directed DNA methylation, programmed genome rearrangements, meiotic silencing by unpaired DNA, and miRNA-mediated gene regulation may have evolved independently in specific lineages.
Collapse
Affiliation(s)
- Heriberto Cerutti
- School of Biological Sciences and Plant Science Initiative, University of Nebraska, Lincoln, 68588-0666, USA.
| | | |
Collapse
|
52
|
Meza I, Talamás-Rohana P, Vargas MA. The Cytoskeleton of Entamoeba histolytica: Structure, Function, and Regulation by Signaling Pathways. Arch Med Res 2006; 37:234-43. [PMID: 16380324 DOI: 10.1016/j.arcmed.2005.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 09/26/2005] [Indexed: 01/16/2023]
Abstract
Pathogenesis in the parasite Entamoeba histolytica has been related to motility of the trophozoites. Motility is an important feature in amebas as they perform multiple motile functions during invasion of host tissues. As motility depends on the organization and regulation of the cytoskeleton elements, in particular of the actin cytoskeleton, the study of the molecular components of the machinery responsible for movement has been a key aspect to study in this parasite. Although many of the components have high homology in amino acid sequence and function to those characterized in higher eukaryotic cells, there are important differences to suggest that parasitic organisms may have developed adaptative differences that could be useful as targets to stop invasion. The purpose of this review is to evaluate current knowledge about the cytoskeleton of E. histolytica and the ways in which the parasite controls motility.
Collapse
Affiliation(s)
- Isaura Meza
- Departamentos de Biomedicina Molecular, Centro de Investigación y de Estudios, Avanzados del IPN, México D.F., México.
| | | | | |
Collapse
|
53
|
Lorenzo-Morales J, Ortega-Rivas A, Foronda P, Abreu-Acosta N, Ballart D, Martínez E, Valladares B. RNA interference (RNAi) for the silencing of extracellular serine proteases genes in Acanthamoeba: molecular analysis and effect on pathogenecity. Mol Biochem Parasitol 2005; 144:10-5. [PMID: 16105699 DOI: 10.1016/j.molbiopara.2005.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/04/2005] [Accepted: 07/04/2005] [Indexed: 11/28/2022]
Abstract
Silencing of extracellular serine protease genes was undertaken by interference RNA (RNAi). Chemically synthesized, small interfering RNA (siRNA) were highly specific and efficient in silencing the catalytic domain of extracellular serine proteases of Acanthamoeba. In order to confirm the silencing phenomenon, the extracellular serine protease activities in RNAi-treated parasites were compared to non-treated parasites, using zymography profiles, Acanthamoeba-conditioned medium (ACM) protease activity, cytotoxicity assays and extracellular serine protease mRNA levels analysis. Zymography profiles showed a decrease in the extracellular protease levels in the moderate pathogenic and pathogenic strains, after treatment with siRNA. These results were supported after the ACM protease activity and CPE assays were performed in all studied isolates, showing a lower protease activity or cytotoxicity both in the pathogenic and moderate pathogenic strains treated with RNAi. These results support that extracellular serine proteases are directly involved in the pathogenesis and virulence of Acanthamoeba.
Collapse
Affiliation(s)
- Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, University of La Laguna, Avda. Astrofísico Fco. Sánchez, S/N 38203 La Laguna, Canary Islands, Spain
| | | | | | | | | | | | | |
Collapse
|
54
|
Marion S, Guillén N. Genomic and proteomic approaches highlight phagocytosis of living and apoptotic human cells by the parasite Entamoeba histolytica. Int J Parasitol 2005; 36:131-9. [PMID: 16386742 DOI: 10.1016/j.ijpara.2005.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/15/2022]
Abstract
Phagocytosis plays a major role during the invasive process of the human intestine by the pathogenic amoeba E. histolytica. This parasite is the etiologic agent causing amoebic dysentery, a worldwide disease causing 50 million of clinical cases leading to about 100,000 deaths annually. The invasive process is characterized by a local acute inflammation and the destruction of the intestinal tissue at the invasion site. The recent sequencing of the E. histolytica genome has opened the way to large-scale approaches to study parasite virulence such as processes involved in human cell phagocytosis. In particular, two different studies have recently described the phagosome proteome, providing new insights into the process of phagocytosis by this pathogenic protozoan. It has been previously described that E. histolytica induces apoptosis and phagocytosis of the human target cells. Induction of apoptosis by the trophozoites is thought to be involved in the close regulation of the inflammatory response occurring during infection. Little is known about the molecular mechanisms responsible for induction of apoptosis or in the recognition of apoptotic cells by E. histolytica. In this review, we comment on the recent data we obtained after isolation of the early phagosomes and the identification of its associated proteins. We focus on the surface molecules potentially involved in human cell recognition. In particular, we propose several parasite molecules, potentially involved in the induction of apoptosis and/or the phagocytosis of human apoptotic cells.
Collapse
Affiliation(s)
- Sabrina Marion
- Unité de Biologie Cellulaire du Parasitisme, INSERM U389, Institut Pasteur: 28 rue du Dr Roux 75724 Paris Cedex 15, France
| | | |
Collapse
|
55
|
Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107:222-39. [PMID: 15908010 PMCID: PMC7112686 DOI: 10.1016/j.pharmthera.2005.03.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 12/23/2022]
Abstract
In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21–23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.
Collapse
|
56
|
Nakada-Tsukui K, Saito-Nakano Y, Ali V, Nozaki T. A retromerlike complex is a novel Rab7 effector that is involved in the transport of the virulence factor cysteine protease in the enteric protozoan parasite Entamoeba histolytica. Mol Biol Cell 2005; 16:5294-303. [PMID: 16120649 PMCID: PMC1266427 DOI: 10.1091/mbc.e05-04-0283] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vesicular trafficking plays an important role in a virulence mechanism of the enteric protozoan parasite Entamoeba histolytica as secreted and lysosomal cysteine protease (CP) contributes to both cytolysis of tissues and degradation of internalized host cells. Despite the primary importance of intracellular sorting in pathogenesis, the molecular mechanism of CP trafficking remains largely unknown. In this report we demonstrate that transport of CP is regulated through a specific interaction of Rab7A small GTPase (EhRab7A) with the retromerlike complex. The amoebic retromerlike complex composed of Vps26, Vps29, and Vps35 was identified as EhRab7A-binding proteins. The amoebic retromerlike complex specifically bound to GTP-EhRab7A, but not GDP-EhRab7A through the direct binding via the carboxy terminus of EhVps26. In erythrophagocytosis the retromerlike complex was recruited to prephagosomal vacuoles, the unique preparatory vacuole of digestive enzymes, and later to phagosomes. This dynamism was indistinguishable from that of EhRab7A, and consistent with the premise that the retromerlike complex is involved in the retrograde transport of putative hydrolase receptor(s) from preparatory vacuoles and phagosomes to the Golgi apparatus. EhRab7A overexpression caused enlargement of lysosomes and decrease of the cellular CP activity. The reduced CP activity was restored by the coexpression of EhVps26, implying that the EhRab7A-mediated transport of CP to phagosomes is regulated by the retromerlike complex.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | |
Collapse
|
57
|
Sánchez R, Saralegui A, Olivos-García A, Scapolla C, Damonte G, Sanchez-Lopez R, Alagón A, Stock RP. Entamoeba histolytica: intracellular distribution of the sec61alpha subunit of the secretory pathway and down-regulation by antisense peptide nucleic acids. Exp Parasitol 2005; 109:241-51. [PMID: 15755422 DOI: 10.1016/j.exppara.2004.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/04/2004] [Accepted: 12/10/2004] [Indexed: 11/22/2022]
Abstract
The Sec61alpha protein is defined as a highly conserved essential integral component of the endoplasmic reticulum in eukaryotic cells. We report a detailed immunolocalization of the Entamoeba histolytica homologue of the Sec61alpha subunit (EhSec61alpha), which shows an irregular pattern throughout the cell and is also found on the cell surface, its effective down-regulation by means of antisense peptide nucleic acids and its effects on cell proliferation, subcellular distribution of two virulence factors, and the ability of the trophozoites to cause liver abscess in hamsters. Although Sec61alpha levels are specifically decreased in antisense PNA-treated trophozoites, which proliferate more slowly than the controls, mobilization of the cysteine protease 5 and amoebapore to the cell surface is not significantly impeded and the capacity to induce liver abscess in hamsters is largely unaffected. The implications of these findings are discussed in the context of the peculiar cell biology of E. histolytica.
Collapse
Affiliation(s)
- Ricardo Sánchez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abed M, Ankri S. Molecular characterization of Entamoeba histolytica RNase III and AGO2, two RNA interference hallmark proteins. Exp Parasitol 2005; 110:265-9. [PMID: 15955322 DOI: 10.1016/j.exppara.2005.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/27/2005] [Accepted: 02/28/2005] [Indexed: 11/16/2022]
Abstract
Entamoeba histolytica, a protozoan parasite with variable DNA content and complex ploidity, has defied most efforts aimed at gene depletion using classical genetic methods. In this study, we identified and characterized two proteins involved in the RNA interference (RNAi) pathway, RNase III and AGO2. Our results strengthen the findings that an RNAi pathway does exist in this parasite.
Collapse
Affiliation(s)
- Mona Abed
- Department of Molecular Microbiology, The Bruce, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649, Haifa 31096, Israel
| | | |
Collapse
|
59
|
MacFarlane RC, Shah PH, Singh U. Transcriptional profiling of Entamoeba histolytica trophozoites. Int J Parasitol 2005; 35:533-42. [PMID: 15826645 DOI: 10.1016/j.ijpara.2005.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/01/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
We have developed an Entamoeba histolytica genomic DNA microarray and used it to develop a transcriptional profile of 1,971 E. histolytica (HM-1:IMSS) genes. The arrays accurately detected message abundance and 31-47% of amebic genes were expressed under standard tissue culture conditions (levels detectable by Northern blot analysis or RT-PCR respectively). Genes expressed at high levels ( approximately 2% of total) included actin (8.m00351), and ribosomal genes (20.m00312). Moderately expressed genes ( approximately 14% of total) included cysteine proteinase (191.m00117), profilin (156.m00098), and an Argonaute family member (11.m00378). Genes with low-level expression ( approximately 15% of total) included Ariel1 (160.m00087). Genes with very low expression ( approximately 16% of total) and those not expressed ( approximately 52% of total) included encystation-specific genes such as Jacob cyst wall glycoprotein (33.m00261), chitin synthase (3.m00544), and chitinase (22.m00311). Transcriptional modulation could be detected using the arrays with 17% of genes upregulated at least two-fold in response to heat shock. These included heat shock proteins (119.m00119 and 279.m00091), cyst wall glycoprotein Jacob (33.m00261), and ubiquitin-associated proteins (16.m00343; 195.m00092). Using Caco-2 cells to model the host-parasite interaction, we verified that host cell killing was dependent on live ameba. However, surprisingly these events did not appear to induce major transcriptional changes in the parasites.
Collapse
Affiliation(s)
- Ryan C MacFarlane
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | | | | |
Collapse
|
60
|
Mitra BN, Yasuda T, Kobayashi S, Saito-Nakano Y, Nozaki T. Differences in morphology of phagosomes and kinetics of acidification and degradation in phagosomes between the pathogenicEntamoeba histolytica and the non-pathogenicEntamoeba dispar. ACTA ACUST UNITED AC 2005; 62:84-99. [PMID: 16106449 DOI: 10.1002/cm.20087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phagocytosis plays an important role in the pathogenicity of the intestinal protozoan parasite Entamoeba histolytica. We compared the morphology of phagosomes and the kinetics of phagosome maturation using conventional light and electron microscopy and live imaging with video microscopy between the virulent E. histolytica and the closely-related, but non-virulent E. dispar species. Electron micrographs showed that axenically cultivated trophozoites of the two Entamoeba species revealed morphological differences in the number of bacteria contained in a single phagosome and the size of phagosomes. Video microscopy using pH-sensitive fluorescein isothiocynate-conjugated yeasts showed that phagosome acidification occurs within 2 min and persists for >12 h in both species. The acidity of phagosomes significantly differed between two species (4.58 +/- 0.36 or 5.83 +/- 0.38 in E. histolytica or E. dispar, respectively), which correlated well with the differences in the kinetics of degradation of promastigotes of GFP-expressing Leishmania amazonensis. The acidification of phagosomes was significantly inhibited by a myosin inhibitor, whereas it was only marginally inhibited by microtubules or actin inhibitors. A specific inhibitor of vacuolar ATPase, concanamycin A, interrupted both the acidification and degradation in phagosomes in both species, suggesting the ubiquitous role of vacuolar ATPase in the acidification and degradation in Entamoeba. In contrast, inhibitors against microtubules or cysteine proteases (CP) showed distinct effects on degradation in phagosomes between these two species. Although depolymerization of microtubules severely inhibited degradation in phagosomes of E. histolytica, it did not affect degradation in E. dispar. Similarly, the inhibition of CP significantly reduced degradation in phagosomes of E. histolytica, but not in E. dispar. These data suggest the presence of biochemical or functional differences in the involvement of microtubules and proteases in phagosome maturation and degradation between the two species.
Collapse
Affiliation(s)
- Biswa Nath Mitra
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-851, Japan
| | | | | | | | | |
Collapse
|